
 546

Improving Navigation: Automated Name Extraction 
for Separately Mapped Pedestrian and Cycle Links 

Anita Graser and Markus Straub 

AIT Austrian Institute of Technology GmbH, Vienna/Austria · anita.graser@ait.ac.at 

Full paper double blind review 

Abstract 

Navigation instructions in pre- and on-trip routing services are usually based on street 
names and types, distances, and turn directions. However, in digital street graphs it is com-
mon that street names for separately mapped pedestrian and cycle links are missing. This 
leads to unsatisfactory instructions containing “unknown road” records. Often, these un-
named links run parallel to a named road, and it would be beneficial to use this information 
to generate instructions similar to “follow the sidewalk along Street A”, whereby “Street A” 
has to be determined by an algorithm. This paper introduces the Unnamed Link Naming 
Problem (ULNP) and presents a new approach to automatically extract suitable names to 
describe separately mapped pedestrian and cycle links. The approach has been tested using 
OpenStreetMap data and manually generated ground truth data for the second district of the 
city of Vienna, Austria. Results show that our best method achieves 90.7% correct matches 
in this challenging setting. 

1 Introduction 

Detailed street network datasets, such as OpenStreetMap (OSM), contain separately 
mapped pedestrian and cycling infrastructure. In this paper, the term “pedestrian links” 
refers to all network links, which can be used by pedestrians (including, but not limited to, 
sidewalks, footpaths, and shared-use paths). Accordingly, “cycle links” refers to all links, 
which can be used by cyclists (including, but not limited to, cycle lanes, segregated cycle 
facilities, greenways, and shared-use paths). Separately mapped pedestrian and cycle links 
have a lot of potential for improved pedestrian and cycle routing and navigation. Currently, 
navigation instructions focus on street names and types, distances, and turn directions. This 
approach leads to unsatisfactory “unknown road” directions (for example in Google Maps 
as shown in figure 1) because separately mapped pedestrian or cycle links are often un-
named in the underlying map dataset.  

 

Fig. 1: Google Maps walking directions example referring to an “Unknown road”, 
Screenshot taken in December 2014 (map data © 2014 Google) 
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Big online routing providers such as Google Maps or Bing Maps tend to treat pedestrian 
and cycling infrastructure as attributes of the corresponding street link (rendered as green 
lines on top of the streets, as shown in Google’s bicycling overlay in figure 2a). These maps 
therefore contain considerably fewer instances of separately mapped pedestrian and cycle 
links than OSM, where mappers tend to map these links separately (rendered as dotted pink 
and blue lines, respectively, in figure 2b) when they are separated from the corresponding 
street by infrastructure such as parking lanes, rows of trees, or grass areas. The practice of 
mapping all pedestrian and cycling infrastructure separately is controversial within the 
OSM community (OSM TALK-AT 2014), but it can already be observed in some places, for 
example, in the city of Linz, Austria. In cases where Google has to deal with the problem of 
unnamed links, they use compass directions as a fall-back solution, e.g. “Unknown road – 
Head northwest toward Zelinkag”, as shown in the example in figure 1.  

 

Fig. 2: Pedestrian and cycling infrastructure mapping examples from Google Maps 
(map data © 2014 Google) (a) and openstreetmap.org (© OpenStreetMap con-
tributors) (b), Screenshots taken in December 2014 

While current OSM-based routing services, such as Graphhopper, can take advantage of the 
separately mapped pedestrian and cycling infrastructure, they do not deal with the issue of 
missing names, as can be seen in the following example: the cycling directions (figure 3a) 
are limited to “continue, cycleway” even though there is a turn in the route. This turn is 
described correctly in the car route (figure 3b), which also contains street information.  

Since we want to use OSM to leverage the available detailed data regarding pedestrians and 
bicycle traffic, we have to develop a new approach to deal with the issue of unnamed sepa-
rately mapped pedestrian and cycle links. This new approach makes it possible to generate 
route descriptions such as “follow the bicycle path along Street A” by computing which (if 
any) named street a pedestrian or cycle link belongs to. To the best of our knowledge, this 
issue has not been discussed in the literature so far. The closest related topic is line match-
ing, also known as conflation. 



