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Abstract 

The analysis and understanding of spatial crime patterns is crucial for law enforcements to 
improve strategic and tactical decision-making. In this context, generalized linear models, 
such as count regressions, are commonly applied. These non-spatial models are challenged 
by spatial autocorrelation effects, contradicting fundamental model assumptions. Therefore, 
the purpose of this research is to present a spatially explicit approach, which combines a 
negative binomial model and spatial filtering to explain the spatial distribution of non-
violent offences in Houston, TX, for the year 2010. The results provide evidence that the 
non-spatial negative binomial model is biased while the supplementary consideration of a 
spatial filter is capable to absorb these undesirable spatial effects and results in a well-
specified regression model. Moreover, besides the significant importance of space in the 
explanation of the non-violent crime patterns, only the percentage of renter-occupied hous-
ing units and the percentage of Asian population are significantly related to the crime. The 
former covariate has a stimulating effect while the latter has an inhibiting effect.  

1 Introduction 

Since the last two decades geographic information system and spatial analysis are effective-
ly used in daily operations of governmental agencies involved in public security and safety 
(WANG 2012; LEITNER 2013). Their applications have grown tremendously, comprising, 
for instance, of hotspot analysis (e.g. HELBICH & LEITNER 2012), crime forecasting on the 
basis of time series analysis (e.g. BERK 2008), and data mining applications (e.g. HELBICH 
et al. 2013b). In particular, regression models are of great importance to law enforcement 
agencies and academic researchers (e.g. OSGOOD 2000). These models support the under-
standing of the underlying spatial and social processes affecting and contributing to the pre-
sence or absence of criminal offenses. But mostly, traditional regression models are chal-
lenged by the fact that criminal activities are not spread evenly across space and tend to 
clump in certain areas. For instance, LEITNER and HELBICH (2011) have shown that socially 
disadvantaged areas in Houston, TX, exhibit higher crime rates. This has serious conse-
quences for most statistical analysis conducted with area-based crime data. Such a coinci-
dence of locational and attribute similarity is referred to as spatial autocorrelation, a well- 
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known concept in geography (e.g. HELBICH et al. 2013a). To receive unbiased and correct 
inference results, spatial autocorrelation must be explicitly considered in statistical analysis 
(TITA & RADIL 2011). This is non-trivial in count regressions, where the response variable 
used is the number of crimes within a spatial unit (e.g. OSGOOD 2000; GRIFFITH & HAINING 
2006). Bayesian spatial modeling provides an alternative but such models are highly 
complex and computationally intensive and thus of limited use for non-statisticians and 
larger datasets.  

Therefore, the present research makes the following two contributions: First, since count re-
gression models are misspecified whenever spatial autocorrelation is present in the resid-
uals, spatial eigenvector filtering is introduced and applied to crime analysis and modeling. 
Thus, the paper responds to a recent call by BERNASCO and ELFFERS (2011) that spatial 
filtering might be a relevant technique for quantitative criminology. Second, by analyzing 
the distribution of non-violent crime for the year 2010 in Houston, TX, a deeper under-
standing of the major driving forces is gained which allows formulating more appropriate 
and situational policies and actions from law enforcements.  

The paper is structured as follows: Section 2 presents the study area and data, while section 
3 briefly introduces the main aspects of count regression, specifically the negative binomial 
model, and spatial filtering. Main results are discussed in section 4. The paper concludes 
through a discussion of major findings. 

2 Study Area and Data  

The study area is the metropolitan area of Houston, TX, which is located in Harris County. 
To avoid enclaves within the study site, a slightly modified version of the original 
metropolitan area is considered to secure a coherent area. The spatial units for subsequent 
statistical analysis comprise of 467 census tracts for the year 2010, which represent an offi-
cial administrative unit commonly used by the U.S. Census Bureau. This area is “con-
trolled” by the Houston Police Department, one of the ten largest police departments in the 
U.S., serving a population of over two million residents, and covering an area of approxi-
mately 600 square miles.  

