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Abstract 

Recent years have witnessed a steep increase in the collection of movement data through 
GPS trajectories. Such data sets have great potential for providing insights into mobility 
demand and behaviour for city planners, or to improve routing services for the end user. We 
propose a method for inferring popularity from GPS trajectories. The inferred popularity is 
assigned to a road graph, and is suitable for routing with Dijkstra’s algorithm. The infer-
ence method can be calibrated with several parameters. In this paper we describe the infer-
ence method, demonstrate the influence of the available parameters on a data set of cycling 
trips in the city of Vienna, Austria, and compare popularity routes to routes optimized for 
other criteria. 

1 Introduction 

Smart phone apps, such as Google Maps or BikeCityGuide, which collect movement data 
from their big and expanding user bases have become increasingly popular in recent years. 
Some of these apps, such as Strava, a popular smart phone app for runners and cyclists used 
to record and share trips, have built their main use cases around recorded trips. This grow-
ing pool of crowd-sourced movement data has great potential to answer a variety of mobil-
ity-related questions. Analyses of recorded trips can, for example, provide insights into the 
most frequented roads and junctions, route choice, traffic density, or congestion.  

One popular representation of trip databases are data visualizations, such as heat maps of 
GPS trajectories. Notable recent examples include heat maps by Strava (MACH 2014) or 
Mapbox. The latter is based on running trips recorded with the RunKeeper app (MISRA 

2014). The temporal dimension of these datasets is presented in a video by the creators of 
the bicycle routing app BikeCityGuide1 (OSCHABNIG 2014) and the Radwende2 art installa-
tion. However, these visualizations tend to have limited use beyond providing a first im-
pression of the movement data. 

More details can be discovered using data analysis. Strava, for example, also provides the 
commercial service “Strava Metro”3 aimed at city planners. It offers cyclist and trip counts 
aggregated into one-minute intervals, which are georeferenced on OpenStreetMap (OSM), 
                                                           
1 http://blog.bikecityguide.org/one-year-by-bike-shown-in-a-day  
2 http://www.radwende.de  
3 http://metro.strava.com  
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and distinguishes commuter and non-commuter trips. Additional analyses include origins 
and destinations, as well as intersections, with regards to usage and waiting durations. 
While these kind of data products can provide a good basis for a variety of planning tasks, 
they do not exploit the full potential of the available data. Since the number of cyclists and 
trips is highly dependent on the density of population and work places, these values only 
provide a biased measure of actual road popularity. Even an unpopular road in a densely 
populated area (such as the southern and eastern areas in Figure 1a, including the central 
districts of Vienna) will have higher counts than a popular road in a more sparsely popu-
lated area (such as the north-western area in Figure 1a). 

 

Fig. 1: (a) trajectory counts, (b) our proposed popularity, (c) separated bicycle infra-
structure (black) and cycle lanes or routes on regular streets (grey) 

Several related publications deal with the extraction of popularity from GPS trajectories. 
CHEN et al. (2011) present an approach to calculate popular routes for trucks by extracting a 
graph from the recorded trajectories rather than relying on street network data. In this ap-
proach, destination-dependent transfer probabilities at the graph nodes are used for routing. 
LUO et al. (2014) refine the problem by, amongst other improvements, adding the temporal 
dimension, guaranteeing bottleneck-free routes and using an underlying street graph.  

Approaches using alternative data sources are, for example, based on user-rated photos 
(QUERCIA et al. 2014) or travel diaries/blogs (SKOUMAS et al. 2014). QUERCIA et al. (2014) 
use Flickr images rated by study participants and a 200x200m cell grid as a routing graph. 
SKOUMAS et al. (2014) extract points of interest (POIs) and qualitative popularity from 
travel blogs. They calculate routes using a combined cost function of distance and popu-
larity on an underlying street graph or solely the graph of extracted POIs. These approaches 
typically target pedestrian routing applications and often have a touristic focus. 

The aim of this work is to improve on existing methods to infer popularity from route 
choice information contained in GPS trajectories and to enrich a street graph with this 
popularity. One of the key ideas is to build on the concept of citizens as expert sensors 
described by KARIMIPOUR & AZARI (2015) to extract expert knowledge from the crowd. 
We define that a person becomes an expert for a certain route by using it repeatedly. Simi-
larly, if many experts prefer a certain route over a neighbouring alternative, this information 
is used to increase the route’s popularity. The main benefits of our approach are that a sin-
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gle method creates results that can be used for both routing and planning purposes, and that 
the method is able to extract different aspects of popularity through parametrization. 

