
 169 

An Adaptive Sampling Approach for Trajectories 
Based on the Concept of Error Ellipses 

Peter RANACHER1 and Adam ROUSELL2 

1Z_GIS, University of Salzburg/Austria · peter.ranacher@sbg.ac.at 
2Nottingham Geospatial Institute, University of Nottingham/UK 

This contribution was double-blind reviewed as full paper. 

Abstract 

A trajectory represents an object’s path through space and time. These trajectories are often 
recorded as a series of spatial positions at discrete time intervals. Depending on the 
sampling rate employed, there can be a large amount of uncertainty relating to how well the 
trajectory represents the actual path taken. By using the concept of error ellipses, an adap-
tive sampling strategy has been developed that allows for the determination of an optimal 
sampling rate whilst ensuring that a pre-defined uncertainty threshold is not surpassed. This 
decreasing of uncertainty means that any trajectory derived using the algorithm presented 
would closely match the actual route taken by the object, thus allowing for more accurate 
spatial interpretation of the data. 

1 Introduction 

A trajectory – a path through space and time – is a mathematical representation of an 
object’s movement. Conceptually, a trajectory is a continuous function that assigns time 
instances to spatial positions (ANDRIENKO et al. 2008). In practise, however, we record the 
spatial positions of a moving object at discrete time intervals and connect these positions by 
means of interpolation (MACEDO et al. 2008). Obviously, the temporal sampling rate at 
which we record the movement of an object has a fundamental impact on the representation 
of movement. In figure 1, the s-shaped path (solid line) shows the moving object’s real be-
haviour in space. The lower the sampling rate r = 1/Δ ti, ti+1, where Δ ti, ti+1 is the time inter-
val between two consecutive measurements, the less the two trajectories (dashed lines) 
resemble the real movement of the object.  

When using data that is geospatial in nature, it is important to consider that they will often 
be subject to spatial uncertainty. Spatial uncertainty (or spatial vagueness) comprises of po-
sitional uncertainty (a lack of knowledge regarding the position and shape of an object) and 
measurement uncertainty (the inability to measure an object precisely) (PAULY & SCHNEI-
DER 2008). This study is concerned with the concept of positional uncertainty in that it 
deals with a lack of knowledge about the position of a moving object in an environment.  
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Fig. 1: Real movement of an object and its trajectory at different sampling rates (from 
PFOSER & JENSEN 1999)  

There are several methods for describing spatial uncertainty including fuzzy (SCHNEIDER 
1999) and vague (PAULY & SCHNEIDER 2008) spatial data types. Rather than classical crisp 
descriptions where the location of features is assumed to be exact, these methods assign 
levels of ‘knowing’ to the location of spatial features. For the vague spatial data types, 
features consist of kernel and conjuncture parts (PAULY & SCHNEIDER 2008). The kernel 
part of a feature is the part that is known (it is certain that the feature can be found in that 
location). The conjuncture part on the other hand represents part of the feature that is 
assumed (part of the feature may or may not be found in that location). In our case the 
measured positions of the trajectory represent the kernel part of a moving object in space 
and time and the interpolation between two consecutive positions is the conjuncture and, 
hence, affected by error. This also means that our study does not deal with positioning 
errors (such as GPS errors) associated to a trajectory.  

PFOSER & JENSEN (1999) express the spatial uncertainty associated to a trajectory with the 
help of error ellipses. Error ellipses are closely related to the concept of space-time prisms 
whereby all possible locations that a person can be in is depicted based on starting location, 
travel velocity and time taken (KUIJPERS et al. 2010). Although space-time prisms are 
widely used, KOBAYASHI et al. (2011) note that they classically assume the starting location 
and time factor are precisely known, which is not always the case. This assumption is 
shared by the error ellipse concept, but in the scope of this study the effects of this as-
sumption will not be addressed. 

An error ellipse represents the union of all possible paths that allow the moving object to 
start at the measured position pi at time ti and arrive at the consecutive measured position 
pi+1 no later than ti+1 given v_max as the maximum speed of the object (see also figure 1). 
The two measured positions pi and pi+1 are the two foci of the error ellipse. Hence, the linear 
eccentricity e = Δ si, si+1/2 is half the distance between pi and pi+1. The semi-major axis of 
the ellipse α = v_max · Δ ti, ti+1/2 equals half the possible distance the object can cover with 
maximum speed during the time interval between the two position measurements. From e 
and a we can calculate the semi-minor axis  
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Considering the case of linear interpolation, where pi and pi+1 are connected by a straight 
line, b represents the one point of the uncertainty ellipse that is farthest away from the 
interpolation line. Hence, b is the maximum spatial interpolation error (S.I.E.) between the 
interpolated path and all other possible paths. If we assume v_max to be constant and 
defined by inner or outer constraints – such as the maximum allowed speed on a road 
network, the magnitude of b depends on two variables: the time interval between two 
consecutive position measurements ti, ti+1 and the distance between these two positions 
Δ si, si+1. 