A. Graser and M. Straub 548

 

Fig. 3: Graphhopper.com cycling directions based on OSM for cycling (a) and car (b), 
Screenshots taken in December 2014 (© OpenStreetMap contributors, Lyrk) 

2 Literature Review 

Line matching or conflation is the process of finding the same real world object (often a 
street) in different datasets. In the literature, there are several approaches for line matching. 
The approaches can be roughly categorized into two groups: one group works with line 
geometries only, while the other group adds additional information such as attributes or 
metadata such as data quality indicators (COBB et al. 1998) to the matching process. 

Geometry-only approaches described, for example, in DOYTSHER et al (2001) use shape 
similarity, cumulative distance, and topological similarity between both end-points. An-
other geometry-only approach for matching road features from different datasets based on 
the locations of the endpoints of the polylines is presented in SAFRA et al. (2006). A com-
mon step in many approaches is to use buffers to find matches (WARE & JONES 1998, 
GABAY & DOYTSHER 2000). A polyline from one source is augmented with a buffer. When 
a polyline from the other source is completely contained within that buffer, the two poly-
lines are considered to be a matching pair. Similarly, buffers can be used to filter out im-
possible matches, as shown in SESTER et al. (1998) and WALTER & FRITSCH (1999). 

Matching algorithms for matching linear data in VGI (Volunteered geographic information) 
research (for example KOUKOLETSOS et al. 2012) use a combination of attribute and geo-
metric constraints to match linear features in different datasets. Geometric constraints in-
clude distance, orientation, and length, while attribute constraints focus on road names and 
types. Other approaches are based on semantic similarity (AL-BAKRI & FAIRBAIRN 2012). 

In order to solve the Unnamed Link Naming Problem (ULNP), that is the problem of find-
ing which named street an unnamed pedestrian or cycle link belongs to, we base our ap-
proach on existing line matching methods. However, it is necessary to adapt these existing 
approaches to finding a similar object in the same dataset instead of finding the same real 
world object in a different dataset. To this end, we build on geometry-only line matching 
approaches. Line matching methods which use attributes such as name or road class to 
determine the match are not appropriate for this use case, since neither name nor class of an 
unnamed pedestrian or cycle link and the best matching named link will be similar.  
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The following section describes the three developed methods. Section 4 provides an intro-
duction to the data used for method development and evaluation. Section 5 presents and 
discusses the evaluation results, and section 6 provides an outlook for future work. 

3 Methods  

This section presents the three developed methods. Conflation approaches using buffers to 
find matching features served as a starting point for the method development, since they 
appear most suited to the task of solving the ULNP. Each successive method has been de-
veloped to address the shortcomings of the previous methods. All methods and their results 
(see section 5) are presented to illustrate the improvements gained through more sophisti-
cated matching approaches. All methods use a common preprocessing step, which inserts 
additional geometry nodes at 1 meter intervals to ensure that distance computations be-
tween links will not be affected by long stretches without intermediate nodes.  

3.1 Hausdorff Distance Matching 

Buffer computations and successive containment operations are computationally expensive. 
Therefore, we decided to use the Hausdorff distance (HAUSDORFF 1927) instead. This is 
possible since – for sufficiently densely sampled line geometries – a check for containment 
within a buffer with a size of x meters leads to the same results as a check for a Hausdorff 
distance smaller than x meters. The Hausdorff distance is the maximum distance of a set to 
the nearest point in another set. More formally, the Hausdorff distance from set A to set B 
is defined as 

 ݄ሺܣ, ሻܤ ൌ 	max௔	∈஺ሼ	min௕	∈஻ሼ	݀ሺܽ, ܾሻሽሽ, (1) 

where ܽ and ܾ are points of the sets ܣ and ܤ respectively, and ݀ሺܽ, ܾሻ is the Euclidian dis-
tance in our approach. Since the Hausdorff distance is asymmetric (in general ݄ሺܣ,  ሻ is notܤ
equal to ݄ሺܤ, -ሻ), the more general definition of Hausdorff distance, which we use to calcuܣ
late the matching score, is 

,ܣሺܯ  ሻுܤ ൌ ,ܣሺܪ ሻܤ ൌ ሼݔܽ݉	 ݄ሺܣ, ,ሻܤ ݄ሺܤ,  ሽ. (2)	ሻܣ

This method therefore finds the most similar line feature in another set of line features, i.e. 
the set of named links, for each link in the set of unnamed links. Additionally, we used a 
maximum distance tolerance (δ). If the best match – with the smallest score – exceeds this 
tolerance value, the link is assigned no name.  