Crime data were received from the police department by an official data request in 2012. 
Approximately 120,200 offences occurred within the study area in 2010. The police 
agencies classify each offence in accordance to the classification scheme provided by the 
Federal Bureau of Investigation. This study is exclusively based on 99,600 non-violent 
crimes, while the remaining 20,500 violent offenses are not further considered. Following 
the Uniform Crime Reporting classification scheme, non-violent crimes include the follow-
ing offense types: burglaries, larceny, auto theft, and arson. After pre-processing (e.g. data 
cleaning) all non-violent crime data, the crime incident locations are geocoded by means of 
the TIGER street network provided by the U.S. Census Bureau. With a geocoding accuracy 
of about 92%, the results show a high completion rate and guarantee a high correspondence 
with the actual crime distribution. Subsequently, these geocoded crime data are aggregated 
to each corresponding census tract and henceforth reflect the corresponding variable in the 
regression analysis. Figure 1 provides an overview of the spatial crime distribution for the 
year 2010. 
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Fig. 1:  Spatial distribution of non-violent crimes in Houston (TX) in 2010 

Figure 1 makes this fact evident that these patterns reflect some spatial variation in non-
violent crimes. The majority of the census tracts depict less than 400 crimes during the 
study period (figure 2), while others show an exceptional high amount of crime (dark areas 
in figure 1).  
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Fig. 2:  Number of non-violent crimes per census tract in Houston (TX) in 2010 
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The utilization of census tracts allows to easily link the crime data with several underlying 
socio-economic and ethnic characteristics, which may serve as driving forces of crime. 
Based on LEITNER and HELBICH (2011), seven variables are considered as independent 
variables. These variables are published by the U.S. Census Bureau and cover the same 
time period as the crime data, namely 2010. The following variables are considered within 
the spatial analysis: 

1) percentage of white population (WHPOP), 
2) percentage of black population (BLPOP),  
3) percentage of Asian population (ASPOP) 
4) percentage of renter-occupied housing units (ROH) 
5) homeowner vacancy rate (%; HVR) 
6) rental vacancy rate (%; RVR), and  
7) Euclidian distance to the nearest police station (meters; DIST).  

3 Methods 

This section describes the main modeling steps. The applied analysis framework consists of 
two parts: First, a count regression model is introduced to determine the relevant driving 
forces, explaining the amount of crime that occurred at a statistically significant level (sec-
tion 3.1). Second, due to expected existing spatial autocorrelation effects, a spatial filter is 
derived and integrated into the count regression model, which aims to absorb biasing spatial 
autocorrelation effects (section 3.2). 

3.1 Negative Binomial Regression Model 

In general, count regression analysis relates the response variable to several independent 
variables, which might be theoretically relevant to explain a given response (CAMERON & 
TRIVEDI 1998). Because count data are formed by non-negative integers, among other parti-
cularities, basic ordinary least square models are not appropriate and generalized models, in 
particular Poisson regressions, are required (CAMERON & TRIVEDI 1998; COXE et al. 2009). 
Empirical criminological studies (e.g. OSGOOD 2000) clearly note that Poisson regression is 
based on model assumptions that are too strict, i.e. that the mean is equivalent to the 
variance, which is rarely the case in reality and erroneously results in overdispersed models.  

Thus, the negative binomial model is a suitable extension, which relaxes this assumption 
about the mean-variance equidispersion through an additional variance specification explic-
itly controlling for overdispersion (COXE et al. 2009). In particular, OSGOOD (2000) pro-
motes the negative binomial model for crime analysis. Nevertheless, the spatial independ-
ence of the residuals is a mandatory requirement to receive unbiased estimates (GRIFFITH & 
HAINING 2006). However, the application of a spatial filter (see section 3.2 for details) 
should fulfill this prerequisite and enable residuals not to be affected by spatial auto-
correlation. This, of course, requires a strict testing of model assumptions.  

The following negative binomial model, in which spatial autocorrelation is modeled by 
means of spatial filtering is empirically tested in this study:  
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Where CRIME is the absolute number of non-violent crimes in census tract i, the s are the 
coefficients to be estimated, the independent variables are those introduced in section 2, and 
the EVl are a subset of selected spatial filters which turn the non-spatial negative binomial 
model in a spatially explicit model.   represents the error term.  

