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Abstract 

Background: Extreme heat events (EHE) are of increasing public health concern. In urban 
areas, micro-urban heat islands (MUHI) raise the possibility of increased mortality risk. 
This study identified MUHI in the city of Barcelona, Spain, using Landsat 7 thermal 
infrared imagery and overlaid them onto at-home deaths between 2000-2003, identified 
from a mortality registry and geocoded using the Google API. Hot days were defined as 
days with mean minimum temperatures above the 90th percentile of historic temperatures. 
Data were analyzed using a case-only design, with a logistic regression model adjusted for 
spatial autocorrelation. Results: In the period 2000-2003, at-home deaths in MUHI were 
associated with 15% greater odds of dying on hot days than at-home deaths outside of 
MUHI. Conclusions: MUHI were a risk factor for at-home deaths during EHE in the study 
period (2000-2003) in the city of Barcelona. In urban areas facing similar conditions (lim-
ited use of air-conditioning, among others), residents of MUHI may be at increased mortali-
ty risk during extreme heat events.  

1 Introduction 

Extreme heat events (EHE), some of which are commonly known as “heat waves”, have 
been an issue of increasing concern and research in recent years, especially after the high 
mortality experienced during a series of European EHE between 2003 and 2006 (FOUILLET 

et al. 2008, KOVATS & HAJAT 2008). Recently published climate models project increases 
in the frequency, duration and intensity of EHE in the latter half of this century (GOSLING et 
al. 2008). MEEHL & TEBALDI (2004) have noted that these changes are expected to affect 
the Mediterranean area disproportionately. 

Heat effects are particularly detrimental to certain sub-populations: the elderly (IÑIGUEZ et 
al. 2010; O’NEILL et al. 2009), the poor (O’NEILL et al. 2009; BASU 2009), minorities (BASU 

2009; SCHWARTZ 2005), the mentally ill (HANSEN et al. 2008), outdoor workers (KINNEY et 
al. 2008), the bedridden (BOUCHAMA et al. 2007) and people who take certain types of 
medications that interfere with electrolytes and water balance (e.g., diuretics, anticholergic 
agents, and tranquilizers that impair sweating) (LUBER & MCGEEHIN 2008, HANSEN et al. 
2008; JOHNSON et al. 2009; MARTINN-LATRY et al. 2007). Heat may kill so quickly that 
hospital admissions do not reflect the full scale of mortality (KOVATS & HAJAT 2008); some 
authors report that most victims are found dead in their residences (BOUCHAMA et al. 2007). 
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The goal of this project was to identify spatial risk factors associated with increased 
mortality during EHE in the city of Barcelona, Spain. The methods used were the creation 
and testing of a place-based heat vulnerability map for the city of Barcelona using a case-
only study design. Four data sets (mortality, weather, infrared imaging and census data) 
were processed to produce the final dataset used in the analysis. One spatial factor out of 
many that affect exposure to heat is the urban heat island (UHI) effect, which causes cities 
to have higher temperatures than their less urbanized surroundings, due to hard surfaces 
that absorb heat (steel, cement, asphalt), building density, wind and the effect of the built 
environment on wind direction and speed, and lack of vegetation. Urban areas also show 
high variability in surface temperatures over short distances (NICHOL et al. 2009), variations 
commonly referred to as “micro-urban heat islands” (MUHI). MUHI have been associated 
with increased mortality risks in previous publications (JOHNSON et al. 2009; KESTENS et al. 
2011; SMARGIASSI et al. 2009). MUHI are important because they affect densely populated 
areas, thus putting large numbers of people at risk. 