3.2 Median Distance Matching 

One disadvantage of Hausdorff distance matching is that it is sensitive to outliers because it 
measures the maximum minimum distance (1). Therefore, we developed a second method, 
which uses the median minimum distance instead. The matching score is defined as  

,ܣሺܯ  ሻெܤ ൌ 	median௔	∈஺ሼ	min௕	∈஻ሼ	݀ሺܽ, ܾሻሽሽ. (3) 
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Similar to Hausdorff distance matching, the link is assigned no name if the best match ex-
ceeds the set distance tolerance (δ). Since this approach does not take link orientation into 
account, the issue of matching to perpendicular links remains.  

3.3 Composite Matching: Distance and Orientation 

The composite matching method matches features based on the smallest matching score 
consisting of weighted median distance and orientation difference. It is defined as 

,ܣሺܯ  ሻ஼ܤ ൌ 	
୫ୣୢ୧ୟ୬ೌ	∈ಲሼ	୫୧୬್	∈ಳሼ	ௗሺ௔,௕ሻሽሽ

ఋ
∗ ௗݓ	 ൅

௢௥௜௘௡௧௔௧௜௢௡	ௗ௜௙௙௘௥௘௡௖௘ሺ஺,஻ሻ

ଵ଼଴
∗  ௢, (4)ݓ	

where ݓௗ is the weight of the distance term, ݓ௢ is the weight of the orientation term, and ߜ 
is the distance tolerance. The orientation difference is a value between 0 and 180 in de-
grees, which represents the difference in azimuth measures between the first and last point 
of A and B respectively. For the purpose of this comparison, a line digitized in east-west 
direction is equal to a line digitized in west-east direction. Therefore, link directions are not 
considered in azimuth computations. 

This method checks for both a distance tolerance (δ) and an angular tolerance (φ). The 
distance tolerance is used to remove links that are too far from any named link. The angular 
tolerance is used to remove “close to perpendicular” links. In composite matching, δ is 
applied to the minimum distance in order to handle cases where the unnamed link extends 
or partially overlaps the corresponding named link. The unnamed link is assigned no name 
if it is not possible to find a named link that fits both requirements.  

4 Input Data and Data Processing 

For the development and evaluation of the developed methods, we used the cycle network 
of the second district of Vienna, Austria. (OSM data was downloaded on Feb. 14th 2014.) 
The second district was chosen since it provides a challenging setting with different street 
network designs, as well as unnamed links, which should not be matched to any named 
link. Data preprocessing is necessary to turn OSM data into a routable network by splitting 
links at the appropriate intersections. Furthermore, driving permissions were evaluated to 
create the network of all links available for cycling.  

For the validation, a ground truth dataset of 804 separately mapped cycle links was gener-
ated manually by visually matching unnamed cycling links to the corresponding named 
link. This matching can be described as “assigning a name which a human would use to 
describe the route”. Overall, 778 (96.8%) of the 804 separately mapped cycle links are 
unnamed. The remaining cycle links already have a name assigned to them in OSM. 

The relationship between cycle link and corresponding named link can take any of the four 
types of spatial relationships between polylines described by SAFRA et al. (2006): (1) com-
plete overlap (two pairs of corresponding endpoints), (2) extension (one pair of correspond-
ing endpoints and the other endpoint is an intermediate point), (3) containment (both end-
points of one line are intermediate points of the other), and (4) partial overlap (each line has 
an intermediate point in the other). The network contains some complex situations where a 
human observer would identify several potential matches. Since we decided not to intro-
duce additional links by splitting existing links in ambiguous situations (for example where 
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two thirds of the cycle link run parallel to street A and one third runs parallel to street B), 
the links were assigned the name that best describes them.  

In those cases where the unnamed cycle link does not have a matching named link because 
there is no appropriate link nearby, we recorded “none” into the name column of the ground 
truth dataset. In total, 400 (49.8%) of the 804 cycle links do not have a matching named 
link. The optimal automatic matching method should avoid matching these links. 

5 Results and Discussion 

All three methods were evaluated using the ground truth dataset of manually matched cycle 
links and different values of distance and orientation tolerance. However, the methods can 
be applied to pedestrian links as well. A summary of the evaluation results is shown in 
table 1. The highest percentage of correct matches for each method is highlighted in bold 
font. Darker background colours mark worse results. The baseline for this evaluation, 
which can be achieved by not matching any cycle links, is 53% (since 49.8% should not be 
matched and 3.2% are already named).  