Our approach uses a street graph where roads are modelled as directed edges for each driv-
ing direction. It matches trajectories to the street graph and assigns a popularity value to 
each edge. This allows for more detailed evaluations than area-based approaches such as 
QUERCIA et al. (2014). Map-matching avoids problems with over- and underpasses and 
parallel roads. Edge-specific popularity furthermore enables applications which combine 
popularity with measures such as distance or travel time, as shown in SKOUMAS et al. 
(2014). Our approach scales well, since only local data for a predefined neighbourhood has 
to be considered during calculation of the popularity scores, and Dijkstra’s algorithm 
(DIJKSTRA 1959) can be used for routing. Another improvement is that the process of cal-
culating popularity is adjustable through (most importantly) the definition of the neighbour-
hood concept. Small neighbourhoods reveal local routes whereas large neighbourhoods 
tend to show routes on a city-level. 

Our inferred road popularity reveals the actual key routes within a bicycle network rather 
than the planned and signposted network. Currently, most cities lack information on this 
level of detail. Planners and advocates have to work with modal split figures, traffic counts 
at a limited number of locations or for a limited time period, or trip diaries. The latter are 
also able to reveal the trip purpose in addition to the chosen routes, but are very costly and 
therefore not always an option. Road popularity for every edge in a street graph therefore 
has high potential to complement data currently used by city planners and advocates alike. 

Furthermore, road popularity is also of interest for ITS providers and end users, since it can 
be used to calculate more appropriate routes than simple shortest travel time or cycle-
friendly infrastructure routing. Instead of using GPS trajectories, widely available data such 
as road graphs and land use is used in many publications dealing with “walkability” and 
“cyclability” scores. However, the downside of these approaches is that important decision 
factors such as traffic density, road surface quality, on-street parking, noise and air pollu-
tion, or scenery must be omitted, because they are difficult to measure or data is not yet 
commonly available (WINTERS et al. 2013). Conversely, GPS trajectories contain the col-
lective experience of cyclists and also include subjective or difficult to measure factors of 
influence. 

The remainder of this paper is structured as follows. Section 2 gives an in-detail description 
of how to calculate the proposed popularity. In Section 3 we present our data set and neces-
sary preprocessing steps, Section 4 describes results of experiments with the parameter 
settings of the calculation process, Section 5 deals with routing using the popularity, and 
Section 6 contains an outlook into future work.  

2 Road Popularity 

This section describes our proposed method to infer popularity from GPS trajectories. This 
method is independent of the used mode of transport. In this work we demonstrate the 
method using cycling data. We use an underlying street graph consisting of nodes (e.g. 
junctions), connected by directed edges ܧ, representing the allowed driving directions of a 
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road. We define the following variables, where uppercase variables represent sets, e.g. ܥ is 
the set of all cyclists ܿ: 

݁ directed edge (arc) in the street graph 
݊௘ neighbouring edge of edge ݁ 
௘ݐ ௘ trajectory count over edge ݁, whereݐ ∈ Գ 
ܿ cyclist 
௘݌ ௘ popularity of edge ݁, where݌ ∈ Թ	and	݌௘ ∈ ሾ0, 1ሿ 

Our road popularity extraction consists of three main steps: the first step (2.1) deals with 
the imbalanced number of collected trajectories per cyclist. To address this issue, we calcu-
late ̂ݐ௘, the weighted trajectory count per cyclist per edge. Then, in the second step (2.2), we 
compute the neighbourhood ௘ܰ for each edge, which contains all edges in a certain prox-
imity that could be part of alternatives to routes through the current edge. Finally (2.3), the 
weighted count ̂ݐ௘ of each edge ݁ is normalized within the neighbourhood ௘ܰ. The resulting 
popularity ݌௘ can be used for visualization purposes (see Figure 1c) as well as for routing, 
e.g. using Dijkstra’s algorithm. 