From the first term in equation (1), it follows that less-frequent sampling causes the time 
interval Δ ti, ti+1 between two measurements to increase. This in turn elongates the semi-
major axis of the error ellipse and causes a larger S.I.E. However, intuitively, S.I.E. also 
depends on the ‘shape’ of the ellipse and therefore, on linear eccentricity. By increasing the 
distance between two points whilst maintaining the temporal sampling rate and a constant 
speed there are less possible routes the trajectory could take to get between the two points 
in the allotted time. This means that the overall area of the error ellipse decreases as the 
trajectory cannot deviate as far from the ‘as-the-crow-flies’ route as doing so would take a 
longer amount of time resulting in not arriving at the end point in the allotted time. Hence, 
for a constant Δ ti, ti+1 if Δ si, si+1 approaches vmax · Δ ti, ti+1, real speed is close to maximum 
possible speed and the ellipse approaches a line with minimum S.I.E; if Δ si, si+1 approaches 
zero and the two foci lie together very closely, the ellipse resembles a circle and has 
maximum S.I.E. (b equals a). 

2 An adaptive sampling strategy for trajectory data 

By maintaining b as constant and expressing the distance between two measurements with 
the measured speed of the moving object si, si+1 = vmeas · Δ ti, ti+1, we can solve equation (1) 
for Δ ti, ti+1 and show the functional relationship between sampling rate, maximum speed 
and measured speed of the object.  
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We see that if the moving object moves far slower than assumed, we need a higher 
sampling rate for b to remain constant. In figure 2, we portray this relationship for different 
S.I.E. and for the case that the maximum possible speed of the moving object is 60 km/h.   
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Fig. 2: Relationship between the sampling temporal interval and object speed on 
constant S.I.E. values  

The curves in figure 2 represent different levels of maximum spatial interpolation error. If 
an object moves, for example, with a speed of 50 km/h a temporal interval of 4 seconds 
between two consecutive positions in the trajectory is required for the interpolation error to 
be less than 20 meters (dashed line). It must be mentioned that the speed of the object in 
this case does not refer to the momentaneously measured speed, but the average speed 
between the current position and the last point of the trajectory. Hence, if the floating car 
changes its momentaneous speed or its direction the resulting average speed will decrease 
and require that the position of the moving object is stored in the trajectory.   

Based on the assumptions above we propose an adaptive sampling strategy for trajectories 
in general and floating car trajectories in particular. This sampling strategy records the 
position of a moving object at varying temporal intervals. The value of the sampling rate is 
calculated according to the object’s average speed as proposed in equation (2). This 
guarantees that the trajectory of the movement will be within a certain spatial uncertainty 
corridor. Intuitively, a time interval between two measurements other than an integer will 
not be used for sampling trajectories. On the one hand, this implies that a sampling rate of 
one measurement per second represents the upper boundary of sampling. On the other hand, 
we must map any results from equation (2) to the largest previous integer. In that case the 
curves in figure 2 resemble a step function.  
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In the algorithm 1 we present an adaptive sampling strategy for trajectories. 

Algorithm 1: Adaptive sampling for trajectories with guaranteed S.I.E. 

Given:  

- b: maximum spatial interpolation error; 
- v_max: maximum possible speed of the moving object;  
- r: minimum possible sampling rate (must guarantee that the trajectory is always within b, 
no matter the current speed of the object)  

Description of the adaptive sampling approach:  

1. let T = Ø; i = 0 ;  
/* At the beginning the trajectory T is empty */ 

2. measure p0 ; 
/* Measure the starting position of the object */;  

3. let T[i] = p0 ;  
/* Assign p0 to be the first point of the trajectory*/;  

4. wait (r); 
5. measure pcurr ; 

/* measure the current position of the moving object after a time interval r */ 
6. let plast = T[i]; i++; 

/* assign the current point of the trajectory to be the last known position*/ 
7. calculate v_meas = Δ slast, scurr /Δ tlast, tcurr ; 

/* calculate the average speed between the current and the last position in the 
trajectory based on time difference and distance */ 

8. calculate Δ ti, ti+1 = floor (sqrt (4b2/(v_max2 – v_meas2 ))); 
/* Enter the average speed into equation 2 and calculate the temporal interval that 
guarantees that the S.I.E. is within a certain threshold; map this interval to the 
largest previous integer */ 

9. if Δ ti, ti+1 > /Δ tlast, tcurr  then 

let ptemp = pcurr ;   

/* if the temporal interval between current and last position is smaller 
than the interval required for sampling, the current position is stored in a 
temporary variable*/  

else  
let T[i] = ptemp ; 
let ptemp = pcurr ; 
/* else assign the last point, which fulfils this condition, to be the next 
point of the trajectory */ 

10. go to 4 
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We want to illustrate the functioning of algorithm 1 with an example (see also, figure 3). 
Let us assume to record the trajectory of a floating car in an urban environment. We set 
v_max – the maximum possible speed of the floating car – to be 60 km/h. This results from 
a speed limit in the urban area (50 km/h) plus a threshold of 10 km/h. Moreover, we want 
the spatial interpolation error of the trajectory to be below 20 meters. The minimum 
possible sampling rate equals r =1/1s. The trajectory of the object is empty.  

