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We present the hyperfine structure (HFS) energies calculation for pionic
atoms. These systems are formed of an atomic nucleus and of negatively
charged pion (a spin-0 particle) replacing the electrons. The evaluation of the
HFS sub-level energies are essential to estimate the broadening and mean value
shift in the experimental atomic lines due to the HFS. The formulas are de-
veloped in a completely relativistic framework, using the multipole expansion
of the nuclear potential in the Klein-Gordon equation.

1 Introduction

We present the calculation of the hyperfine structure in pionic atoms, i.e., atoms formed by
an ordinary nucleus and a charged pion, instead of replacing the ordinary electrons. The
pion is a boson of spin zero and the system is well described by the Klein-Gordon equation
(KG) in a central Coulomb potential generated by the atomic nucleus. The interaction
between the nuclear magnetic moment and the orbital magnetic moment of the pion
create a level splitting. This splitting can be calculated from the multipole expansion of
the nuclear electromagnetic potential [9, 4] and from the Klein-Gordon equation.

In the next section, we develop the formalism to calculate the energy correction due to
the hyperfine interaction term.

In Sec. 3, we will calculate the hyperfine structure correction for a particular case: the
pionic nitrogen atom. This system is of particular interest because it is used in an ongoing
experiment at the Paul Scherrer Institute to obtain a measurement of the pion mass [10].
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2 Hyperfine structure calculation for the Klein-Gordon
equation

The dynamic of a spin-zero particle in an electromagnetic field is described by the Klein-
Gordon equation. For a negatively charged boson (with a charge equal to the electron
one) in presence of a central electromagnetic potential, the KG equation can be written
as:

( 1

c2
(E − eV (r))2 +

h̄2

r

∂2

∂r2
r − h̄2 l(l + 1)

r2
− µ2c2 − Ŵ (r)

)
ψnl(r) = 0, (1)

where µ is the reduced mass of the system, V (r) is the Coulomb potential of the nucleus,
ψnl(r) is the wave-function radial part and Ŵ (r) is the perturbation term due to the
magnetic interaction with the nucleus. The perturbation term can be expressed as:

Ŵ (r) = −ieh̄(∂iA
i(r) + Ai(r)∂

i). (2)

In Eq. (2) the quadratic term e2AiAi can be omitted in this case as it does not contribute to
the HFS splitting. The energy correction due to Ŵ can be calculated with a linearization
of the KG equation obtained by a simple variable change. Once we have a linear equation,
it is possible to calculate the correction in first order to the Coulomb energy using standard
techniques: E = E(0) + E(1), where E(0) = µc2 + Enl

0 is the total energy of the system
without perturbation (mass energy plus binding energy of the atom) and E(1) is the first

order correction due to Ŵ ,
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)2
)
. (3)

The expression for W (�r) can be derived by employing the standard multipole expansion
of the vector potential A(r) using spherical tensors [9, 4].

A(r) = −i
µ0

4π

∑
k

(k + 1
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)1/2

r−k−1Ckk ◦ M̂k (4)

Here, the symbol ◦ indicates the scalar product between spherical tensor operators Uk ◦
V k =

∑
q(−1)qUk

q V k
−q, M̂k is the spherical tensor operator for the nuclear part of the

wave function and Ckk is the vector spherical harmonic. If we limit ourselves to the first
magnetic multipole contribution we have:

Ŵ (r) = −eµ0h̄

√
2

2π
r−2(C11 · �∇) ◦ M̂1, (5)

where M̂1 is the nuclear magnetic moment tensor.

Using the properties of the spherical tensors and of the vector spherical harmonics [8, 5]
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we can finally find the expression for the hyperfine energy correction:
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(6)
where µI is the nuclear dipole momentum in units of nuclear magneton µN = (eh̄)/(2mpc).

It is interesting to compare this result to the hyperfine energy correction calculated
using the non-relativistic Schrödinger equation. In this case we have [3]
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. (7)

The equivalent formula for the KG equation can be obtained using an expansion in Zα
of the relativistic wave-function and energy [7]

ψnl(ρ) = ψnl(ρ)NR
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In particular we have

〈nl|r̂−3|nl〉 = 〈nl| r̂−3|nl〉NR

(
1 + O((Zα)2)

)
. (10)

Using these developments it easy to show that

ENR
(1) = E(1)

(
1 + O((Zα)2)

)
(11)

When we study the non-relativistic limit c → ∞, we can drop the terms of order O((Zα)2

and as expected, Eq. (6) reproduces the non-relativistic expression of Eq. (7).

3 Hyperfine structure for n = 5 → n = 4 transitions for
pionic nitrogen

In this section, we present a specific numerical application of the formalism developed in
Sec. 2 for the hyperfine sub-level in pionic nitrogen for the n = 5 → n = 4 transitions.
Because of the differences in transition probabilities between the (unresolved) hyperfine
sub-levels, the hyperfine interaction can produce a shift of the mean energy value of
the observed transition. The transition probabilities has been evaluated using the non-
relativistic formula [3, 2] assuming a statistical population of the HFS sub-levels (i.e.,
proportional to 2F + 1). The results are summarized in Table 1 and in Fig. 1. We notice
that, with the statistical population hypothesis, all the transition with a ns final state

EXA05, Vienna 223



M. Trassinelli

Table 1: Hyperfine transitions energy and transition rate (preliminary results).
Transition F-F’ Trans. rate (s−1) Trans. E (eV) Shift(eV)
5f → 4d 4-3 4.57 · 1013 4057.68762 0.0061

3-2 3.16 · 1013 4057.69708 -0.0034
3-3 2.98 · 1013 4057.68457 0.0091
2-1 2.13 · 1013 4057.70313 -0.0095
2-2 2.25 · 1013 4057.69479 -0.0011
2-3 1.13 · 1011 4057.68229 0.0114

5g → 4d 5-4 7.13 · 1013 4055.37793 0.0030
4-3 5.47 · 1013 4055.38210 -0.0011
4-4 5.27 · 1013 4055.37616 0.0048
3-2 4.17 · 1013 4055.38514 -0.0042
3-3 3.65 · 1012 4055.38068 0.0003
3-4 5.79 · 1010 4055.37474 0.0062

Figure 1: Hyperfine sub-level transition rates for 5f → 4d levels (left) and 5g → 4f levels
(right).

are not subject to any HFS shift because the absence of sub-levels for s states. For the
transitions between circular levels used for the determination of the pion mass from pionic
nitrogen, there is a shift of 0.27 and 0.85 meV respectively, for the 5g → 4f and 5f → 4d
transition mean values. These values correspond to a relative corrections of 0.06 and 0.21
ppm respectively to the transition energies. This has to be compared with the ≈ 1.4 ppm
accuracy expected for the pion mass energy.

4 Conclusions

In the previous section we demonstrate the possibility to calculate the hyperfine struc-
ture perturbation terms for the Klein-Gordon equation. The validity of this method is
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confirmed by the non-relativistic limit of the hyperfine energy correction (Eq. (6)) which
reproduce the Schrödinger equation results when c → ∞. Moreover, this method has the
advantage to consider the relativistic corrections in a simple way, without introduction to
additional operators like in Breit-Pauli Hamiltonian methods [1, 6].
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