2.1 Weighted Trajectory Count 

When working with raw trajectory counts, two problems occur: firstly, a trip of a person 
getting lost counts as much as a trip on a well-known route. Secondly, and more impor-
tantly, paths of cyclists who record many trips are overrepresented. To mitigate these prob-
lems, we use the expert concept: we define that a cyclist becomes an expert for a certain 
route by using it repeatedly. This is implemented using a logarithmic function on the num-
ber of trajectories per edge and cyclist. The function is modelled so that each cyclist is 
given a maximum “expertise” of two for each edge. The more a cyclist visits an edge the 
higher is his or her expertise, with the initial visit counting very little (solving the first prob-
lem). Four visits were decided to count for one expertise point, and heavy, regular usage 
with 17 or more visits counts for two expertise points (solving the second problem). The 
weighted count per cyclist on edge ݁ is therefore defined as  

௘௖ݐ̂  ൌ ቐ
0																																						if	ݐ௘௖ ൌ 0													
lnሺݐ௘௖ ൅ 0.5ሻ ∗ 0.7						if			0 ൏ ௘௖ݐ ൏ 17
2																																						if			ݐ௘௖ ൒ 17								

	 (1) 

where ݐ௘௖ ∈ Գ is the trajectory count of edge ݁ by cyclist ܿ. The weighted trajectory count 
௘ݐ̂ ∈ Թ of edge ݁ is given by  

௘ݐ̂ ൌ ෍̂ݐ௘௖
௖∈஼

 

2.2 Edge Neighbourhood 

The neighbourhood ௘ܰ of an edge ݁ is defined as all edges within a certain distance to ݁ 
that may be part of an alternative route, i.e. a roughly parallel route on a different road. This 
is calculated by first determining all edges whose centre point lies within the neighbour-
hood radius ݎே of the centre point of the current edge. From this initial set of edges those 
edges that are not part of plausible alternative routes are removed in three steps.  
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First, edges that are not parallel, i.e. where the direction (computed between start and end 
node) differs by more than the neighbourhood angle ߙே (in degrees), are removed. In a 
second step, edges with the same street name are assumed to belong to routes running 
through the current edge and are therefore removed as well. At last, short edges with a 
length of less than 30 meters are excluded, since they mostly occur in complex junction 
scenarios and have a high potential for lowering the result quality since their angle often 
does not match the direction of the edges before and after. If, for example, an important 
cycle route switches the side of the road, the short perpendicular edge, where the cycleway 
crosses the road, would be part of the neighbourhood of perpendicular roads, which could 
lead to wrong results. The neighbourhood is therefore defined as: 

 ௘ܰ ൌ ሼ ሶ݁ ∈ ௘௘ሶ݀|ܧ ൑ ேݎ ∧ ௘௘ሶߙ ൑ ேߙ ∧ ݈௘ሶ ൒ 30ሽ	 (2) 

where ሶ݁ is a potential edge to be added to the neighbourhood, ݀௘௘ሶ 	and ߙ௘௘ሶ  are the respec-
tive distance between the centres of the current edge and the candidate edge, and the angle 
between the directions of the edges. ݈௘ሶ  is the length of the candidate edge. 

2.3 Popularity 

Popularity is calculated based on the weighted trajectory count ̂ݐ௘	and the edge neighbour-
hood ௘ܰ. The popularity of an edge ݁ is defined as the ratio of its weighted trajectory count 
 ௘ to the maximum weighted count of itself and its neighbours. This way, the weightedݐ̂
count is normalized within its neighbourhood. This ensures that popular routes can reach 
maximum popularity (1.0) in busy and rarely travelled areas alike. 

An optional third normalization factor is the minimum expertise threshold ݉. The mini-
mum expertise threshold represents the minimum number of expertise points necessary 
before an edge can reach the highest possible popularity. It is used to avoid false positives 
in areas with very few trajectories. If this factor is not used, a single trajectory reaching into 
a so far uncovered area will result in the maximum popularity for the respective edges. This 
is not desirable, since a sample size of one should never lead to maximum popularity.  
Popularity is therefore defined as 

௘݌  ൌ
௧መ೐

୫ୟ୶	ሺ௧መ೐, ෠்೙೐,௠ሻ
	 (3) 

where ෠ܶ௡೐ is the set of weighted trajectory counts for neighbouring edges of edge ݁, and ݉ 
is the minimum expertise threshold. 

In summary, three parameters can be used to influence popularity: the neighbourhood ra-
dius ݎே, the neighbourhood angle ߙே, and the minimum expertise threshold ݉. 