 

Fig. 3: Adaptive sampling for trajectories with guaranteed maximum S.I.E. 

In scene t=0 we start recording the movement of the floating car. We measure the car’s first 
position p0 and store it as the first point of the trajectory. After one second we measure the 
car’s next position (scene t =1). We calculate the average speed between p0 and the current 
position, which equals 50 km/h. We enter the 50km/h into equation (2), calculate the 
minimum time interval needed for sampling and map the result to the largest previous. This 
results in a temporal interval of 4 seconds. We compare this to the interval that has passed 
since p0 (1 second) to the current position and find that the former is smaller. However, we 
may not be sure whether we have to include the current position in the trajectory at a later 
stage. Therefore, we store it as a temporary position. After two seconds we again measure 
the position of the car (scene t=2). We calculate the average speed from p0 to the current 
position. As this speed still equals 50 km/h we again calculate 4 seconds as the minimum 
time interval needed for sampling. This is still lower than the two seconds that have passed 
since p0. Hence we store the current position as the new temporal position. In scene t=3 we 
see that the moving object has taken a sharp turn. Therefore our calculated average speed 
between p0 and the current position decreases to 30 km/h. Hence, also the minimum time 
interval needed for sampling drops to 2 seconds.  This value exceeds the time that has 
passed since p0. Consequently, we add the temporary position stored in scene t=2 as a new 
point to the trajectory and store the current position as the new temporary position (scene 
t=4). As the minimum sampling rate is one second and the function requires a minimum 
sampling rate of at least 2 seconds for the object to be within the proposed S.I.E., we 
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guarantee that the same temporary position will not be included into the trajectory more 
than once. 

3 Discussion 

At first glance, our proposed method for sampling trajectories seems counterintuitive. Dur-
ing those moments where the object moves slower we require a higher sampling rate 
compared to those situations where the object moves faster. This is however related to the 
comparison between the maximum possible speed of the object and the average speed 
determined by the distance and time covered between two consecutive points on its path. At 
situations where the object is fast it moves much closer to how we predict it as the average 
speed will approach the maximum speed and thus less variation in routes is possible. 
Moreover, we may recall the aim of our sampling method: we want to guarantee that the 
entire trajectory of the moving object does not exceed a specific uncertainty threshold. 
When storing the position of an object less frequently as it moves slowly, two consecutive 
positions will remain spatially close together yet their temporal distance may be large. This 
means that the uncertainty ellipse of the moving object will resemble a circle due to there 
being a large difference between average and maximum possible speeds. As mentioned 
before, circles cover a larger area compared to more ’elongated’ ellipses. Hence, the uncer-
tainty of the moving object grows when it moves slower. 

In other words, when analysing a trajectory consisting of spatially close positions that were 
attended by the moving object consecutively but after a considerable time, we might not be 
sure whether the object really moved slowly as implied by the trajectory, or whether the 
object moved very fast and the positions are close by pure chance. Our approach, 
guarantees that the uncertainty of the moving object does not exceed a certain level.  

However, adaptive sampling is only feasible if we have a realistic understanding of the 
maximum possible speed of a moving object. If an object is able to exceed its proposed 
maximum speed, equation (2) will result an imaginary number, which for obvious reasons 
makes a difficult interval to sample. Moreover, we have to be aware that the resulting 
trajectory is denser when the moving object moves slower and that the sampling rate is 
irregular. This might not be desirable for applications that rather concentrate on the 
movement of the object and aim at leaving out those parts where the object is at rest, and 
applications that require a uniform sampling rate for the whole trajectory.  

4 Conclusion and Outlook  

In this paper we show how we can use the concept of error ellipses for sampling trajectories 
of moving objects and guaranteeing that their interpolation error does not exceed a certain 
threshold. For reasons of simplicity we do not consider measurement uncertainty (such as 
GPS error) for our proposed sampling strategy. Therefore, a logical next step of our 
research is to adapt our approach and also consider the error that originates from inaccurate 
position fixing. Moreover, we plan to test and compare our algorithm to traditional 
sampling methods. We conjecture that our algorithm stores less superfluous information 
than traditional sampling approaches and want to show this in an empirical analysis. Every 
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interpolation between two positions is a guess. With our approach we want to make this 
guess more predictable. 
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