2 Input Data and Data Processing 

2.1 Data Sets 

Four data sets were used: 1) Mortality data for 2000-2003, April-September (inclusive). As 
the source of these data was a mortality registry, only address (residential and address of 
death), age and sex were provided for each subject. Only at-home deaths during the warm 
season (April-September) were considered. 2) Meteorological data for 2000-2003, April-
September (inclusive). Data from two weather stations were used, including mean, 
minimum and maximum daily temperatures, as well as relative humidity and air pressure. 
3) Landsat 7 thermal infrared (TIR) images from the years 2000-2002 (nine images). These 
images have a 60 meter resolution, resampled to 30 meters, taken from Landsat 7 band 6: 
10.4−12.5μm. 4) Census data for the year 2001 (to calculate population density). Popu-
lation density was calculated from census tract size and tract population. 

2.2 Data Processing 

The final dataset consists of geocoded at-home mortality data linked with other types of 
data in a PostGIS database (version 2.0 SVN revision 7799). Street addresses where at-
home deaths took place were geocoded and mapped over layers containing meteorological 
information, TIR imagery, as well as census tracts and associated measures (population 
density). All data were transformed to the WGS84 datum and the UTM 31N geographical 
coordinate system (EPSG:32631). Additional analytical functions were performed using the 
R statistical package, gdalwarp and a modified version of MCElite (software previously 
developed by the author). Additional analysis used the R statistical package for regression 
analysis. 
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2.2.1 TIR Images 

Standardized scores for each pixel position in the study area were generated based on 
radiance values from the nine Landsat 7 TIR images that fulfilled the inclusion criteria 
(< 10% clouds). Radiance byte values (0-255) from each pixel were used to calculate mean 
and standard deviation (SD) values and finally z-score for each pixel, based on the 
previously calculated population parameters (mean and SD). The results were rasters of 
z-scores indicating the relative radiance (ZRR – to distinguish the acronym from the risk 
ratio) at each position in the study area. All the selected z-score rasters were averaged to 
produce a single raster with mean ZRR scores, to indicate the averaged ZRR for each pixel 
area. This final raster represented the ZRR of each location as compared to the rest of the 
study area, averaged over multiple images for reliability. The z-scores served as a proxy for 
relative differences in land surface temperatures (LST) across the study area at any given 
temperature or time. No analysis of land use or ground cover was conducted. 

Figure 1 shows the averaged ZRR scores across the study area. There were relatively minor 
differences between images, as evidenced by the easily identifiable patterns of streets and 
buildings in the southern portion of the study area, even in the averaged image. 

Fig. 1:  
Pseudocolor representation of 
averaged radiance (z-score) from 
Landsat 7 thermal infrared images 
(Barcelona 2000-2002). The 
pseudocolor image reflects the 
averaged z-scores from the nine 
raster images used in the study. 

2.2.2 Weather Data 

Temperature data was used from two stations that collected humidity data (used to calculate 
apparent temperature) and were operational during the study period (the Observatori Fabra 
and Barcelona weather stations). Only the Observatori Fabra station was operational for 
the entire study period. The Observatori Fabra station is located above most of the 
populated areas of Barcelona, partially up the Collserola mountain in a wooded area. The 
Barcelona station was located in the city itself, near the Arc de Triomf. Between the two, 
they cover a range of conditions in the city, as well as a vertical distance of 403.7 meters – 
the Barcelona weather station is 7.5 meters above sea level and the Observatori Fabra 
station is located 411.2 meters above sea level. Temperatures were recorded as the mini-
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mum, maximum and mean for each day (there were no hourly measures) and were 
calculated for 0-3 days of lag (the mean of the index day and the index day with 1-3 
previous days). Zero days of lag is included to compare the effect of the index day to lag-
ged measures. 

Missing values in the data set were imputed using a linear regression method based on the 
historic correlation between temperatures at the two weather stations using data from 1996 
to 2008. 

2.2.3 Geocoding Mortality Data 

Addresses were cleaned to remove ”vertical” information (floor, apartment number, etc.) 
and formatted for the Google API (Version 3). Only geocoded addresses that met defined 
quality criteria were used in the study. Each address returned by the API had to be an exact 
match on the five address elements of the submitted address (street number, street name, 
postal code, city, country) and only addresses with the Google location type of ”Rooftop” 
or ”Range interpolated” were accepted. Of the 32,584 street addresses in the initial dataset, 
26,681 met the defined geocoding quality criteria, representing a total of 50,637 deaths. Of 
these deaths, 12,124 had the same address for both residence and death – that is, they were 
deaths in the home. The study period (April to September) between 2000-2003 included 
5,554 geocoded, at-home deaths. 