3 Data Description 

The GPS trajectories used in this work were provided by the Austrian bicycle advocacy 
group “Radlobby Österreich” and collected in their cycle to work campaign “Österreich 
radelt zur Arbeit” (RZA). The RZA data set consisted of 13,000 trajectories by 750 unique 
users with a total of 10.5 million GPS positions for the city of Vienna, Austria. The collec-
tion period spans two iterations of the campaign between April 2013 and August 2014. 70% 



 M. Straub and A. Graser 46

of the trajectories were collected during the main campaign period between April and June 
in late spring and early summer. The campaign offers a smart phone app with GPS tracking 
functionality, which records the cycled kilometres per day. It does not feature bicycle rout-
ing, and only trajectories from and to work are allowed to be entered into the system, al-
though this is neither enforced nor supervised. However, the majority of the collected tra-
jectories are assumed to be highly optimized routes for daily commutes by bicycle, based 
on local knowledge and experience of the campaign participants. 

All GPS trajectories were map-matched in order to be able to represent the route as a list of 
directed edges in the street graph. The underlying street graph is an export of OpenStreet-
Map from 2014-02-17. 

4 Parameter Settings 

In this section, the evaluation of the effects of different parameter settings on the popularity 
results is presented. Through visual inspection of the results, the default setting for all com-
parisons was defined as: neighbourhood radius ݎே ൌ 400 meters, neighbourhood angle 
ேߙ ൌ 30°, and minimum expertise threshold ݉ ൌ 6. This parameter setting is presented in 
Figure 2b. 

Using the neighbourhood radius ݎே, it is possible to control the sparsity of the resulting 
network of popular roads. The effect is similar to functional road classes that divide roads 
into categories such as motorways, arterial roads and collector roads. Figure 2 illustrates 
this effect: with (a) ݎே ൌ 100 meters nearly all routes with bicycle traffic are visible, (b) 
ேݎ ൌ 400 shows collector and arterial routes, and finally, (c) ݎே ൌ 700 only shows arte-
rials. 

 

Fig. 2: Variations of the neighbourhood radius ࢘ࡺ: (a) 100, (b) 400, (c) 700 meters 

The neighbourhood angle ߙே defines up to which angle streets with different orientations 
still influence each other’s popularity. When a highly frequented route crosses a less fre-
quented perpendicular route, the edges of the less frequented route would achieve a low 
popularity because their weighted trip count is evaluated against the weighted trip counts on 
the highly frequented route. This is undesirable, since the routes serve a different travel 
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demand. Bigger values of ߙே allow for larger deviations of alternative street angles. This 
parameter thus helps to adjust the method to the street layout of a city. In cities where 
streets are laid out in a grid, low values such as 10° may be practical. Figure 3 shows the 
effect of varying values of ߙே in Vienna, a city with a historically grown street layout. The 
higher the angle ߙே, the lower the number of artefacts such as stubs. At the same time, the 
sparsity of the network is increased. 

 

Fig. 3: Variations of the neighbourhood angle ࡺࢻ: (a) 10°, (b) 30°, (c) 50° 

The minimum expertise threshold ݉ controls the maximum attainable popularity of edges 
in areas with fewer measurements/higher uncertainties, and thus low values for the weight-
ed trajectory count ̂ݐ௘. This factor is used to find a trade-off between data availability and 
confidence. For Vienna, the effect of different settings is shown in Figure 4, where (a) 
݉ ൌ 0 results in high popularity values for rarely travelled edges in the western part of the 
analysis area. For (b) ݉ ൌ 6 and (c) ݉ ൌ 12, the western part of the city (outside the 
“Gürtel”, a major road which runs from South to North) receives considerably lower popu-
larity values due to uncertainty except for one very popular route on Hasnerstraße. 

 

Fig. 4: Variations of the minimum expertise threshold ࢓: (a) 0, (b) 6, (c) 12 
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5 Routing 

The proposed popularity ݌௘ can be used in routing algorithms searching for a shortest route 
w.r.t a certain attribute of an edge such as Dijkstra’s algorithm after a simple transformation 
of the original interval. One approach is to use an adjusted popularity ̂݌௘ to scale attributes 
or weights of an edge such as distance, travel time, or a safe cycling score: 

௘̂݌  ൌ ሺ1 െ ௘ሻ݌ ∗ ݅௣ ൅ ሺ1 െ ݅௣ሻ	 (4) 

where ݅௣ is defined as the popularity influence with ݅௣ ∈ ሾ0,1ሿ. The original popularity 
௘݌ ∈ ሾ0,1ሿ is thereby reversed and shrinked, e.g. for ݅௣ ൌ 0.5 the interval for ̂݌௘ is ሾ1,0.5ሿ. 
Then an attribute or edge weight can be multiplied with ̂݌௘. This way, the weights of un-
popular edges remain the same, while the weight of popular edges is reduced. ݅௣ directly 
defines the maximum percentage an edge weight is reduced for the highest possible popu-
larity. For example, for ݅௣ ൌ 0.5 the weight of an edge with ݌௘ ൌ 1 will be shortened by 
50%. After a one-time calculation of ݌௘ for the whole street graph, popularity can be intro-
duced into Dijkstra’s algorithm without increasing its complexity of Oሺn ∗ logሺnሻ ൅ mሻ. In 
case Dijkstra’s algorithm is used, it is important to note, that the weight for all edges must 
be a positive value. This requirement is met by our proposed popularity since it is always 
positive. 