Table 1: Evaluation results: percentage of correct matches for the three presented methods 
with varying parameter settings 

Distance 
tolerance [m] 

Hausdorff 
dist. 

Median 
dist. 

Composite matching 
depending on orientation tolerance 

5° 10° 15° 20° 25° 30° 35° 40° 

5 54,0 53,2 58,1 59,1 59,2 59,0 58,8 58,5 58,1 58,2 

10 66,8 67,5 75,7 79,5 80,3 79,9 79,7 79,2 79,0 79,0 

15 75,5 76,9 86,2 89,4 90,0 89,9 89,8 88,9 88,4 87,8 

20 76,6 76,9 87,4 90,5 90,7 89,7 89,4 88,6 88,1 87,7 

25 76,1 75,2 87,6 90,7 90,3 89,4 89,1 88,2 87,7 86,9 

30 75,5 74,0 87,1 90,0 89,7 88,4 88,1 87,2 86,7 85,9 

35 75,5 71,4 86,6 88,6 88,1 87,1 86,8 85,6 85,3 84,5 

40 74,6 69,0 85,8 87,8 86,6 85,3 84,7 83,3 82,8 82,0 

Up to 76.6% of cycle links in the test dataset are matched correctly using Hausdorff dis-
tance matching. The best results are achieved for a distance tolerance ߜ of 20 meters. The 
detailed evaluation in table 2 shows that 66.7% of the links that should be matched were 
matched correctly. The errors are distributed equally between missing matches (17.7%) and 
wrong matches (15.6%). Additionally, we can also see that the algorithm did match 15.5% 
of the links that should not be matched.  
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Table 2: Hausdorff distance matching results for ࢾ ൌ ૛૙: number of links per category 
(matching errors are marked with a red background) 

 correct name no match wrong name sum 

already named 26 (100%)  26 

should be matched 252 (66.7%) 67 (17.7%) 59 (15.6%) 378 

should not be matched 338 (84.5%) 62 (15.5%) 400 

Some notable errors include situations such as the one depicted in figure 4: Hausdorff dis-
tance matching fails to find a suitable match for the cycle lane along Untere Donaustraße 
(depicted by the red dotted line in figure 4a), because the cycle lane is modelled as one 
continuous link, while Untere Donaustraße is divided into multiple links. This modelling 
difference results in a Hausdorff distance that exceeds the distance tolerance.  

 

Fig. 4: Hausdorff distance (a) and Median distance (b) matching results (map data 
© OpenStreetMap contributors) 

Median distance matching succeeds in matching most cases of link extension, contain-
ment, and partial overlap. For example, the cycle lane along Untere Donaustraße is matched 
correctly, as illustrated in Figure 4b. Overall, up to 76.9% of the cycle links are matched 
correctly using Median distance matching. The best results are achieved for a distance tol-
erance ߜ of 15 or 20 meters. For links that should be matched, the detailed evaluation in 
table 3 shows that this approach increases the share of links that were matched correctly to 
75.1% and decreases the share of unmatched ones to 0.5%. At the same time, the share of 
incorrectly matched links increases by around 8% for both links that should be matched, 
and those that should not. Since Median distance matching does not take link orientation 
into account, this approach leads to incorrect matches when the cycle links are matched to 
perpendicular named links due to the smaller median distance (see figure 5a). 

Table 3: Median distance matching results for	ࢾ ൌ ૛૙: number of links per category  

 correct name no match wrong name  sum 

already named 26 (100%)  26 

should be matched 284 (75.1%) 2 (0.5%) 92 (24.3%) 378 

should not be matched 308 (77.0%) 92 (23.0%) 400 
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Fig. 5: Issues with perpendicular links using Median distance matching (a) and im-
proved results using Composite matching (b) (map data © OpenStreetMap con-
tributors) 

For the evaluation of the Composite matching method, distance and orientation weights 
 ௢ were both set to 1 to assign both terms equal weight. The evaluation shows thatݓ ௗ andݓ
up to 90.7% of the cycle links are matched correctly using this method. The best combina-
tion of tested parameters are ߜ ൌ 20, ߮ ൌ 15 and ߜ ൌ 25, ߮ ൌ 10. The detailed evaluation 
in table 4 shows that Composite matching increases the share of correct matches, and de-
creases the number of wrong matches. It increases the share of correctly matched links that 
should be matched to 92.6%, and decreases the share of incorrect matches to 2.1%. Addi-
tionally, it also correctly avoids matching 88.3% of links that should not be matched. Future 
work should test different ݓௗ and ݓ௢ values to evaluate if further improvements can be 
achieved. 