3 Statistical Analysis 

A case-only design was used, a methodology for studying risk factors that modify the 
effects of a given type of exposure. Case-only methods can be used to analyze a single, 
time-fixed modifier of a given time-variable exposure in a set of cases over time 
(SCHWARTZ 2005a; ARMSTRONG 2003; MEDINA-RAMÓN & SCHWARTZ 2008). In this study, 
the exposure variable was high air temperature (HAT+/-) based on a percentile threshold of 
historical temperature data, and the modifier variable was high relative radiance (HRR+/-) 
based on the averaged z-scores from the raster data. HRR+ defined the MUHI. Cases were 
deaths registered in a mortality registry and the time units analyzed were days during the 
study period. Table 1 shows the 2x2 table for the calculation of the odds ratio. 

Table 1:  A 2x2 table for a case-only design. Exposure (High Air Temperature [HAT]) 
in the rows and the modifier (High Relative Radiance [HRR]) in the columns. 

  Modifier Proportion 

  HRR = 1 HRR = 0  

Exposure 
HAT = 1 A B A/(A+B) 

HAT = 0 C D C/(C+D) 

The null hypothesis was H0: AD / CB = 1.0. Under the alternative hypothesis, that HRR 
was a risk factor for death during EHE, the odds ratio (OR) would be greater than one. An 
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OR less than one would indicate that HRR had a protective effect on deaths during EHE. 
The odds ratio can be modeled as a logistic regression (SCHWARTZ 2005b). 

A different regression was done for each temperature type (apparent and normal) and 
measure (minimum, maximum, mean), with the HAT variable set to one for days in which 
the temperature measure was above the 90th percentile for that type and zero otherwise. 
HRR was defined as one only when the z-score registered for the location of death was 
greater than zero, and zero otherwise. 

3.1 Modelling Lag 

The R package for Distributed Lag Nonlinear Models (DLNM) was used to examine the 
effect of lagged mortality on overall mortality. Lagged temperatures were calculated as the 
averages of the current and 0-3 previous days’ temperatures. 

3.2 Regression Formula 

Multiple models were fitted and compared using the corrected Akaike Information Criteria 
(AICc), as described in the Results section. 

The generic regression formula used was as follows: HRR � HAT_ttype_lag + δ + 
fitted(spatial_lag_model) where HRR is a dichotomous variable representing whether a 
death occurred in a high radiance (high z-score) area, HAT_ttype_lag represents the values 
for one combination of the two temperature types (apparent and normal) and the four lags 
(0-3 days) used in the analysis, with HAT being a dichotomous variable representing 
whether the death took place on a day in which the air temperature measure of a certain 
type (ttype) was above the 90th percentile of historical temperatures at a certain lag (lag), δ 
is the array of explanatory variables or cofactors used (age, sex and population density), 
and spatial_lag_model was the model used to adjust for spatial autocorrelation. 

3.3 Spatial Autocorrelation 

The variables age and sex were significantly, although not strongly, spatially autocorrela-
ted, with Moran’s I values of 0.023 (p-value = 7.88e-50) and 0.01 (p-value=1.22e-10), 
respectively. After correction for spatial autocorrelation, the significance of the regression 
models was reduced slightly when compared to the unadjusted models (not shown). An 
adjustment for spatial autocorrelation was included in the final regression model. Adjust-
ment was done using the Moran’s Eigenvector GLM Filtering (ME) package in R (DRAY et 
al. 2006). This software uses brute force eigenvector selection to eliminate part of the spa-
tial autocorrelation in a general linear model; in this case the regression model used a 
logistic (logit) link. The adjustment function was based on the regression formula with all 
the included cofactors, and the resulting model (a set of selected eigenvectors) was included 
in the final regression model as a cofactor. 
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4 Results 

Odds ratios, p-values and corrected AICc values were calculated for multiple models of at-
home deaths during the study period, and are shown in Table 2. The models tested were 
compared using the AICc values, based on RelAIC, a method of calculating the relative 
probability that a given model minimizes information loss when compared to the best 
fitting model, mmin. 