In addition to the three parameters ݎே, ߙே and ݉ as described in Section 4, the parameter ݅௣ 
is able to influence the resulting routes. Using varying settings for these parameters it is 
possible to generate different graph weights, which allows for the calculation of alternative 
routes. The availability of alternative routes is an important requirement for routing services 
using choice models to deliver routes tailored to users’ needs (PRATO 2009). Another use 
case for parameter variations is the calculation of short routes using a fine-grained network 
of popular routes with local shortcuts (small ݎேሻ and long routes through the city with a 
sparse network that contains the most used and probably easy to follow routes (big ݎே). A 
routing service could first calculate the Euclidian distance between start and stop position 
and then choose accordingly between these two networks.  

The choice of which attribute of an edge should be combined with popularity, strongly 
depends on the use case. Since cycling is an active mode of transport, the effort or energy 
required for cycling along a route plays a much bigger role in route choice than for motor-
ized means of transport. In our showcase of calculating routes for cyclists we therefore 
chose to combine popularity with the required energy to cycle along an edge, where the 
energy calculation is based on cyclists’ physical attributes, a model for estimating travel 
speed, and elevation data (PRANDTSTETTER et al. 2013). This way, we find routes that are 
efficient (short in time and without unnecessary ascents), but also follow popular routes. In 
Figure 5, routes calculated with the default popularity described in Section 4 (ݎே ൌ 400, 
ேߙ ൌ 30°, ݉ ൌ 6) are compared to routes with shortest distance, shortest travel time, mini-
mum energy (the same energy estimation that is used to calculate the most popular route) 
and safe cycle infrastructure. The routes for minimum distance and travel time did not dif-
fer. The popularity route clearly follows the extracted popular network edges seen in Figure 
2b while the energy-optimized route tends to zig-zag as illustrated in Figure 5b. 
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Fig. 5: Alternative bicycle routes for different graph weights through Vienna (a) from 
Wilhelminenstraße in the West to the Vienna State Opera and (b) from Maria-
hilfer Straße in the South to the Vienna People's Opera 

6 Conclusions and Outlook 

In this paper we proposed a parametrized method to infer road popularity from GPS trajec-
tories and fathomed effects as well as use cases of parameter settings. The method is appli-
cable to any set of trajectories and was successfully tested with 13,000 trajectories from 
bicycle commuters. We further demonstrated how to use popularity with Dijkstra’s routing 
algorithm, and showed the potential of routes calculated using popularity to enrich sets of 
alternative routes calculated with traditional optimization criteria, such as shortest distance, 
shortest travel time, or maximum use of bicycle infrastructure. As demonstrated, popularity 
can be combined with other attributes or weights, such as energy efficiency, which makes it 
a flexible addition to existing graph weights.  

It is important to note, that the properties of the user base use cases that lead to recording a 
trip (e.g. competitive sharing of running trips), and circumstances while recording a trip 
(e.g. the user is following the routing of an app or not) must be taken into account when 
interpreting the results. Data sets might or might not be constrained by mode of transport, 
user demographics (e.g. age or technology affinity), or trip type (e.g. sport or commute). 

Three promising directions for future research are parameter calibration, user evaluations of 
calculated routes, and improvements of the neighbourhood definition. (1) Parameter set-
tings should be calibrated such that the match between input trajectories (of a consistent set 
of trajectories regarding user behaviour, trip type) and calculated routes is maximized. (2) 
Both qualitative and quantitative evaluations with a representative user base should be 
conducted with the resulting popularity routes. (3) To improve the neighbourhood defini-
tion, a routing-based distance measure could be used instead of the Euclidian distance. This 
way, edges with a small Euclidian distance but a large distance on the street graph can be 
removed from the neighbourhood, which can, for example, be the case for streets on both 
sides of a river without a nearby bridge. 
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