3.2 Spatial Filtering 

The absence of spatial autocorrelation is a fundamental regression model assumption. A 
widely used approach to investigate spatial autocorrelation is the Moran's I statistic, on 
which the recently introduced spatial eigenvector filtering approach is based upon (GRIF-
FITH 2000; TIEFELSDORF & GRIFFITH 2007). Essentially, spatial eigenvector filtering ex-
tracts eigenvectors (EVs) from an exogenously defined spatial contiguity matrix, which re-
presents the spatial arrangement of the census tracts. Possibilities of how to define such a 
spatial contiguity matrix are discussed, for instance, in PATUELLI et al. (2011). For simplici-
ty, this study only focuses on one contiguity definition, specifically the first-order queen 
contiguity with a globally standardized coding scheme. EV decomposition is used to extract 
orthogonal and uncorrelated EVs from the following matrix: 

T T

I
N N

 
   
   
   
I C

11 11
  

where I represents the N  N identity matrix having 1s in the main diagonal and 0s else-
where, 1 is a N  1 vectors of 1s, C gives the spatial arrangement of N spatial units, and T 
denotes the matrix transpose. The first EV has the largest achievable Moran's I value for a 
given contiguity definition. The second EV contains the set of numerical values that has the 
largest achievable Moran’s I by any set of numerical values uncorrelated with the first EV, 
and so on. As outlined by TIEFELSDORF and GRIFFITH (2007), each of these N EVs repre-
sents a distinct map pattern, ranging from global patterns to local ones. In general, the glo-
bal patterns follow the main cardinal directions while higher EVs show some regional or 
local map characteristics. Within the next step, these N EVs are reduced to a set of candi-
date EVs. As a rule-of-thumb criterion, TIEFELSDORF and GRIFFITH (2007) recommend EVs 
having a certain degree of autocorrelation (approximately 0.25). The application in this 
research follows a recent study by PATUELLI et al. (2011) and investigates positive auto-
correlation effects, usually present in geospatial data. Subsequently, to receive the final set 
of EVs, the response variable is regressed on the set of candidate EV and stepwise variable 
selection is utilized to determine only the EVs significantly related to the response variable. 
Finally, a spatial filter is constructed by constituting a linear combination of the significant 
EVs. This filter can now be included as an additional independent variable in regression 
models and serves as a surrogate for possible missing predictors and absorbs undesirable 
spatial residual autocorrelation.  
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4 Results 

Descriptive statistics show that the mean number of crimes across all census tracts is 213. 
To further investigate the spatial crime distribution statistically and to evaluate whether 
spatial autocorrelation may affect regression analysis, the global Moran's I statistic is com-
puted. As outlined above, a globally standardized first-order queen contiguity matrix is 
used. With a value of 0.206, the Moran’s I statistic confirms significant spatial autocorrela-
tion (p-value < 0.001), meaning that similar values are located nearby in space. Therefore, 
the spatial filtering approach seems to be a rational choice to avoid complications associ-
ated with spatial autocorrelation. Following section 3.2, 467 EVs are extracted for the given 
contiguity matrix. As expected, the first EVs comprise of the highest positive Moran's I 
values, while the last EVs show the lowest negative Moran's I values. The transition of the 
Moran's I values from positive to negative autocorrelation is obvious in figure 3.  
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Fig. 3: Moran's I values derived for each EV 
 

To reduce these 467 EVs to a set of candidate EVs, a Moran's I threshold value of 0.3 is 
applied which results in 92 candidates. Four examples of the extracted EV are visualized in 
figure 4. While EV3 (e3) depicts large-scale trends, the lower ranked EVs, e.g. EV15 (e15), 
reflects more regional patterns. In contrast, EV40 (e40) and EV78 (e78) show local pat-
terns. Because not all EVs are significantly related to the response variable, a stepwise vari-
able selection algorithm which minimizes the Akaike information criterion (AIC) is applied 
for a negative binomial model. Choosing this model is necessary because both the basic 
Poisson and the Quasi-Poisson models reveal considerable overdispersion, contradicting an 
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important model assumption. For example, the overdispersion test statistic for the basic 
Poisson model clearly rejects equidispersion (p-value < 2.2e-16). A re-estimation using a 
Quasi-Poisson model does not show any improvement. The final negative binomial model 
incorporates 43 EVs significantly related to the crime pattern. In contrast to the basic and 
Quasi-Poisson model, the final negative binomial model shows negligible overdispersion of 
1.259 that is close to the ideal value of 1. Lastly, the 43 EVs are combined by means of a 
linear combination and constitute the spatial filter.  
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Fig. 4:  Spatial patterns of four EVs representing global (e3), regional (e15, e40), and 
local spatial autocorrelation patterns (e78) 