The formula for calculating the RelAIC for model i is: 
exp((AICcmin − AICci)/2) 

A common rule of thumb for comparing AIC values is the AIC delta method (LOGAN 

2010), in which models with deltas less than two in their AIC scores are considered equally 
valid. The equivalent RelAIC threshold is a value greater than 0.35. Results with p-values 
below 0.10, which also have RelAIC scores > 0.35 (and therefore AIC deltas below 2.0), 
are shown in Table 2. Model selection is not an exact science, but some inferences can be 
drawn from these results. All of the best fitting models show positive correlations and 
significant (or nearly significant) p-values. In addition, the lower the AICc scores, the more 
significant the results. These findings are entirely consistent with the data, as the different 
lags and temperature measures are largely overlapping, and a gradient of risk is a valid 
interpretation. 

The best fitting models were centered around two days of lag, and minimum temperatures. 
This lag is consistent with the lag modeling done using the DLNM testing of the mortality 
data (not shown). Minimum temperatures represent a measure that has been highlighted in 
earlier research (BACCINI et al. 2011; BACCINI et al. 2008). The theoretical explanation for 
the impact of high minimum temperatures on health is that this temperature represents the 
level of physiological respite from heat that an organism gets at night. With high minimum 
temperatures, it is difficult to recover from daytime heat stress (in the absence of air-
conditioning), and therefore this measure represents an absolute threshold of stress on a 
population in a 24-hour period. Thus, the good performance of minimum temperature 
measures has a sound theoretical basis. 

Table 2: Results of Logistic Regression 

Temperature Lag Odds 
Ratio 

95% CI p-value AICc RelAIC 

Type Measure Days      
Apparent Minimum 1 1.149 1.001-1.32 0.048 6517.011 0.899 
Normal Minimum 1 1.131 0.987-1.298 0.076 6517.750 0.621 

Apparent Mean 2 1.131 0.987-1.298 0.076 6517.765 0.616 
Normal Mean 2 1.131 0.987-1.298 0.076 6517.765 0.616 

Apparent Minimum 2 1.150 1.003-1.319 0.046 6516.910 0.945 
Normal Minimum 2 1.151 1.005-1.319 0.043 6516.797 1.000 

Apparent Minimum 3 1.143 0.996-1.312 0.057 6517.295 0.780 
Normal Minimum 3 1.137 0.992-1.302 0.068 6517.488 0.708 
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The choice between apparent and normal temperatures was one in which AICc scores are 
not clear indicators of a good model because the values are so similar. Apparent 
temperature has an underlying physiological explanation, which is that relative humidity is 
an important factor in physiological stress because it makes temperature regulation through 
sweating less effective (BASU 2009; METZGER et al. 2010). As such, it potentially models 
actual heat stress better than a simple measure of air temperature. This measure was also 
used by BACCINI et al. (2011; 2008) in their study of heat effects in 15 European cities 
(including Barcelona). On the other hand, for practical purposes, humidity has been found 
to be a less useful measure for interventions such as developing heat health watch warning 
systems (HHWWS), as it is difficult to predict accurately (HAJAT et al. 2010). 

The odds ratio for the best fitting model, using minimum normal temperatures averaged 
over two days of lag as predictors, was 1.151 (95% CI: 1.005-1.319; p-value = 0.043), 
indicating a 15% increase in the odds of death in MUHI during EHE. 

5 Discussion and Conclusion 

Based on the results of the statistical analysis, micro-urban heat islands were a significant 
risk factor for mortality during the years 2000-2003 in Barcelona. At-home deaths in a 
MUHI were associated with 15% greater odds of dying on hot days than at-home deaths 
outside of MUHI. 