Table 4: Composite matching results for	઼ ൌ ૛૙, ૎ ൌ ૚૞: number of links per category  

 correct name no match wrong name sum 

already named 26 (100%)  26 

should be matched 350 (92.6%) 20 (5.3%) 8 (2.1%) 378 

should not be matched 353 (88.3%) 47 (11.8%) 400 

One disadvantage of Composite matching is that it tends to match cycle links to named 
links, which end where the cycle link starts. Figure 6a shows an example of this issue: the 
cycle link is matched to Rotundenplatz even though it extends in the opposite direction. 
This is caused by the decision to apply the distance tolerance to the minimum distance. The 
minimum distance was chosen instead of, for example, the mean distance, because we 
would otherwise run into issues with extension and partial overlap cases where the cycle 
link extends past the corresponding named link. One approach to solve this issue would be 
to dissolve named links based on their name in order to create a single long link with the 
same name. Unfortunately, it is not possible to guarantee that the dissolve result will be one 
continuous line. For example in figure 6a, it is easy to imagine that dissolving all Rotun-
denplatz links would result in a complex MultiLinestring with multiple forks and loops. 
This makes it impossible to compute meaningful orientation values for Composite match-
ing. 
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Figure 6b shows a different situation at Mortaraplatz, which cannot be solved using the 
current approaches. A single continuous cycle link runs along Leystraße and continues 
along Mortaraplatz. In order to compute meaningful matches, it would be necessary to split 
the cycle link so that one part can be matched to Leystraße and the other part to Mortara-
platz. Of course, it can be argued that the best instructions in this case would be “follow the 
cycle lane along Leystraße” since Leystraße continues after Mortaraplatz.  

The majority of the 75 incorrectly matched links are very short, with a median length of 
14.8 meters (30 links under 10 meters), while the median length of all links in the sample is 
46.0 meters. The majority of these short links is found close to intersections, and their ori-
entation tends to differ too much from the orientation of the named link in the ground truth 
dataset. At the roundabout at Praterstern, 16 (21.6%) of 74 links are matched incurrectly. 
The cycling infrastructure at Praterstern is characterized by multiple intersections, where 
the cycle lane crosses roads leading up to the roundabout. While a human observer would 
match the whole circle of cycle links around the roundabout to Praterstern, the matching 
algorithm fails at multiple occasions. The matching errors are mostly due to orientation 
differences that exceed the angular tolerance. In the Prater park area, 16 (8.0%) of 201 links 
are matched incorrectly. All but one of the errors in this area are due to the algorithm as-
signing names to links that should not be matched. In the majority of cases, the difference 
between human and algorithm matches can be traced back to extensions (as illustrated in 
figure 6a), and instances where a human observer would take into account that cyclists will 
have difficulty seeing the named link through the trees separating cycle link and named 
link. 

 

Fig. 6: Challenging network situations at Rotundenplatz (a) and Mortaraplatz (b) (map 
data © OpenStreetMap contributors) 

6 Conclusion and Outlook 

To be able to generate useful navigation instructions for routes containing separately 
mapped unnamed pedestrian or cycle links, it is necessary to develop methods to automa-
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tically extract suitable names from available street network data. We presented three meth-
ods for finding which named street a pedestrian or cycle link belongs to. The most success-
ful method, Composite matching ‒ combining median distance and orientation difference ‒ 
succeeded in matching 90.7% of all cycle links in the second district of Vienna to the cor-
rect named street. Based on the detailed evaluation of error sources, it is expected that the 
algorithm will perform better for networks where streets run at right angles to each other, 
forming a grid, than for networks with organically grown street patterns. For unnamed links 
at roundabouts, a local relaxation of the angular tolerance might lead to better results. 

Future developments should address the issues of unnamed links being matched to named 
links, which end where the unnamed link starts, as well as identifying those situations 
where unnamed links have to be split in order to be able to compute appropriate matches. 
Furthermore, the approaches should be tested in other cities to evaluate their transferability 
and avoid overfitting of parameter values to a specific situation.  

Another potential application of the developed methods is street graph generalization. The 
methods could be used to enrich the generalized link with attributes from all matching 
links. This could enable the automatic inference of street cross-section characteristics such 
as the number of carriageways, or the presence of pedestrian and cycling infrastructure. 
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