To investigate the relationship between the crime pattern and the selected socio-economic 
and ethnical variables, count regressions are estimated. As before, only the negative bino-
mial model is not affected by overdispersion. Significant residual autocorrelation (Moran's I 
= 0.125; p-value < 0.001) of the non-spatial model justifies the application of the spatially 
filtered negative binomial model. Testing the independence assumption for the spatially 
filtered model confirms that the residuals are randomly distributed across space (Moran's I 
= -0.031; p-value = 0.265) and that spatial autocorrelation is effectively modeled. Overall, 
the model's pseudo-R² indicates that approximately 43% of the variation is explained. The 
AIC provides clear evidence that the spatial NBM (AIC = 5,851) is more appropriate 
compared to the non-spatial model (AIC = 5,871). Detailed estimation results of the final 
model are provided below in Table 1. 
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Table 1: Estimation results of the spatially filtered negative binomial model 

 Estimate Std. Error z-value Pr(>|z|)  
Intercept 4.9370 0.2860 17.263 < 2e-16 *** 
WHPOP -0.0003 0.0033 -0.115 0.908  
BLPOP 0.0001 0.0031 0.036 0.971  
ASPOP -0.0096 0.0045 -2.140 0.032 * 
ROH 0.0059 0.0015 4.032 5.53e-05 *** 
HVR 0.0172 0.012 1.385 0.166  
RVR 0.0012 0.0046 0.271 0.787  
DIST 0.0000 0.0000 0.280 0.779  
Spatial filter 0.8903 0.0631 14.108 < 2e-16 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

The model estimation reveals that two out of the seven predictors are significantly associ-
ated with the non-violent crime pattern. The covariate percentage of renter-occupied hous-
ing units (ROH) shows a significant positive relationship (p < 0.001) to the number of non-
violent crimes and the covariate percentage of Asian population (ASPOP) shows a signifi-
cant negative one (p < 0.050). As such, both variables can be interpreted as criminogenic 
factors. The former stimulates crime while the latter inhibits crime. Furthermore, the spatial 
filter is highly significant and provides empirical evidence that location matters (see also 
LEITNER & HELBICH 2011). This confirms a previous study by MORENOFF et al. (2001), 
which concludes that spatial effects are of utmost importance in analyzing homicide rates.  

5 Summary and Conclusions 

Area-based crime analysis is often affected by spatial autocorrelation, having serious con-
sequences for aspatial regression models. While for Gaussian models a rich set of possible 
alternatives exist to account for such patterns (e.g. autoregressive models), little research 
has been conducted on generalized linear models, including count regressions.  

The main objective of this paper was to demonstrate the usefulness of a relatively novel ap-
proach, namely spatial eigenvector filtering, to model spatial autocorrelation explicitly in 
count regression models. Using non-violent crime as well as selected socio-economic and 
ethnical data for the year 2010 for the city of Houston, TX, the usefulness and effectiveness 
of this approach is demonstrated. It is shown that the derived spatial filter absorbs the 
existing residual autocorrelation effects through a negative binomial model yielding a well-
specified model. Neglecting these residual autocorrelation effects would have unequivocal-
ly resulted in a misspecified model and resulted in wrong conclusions drawn by law en-
forcement agencies. Moreover, the model confirms that the percentage of renter-occupied 
housing units as well as the percentage of Asian population are significant criminogenic 
factors explaining Houston's non-violent crime pattern. The significance of the spatial filter 
also points to the relevance of “space” being an important variable to explain the “spatial” 
distribution of crime patterns.  

To conclude, correctly specified models are not only of particular importance in terms of 
scarce monetary resources for law enforcement policies and safety, but also to get a deeper 
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understanding of criminological processes. In this sense, spatial eigenvector filtering pro-
vides a cutting-edge spatial statistical technique which turns basic non-spatial models in 
spatially-explicit and flexible models. To fully explore the method's capacities and prevail-
ing criminal conditions in Houston, future research must deal with a more comprehensive 
dataset describing the neighborhood conditions more broadly. Moreover, future models 
must account for the population specific effects within the census tracts via an additional 
offset term. Thus, crime analysis remains a vital on-going research area.  
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