There are important aspects of this method for examining the association between MUHI 
and mortality during EHE that could be expanded, for example, to better characterize the 
role of socio-economic status or air-conditioning (AC) usage on the relationship. Neverthe-
less, this method of examining the effect of MUHI on mortality during EHE could be useful 
if applied to other urban areas. It would probably be most effective in places where the use 
of AC is not yet widespread (either in developing countries or areas that have not 
historically experienced high warm-season temperatures). 

Study Decisions 

In-home deaths were used for several reasons. First, heat-related mortality tends to take 
place among the elderly and in the home (BOUCHAMA et al. 2007). Secondly, it is difficult 
to determine if persons dying outside the home or in hospitals were exposed to recent heat 
in their area of residence (they may have been hospitalized for a significant period of time 
or may have been staying at another address), whereas at-home deaths mean the deceased 
necessarily experienced local conditions at the time of death (with the exception of those 
found more than one day after death, but proper death certificates should include probable 
time of death). An additional issue is the cause of death. Because EHE can affect human 
physiology in multiple and not entirely understood ways (interactions with medications, 
food poisoning, etc.) (BOUCHAMA et al. 2007; O’NEILL et al. 2009), there are two principal 
types of causes of death typically used in studies of heat-related mortality: specific cause 
(cardiovascular or asthma, for example) or all-cause, excluding accidents. Currently, there 
is no systematic definition of heat-related mortality (BASU 2009), making overspecification 
of causes of death potentially counter-productive, resulting in missing some effects of EHE 
on mortality. Many researchers use all-cause mortality due to potential misclassification; 
sometimes very few deaths are classified as heat-related, and these definitions vary by 
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location (BASU & SAMET 2002). This study used all-cause mortality, including accidents, as 
there was no way to exclude them. However, at-home deaths excluded traffic accidents, one 
of the larger causes of accidental mortality. 

Appropriateness of a Case-Only Design for this Study 

The analytical method chosen was a good fit for the project, as it was well adapted to the 
data available (only cases, limited cofactors) and an estimate of the exposure effect in 
Barcelona is not needed, as this work has already been done (MATTHIES & MENNE 2009; 
BACCINI et al. 2011; BACCINI et al. 2008; SAÉZ et al. 2000). Because the available, spatially 
located mortality data had only two cofactors (age and sex), modeling interactions would 
have been limited, even using a more complex analytical methodology. Also, the cancella-
tion of cofactors in the case-only design tends to limit the effect of confounding variables.  

Confounding in case-only studies 

There are three specific types of confounding that can affect a case-only study. In decreas-
ing order of importance, they are: interactions between the exposure and the modifier (in 
this study these were air temperature and relative surface radiance at specific points in the 
city); interaction between the modifier and another time-variable parameter (in this study 
relative surface radiance and some other time-variant variable that would confound air 
temperature such as flu epidemics, air pollution, etc.); and interaction between the exposure 
and one or more of the time-fixed variables (for example, air temperatures and one or more 
of: age, sex, chronic disease, socio-economic status, etc.). 

In the first case, it seems true that the radiance of an urban area would interact with air tem-
peratures locally, but the relative radiance was calculated as a differential from the mean 
values for the study area, and thus changing the mean air temperatures over the study area 
would not confound because of the scale differences – the daily mean temperatures were 
calculated as a constant across the whole study area (spatial dimension), while the HRR 
scores varied across the study area. As for the second type of confounding, it is known that 
ozone production increases with heat (SCHWARTZ 2005b), and ozone increases mortality, so 
this is a potential confounding factor in areas with higher LST, although Schwartz found no 
evidence of this in his research. With regard to the third type of confounding – interactions 
between the exposure variable and other time-fixed modifiers of interest – it seems unlikely 
that daily air temperatures across the study area could either modify or be modified by 
time-fixed variables such as population density, sex, age at death or other unidentified time-
fixed factors. 

References 

ARMSTRONG, B. G. (2003), Fixed Factors That Modify the Effects of Time-Varying 
Factors: Applying the Case-Only Approach. Epidemiology, 14 (4), 467-472. 

BACCINI, M., BIGGERI, A., ACCETTA, G., KOSATSKY, T., KATSOUYANNI, K., ANALITIS, A., 
ANDERSON, H. R., BISANTI, L., D’IPPOLITI, D., DANOVA J., FORSBERG, B., MEDINA, S., 
PALDY, A., RABCZENKO, D., SCHINDLER, C. & MICHELOZZI, P. (2008), Heat effects on 
mortality in 15 European cities. Epidemiology (Cambridge, Mass.), 19 (5),711-719. 



Excess Heat-Related Mortality in Micro-Urban Heat Islands 145 

BACCINI, M., KOSATSKY, T., ANALITIS, A., ANDERSON, H. R., D’OVIDIO, M., MENNE, B., 
MICHELOZZI, P. & BIGGERI, A. (2011), Impact of heat on mortality in 15 European 
cities: attributable deaths under different weather scenarios. Journal of Epidemiology 
and Community Health 2011, 65, 64-70.  

BASU, R. (2009), High ambient temperature and mortality: a review of epidemiologic 
studies from 2001 to 2008. Environmental Health, 8/2009, 40.  

BASU, R. & SAMET, J. M. (2002), Relation between Elevated Ambient Temperature and 
Mortality: A Review of the Epidemiologic Evidence. Epidemiologic Reviews , 24 (2), 
190-202. 

BOUCHAMA, A., DEHBI, M., MOHAMED, G., MATTHIES, F., SHOUKRI, M. & MENNE, B. 
(2007), Prognostic factors in heat wave related deaths: a meta-analysis. Archives of 
Internal Medicine, 167 (20), 2170-2176.  

DRAY, S., LEGENDRE, P. & PERES-NETO, P. R. (2006), Spatial modelling: a comprehensive 
framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological 
Modelling, 196 (3-4), 483-493.  

FOUILLET, A., REY, G., WAGNER, V., LAAIDI, K., EMPEREUR-BISSONNET, P., LETERTRE, A., 
FRAYSSINET, P., BESSEMOULIN, P., LAURENT, F., DE CROUY-CHANEL, P., JOUGLA, E. & 

HÉMON, D. (2008), Has the impact of heat waves on mortality changed in France since 
the European heat wave of summer 2003? A study of the 2006 heat wave. International 
Journal of Epidemiology, 37 (2), 309-317.  

GOSLING, S. N., LOWE, J. A., MCGREGOR, G. R., PELLING, M. & MALAMUD, B. D. (2008), 
Associations between elevated atmospheric temperature and human mortality: a critical 
review of the literature. Climatic Change, 92 (3-4), 299-341.  

HAJAT, S., SHERIDAN, S. C., ALLEN, M. J., PASCAL, M., LAAIDI, K., YAGOUTI, A., BICKIS, 
U., TOBIAS, A., BOURQUE, D., ARMSTRONG, B. G. & KOSATSKY, T. (2010), Heat-health 
warning systems: a comparison of the predictive capacity of different approaches to 
identifying dangerously hot days. American Journal of Public Health, 100 (6), 1137-
1144.  

HANSEN, A., BI, P., NITSCHKE, M., RYAN, P., PISANIELLO, D. & TUCKER, G. (2008), The 
effect of heat waves on mental health in a temperate Australian city. Environmental 
Health Perspectives, 116 (10), 1369-1375.  

IÑIGUEZ, C., BALLESTER, F., FERRANDIZ, J,. PÉREZ-HOYOS, S., SÁEZ, M. & LÓPEZ, A. 
(2010), Relation between temperature and mortality in thirteen Spanish cities. 
International Journal of Environmental Research and Public Health, 7(8), 3196-3210.  

JOHNSON, D. P., WILSON, J. S. & LUBER, G. C. (2009), Socioeconomic indicators of heat-
related health risk supplemented with remotely sensed data. International Journal of 
Health Geographics, 8, 57.  

KESTENS, Y., BRAND, A., FOURNIER, M., GOUDREAU, S., KOSATSKY, T., MALOLEY, M. & 

SMARGIASSI, A. (2011), Modelling the variation of land surface temperature as 
determinant of risk of heat-related health events. International Journal of Health 
Geographics, 10 (7).  

KINNEY, P. L., O’NEILL, M. S., BELL, M. L. & SCHWARTZ, J. (2008), Approaches for 
estimating effects of climate change on heat-related deaths: challenges and opportune-
ties. Environmental Science & Policy, 11, 87-96.  

KOVATS, R. S. & HAJAT, S, (2008), Heat Stress and Public Health: A Critical Review. 
Annual Review of Public Health, 29, 41-55.  

LOGAN, M. (2010), Biostatistical design and analysis using R a practical guide. Chichester, 
UK; Hoboken, NJ, Wiley- Blackwell.  



J.-P. Glutting 146

LUBER, G. & MCGEEHIN, M. (2008), Climate Change and Extreme Heat Events. American 
Journal of Preventive Medicine, 35 (5), 429-435.  

MARTIN-LATRY, K., GOUMY, M., LATRY, P., GABINSKI, C., BÉGAUD, B., FAURE, I. & VER-
DOUX, H. (2007), Psychotropic drugs use and risk of heat-related hospitalisation. 
European Psychiatry, 22 (6), 335-338.  

MATTHIES, F. & MENNE, B. (2009), Prevention and management of health hazards related to 
heatwaves. International Journal of Circumpolar Health, 68, 8-22.  

MEDINA-RAMÓN, M. & SCHWARTZ, J. (2008), Who is More Vulnerable to Die From Ozone 
Air Pollution? Epidemiology, 19 (5), 672-679.  

MEEHL, G. A. & TEBALDI, C. (2004), More Intense, More Frequent, and Longer Lasting 
Heat Waves in the 21st Century. Science, 305 (5686), 994-997.  

METZGER, K. B., ITO, K. & MATTE, T. D. (2010), Summer heat and mortality in New York 
City: how hot is too hot? Environmental Health Perspectives, 118, 80-86.  

NICHOL, J. E., FUNG, W. Y., LAM, K. S. & WONG, M. S. (2009),  Urban heat island diagnosis 
using ASTER satellite images and ’in situ’ air temperature. Atmospheric Research, 
94 (2), 276-284.  

O’NEILL, M. S., CARTER, R., KISH, J. K., GRONLUND, C. J., WHITE-NEWSOME, J. L., MANA-
ROLLA, X., ZANOBETTI, A. & SCHWARTZ, J. D. (2009), Preventing heat-related morbidity 
and mortality: new approaches in a changing climate. Maturitas, 64 (2), 98-103.  

SAEZ, M., SUNYER, J., TOBIAS, A., BALLESTER, F. & ANTÓ, J. M. (2000), Ischaemic heart 
disease mortality and weather temperature in Barcelona, Spain. The European Journal 
of Public Health, 10, 58-63.  

SCHWARTZ, J. (2005a), Who is sensitive to extremes of temperature? A case-only analysis. 
Epidemiology (Cambridge, Mass.), 16, 67-72.  

SCHWARTZ, J. (2005b), How Sensitive Is the Association between Ozone and Daily Deaths 
to Control for Temperature? Am. J. Respir. Crit. Care Med., 171 (6), 627-631.  

SMARGIASSI, A., GOLDBERG, M. S., PLANTE, C., FOURNIER, M., BAUDOUIN, Y. & 

KOSATSKY, T. (2009), Variation of daily warm season mortality as a function of micro-
urban heat islands. Journal of Epidemiology and Community Health, 63 (8), 659-664.  

 
 


