
217

Integrating Open Spaces into

OpenStreetMap Routing Graphs

for Realistic Crossing Behaviour in

Pedestrian Navigation

GI_Forum 2016, Vol.1

Page: 217-230

Full Paper

Corresponding Author:

anita.graser@ait.ac.at

DOI: 10.1553/giscience2016_01_s217

Anita Graser

AIT Austrian Institute of Technology, Vienna, Austria

Abstract

Map data for pedestrian routing and navigation provided by OpenStreetMap is getting

more and more detailed, but current approaches often fail to take advantage of

available information. This paper addresses the issue of integrating open spaces, such as

squares and plazas, into pedestrian routing graphs to support realistic crossing behaviour.

We evaluate different approaches to solving this issue, including skeletonization algorithms

as well as approaches for wayfinding in digital worlds, and recommend that – for

pedestrian navigation applications – the visibility graph approach should be preferred over

the commonly-used medial axis or straight skeleton approaches, since it provides direct

routes, which are more realistic and better suited for pedestrian routing applications.

Keywords:

pedestrian, routing, navigation, open spaces, OpenStreetMap

1 Introduction

In contrast to car drivers, pedestrians do not follow clearly-defined linear routes; they can
take short cuts, and they are allowed to use dedicated areas such as pedestrian zones. Even
though the characteristics and needs of pedestrian routing and navigation have been the
topic of numerous publications (Bauer et al., 2014; Elias, 2007; Millonig & Schechtner, 2007;
Retscher, 2004), current routing applications still fail to take into account pedestrian-specific
issues, such as creating suitable routing networks.

In the real world, streets, squares and plazas are areas with different widths and lengths, and
pedestrians can move – more or less freely – in these spaces. In GIS, this pedestrian
infrastructure is often modelled as lines (roads, sidewalks ...) and polygons (public open
spaces, such as squares and plazas), but purely polygon-based datasets (often derived from
CAD plans) exist as well. For routing and navigation applications on the other hand, all

infrastructure is usually modelled as networks, where network nodes represent intersections
and network edges represent roads and other paths. This network-based street model can be
used directly to compute shortest paths using well-known standard algorithms. This

Graser

218

modelling approach has proved to be suffcient for car routing and navigation since cars
move in a linear fashion along predefined lanes, but pedestrians move with a much higher
degree of freedom, particularly when crossing open spaces.

The integration of open spaces into routing networks – which can be found in many current
implementations – is generally effected by treating the outline of the polygon representing
the open space as additional edges for the navigation graph. This leads to unrealistic routing
results, where the pedestrian route follows the outline of the open space, often on a zig-zag
path, as illustrated in Figure 1 by the examples on Rockefeller Plaza, New York City, USA
and Josefsplatz, Vienna, Austria. While these examples show GraphHopper’s pedestrian
routing, other routing services, such as OpenRouteService, Mapzen and osm2po, return
similar results. These sub-optimal routes, which wind their way along the outline of the open
space rather than cross it on a more direct path, affect both the visual representation of
pedestrian routes as well as their textual description in the form of directions or navigation
instructions.

Figure 1: Example routes illustrating the issue of the typical integration of open spaces into pedestrian

routing graphs: Rockefeller Plaza, New York City, USA (left), Josefsplatz, Vienna, Austria (right);

screenshots from openstreetmap.org on 2016-01-03

This issue of unrealistic routes through open spaces is discussed, for example, in Bauer et al.
(2014), who then present a post-routing integration approach: each node along the route is
checked for whether it is located on the open space outline, and then the first and the last
node on the same outline are connected in order to allow the pedestrian to cross the open
space in the most direct fashion while taking potential obstacles into account. This approach
thus requires post-processing to be performed for every route before the results are
presented to the user. If the post-processing module is implemented as part of the router,
users have to be able to deal with routing results which contain links, which are not part of
the routing graph. This post-processing adds complexity to the routing process, which would
not be necessary if squares and plazas were integrated into the pedestrian graph in advance.
An example of this approach is presented by Elias (2007), who converts polygon

Graser

219

representations of streets from a cadastral map into a routing graph by transforming the areal
features into line structures by extracting the polygon’s medial axis. While this approach
works well to convert elongated street polygons into linear features, results for squares and
plazas are not optimal, as discussed in more detail in the following section.

Our contribution in this paper is a novel approach to generating pedestrian routing graphs
using pedestrian infrastructure data in the form of both lines and polygons from OSM. Our
approach solves the problem of how to integrate open spaces into a routable network-based
street model in a way that makes it possible to compute pedestrian routes with realistic
crossing behaviour. We define realistic crossing behaviour as: the pedestrian route crosses
the open space on the most direct path possible. For empty squares or plazas, this means
that the route goes from the entrance point to the exit point on or near the direct line of
sight, without unnecessary detours. If there are obstacles such as buildings or fountains,
these should be accounted for and the pedestrian route should find a direct path past the
obstacles.

Section 2 presents different approaches to creating linear representations of areal features,
including skeletonization algorithms and approaches for wayfinding in digital worlds. Section
3 discusses the advantages and disadvantages of these linear representations for the use case
of pedestrians crossing open spaces. Section 4 presents our approach to integrating linear
and areal features into a consistent graph for pedestrian routing. Section 5 sums up the
results and presents topics for further research.

2 Linear representations of areal features

The current state of the art for generating linear representations of areal features includes
approaches that have been suggested in the context of real-world routing and navigation
applications (Elias, 2007; Roberts et al., 2005), as well as approaches better-known in the
domains of (pedestrian) simulations and wayfinding in digital worlds (Lozano-Pérez &
Wesley, 1979; Snook, 2000).

One approach that has been suggested in the context of real-world routing and navigation
applications is to extract the medial axis – for example, to derive street centrelines (Elias,
2007; Haunert & Sester, 2008; Roberts et al., 2005). The medial axis is defined as the set of
points that have more than one closest neighbour on the polygon boundary. It consists of
straight lines and second-order lines that result from reflex angles of the polygon, and it can
be computed in linear time using, for example, the algorithm by Chin et al. (1995). In
practice, the medial axis is often approximated by the Voronoi diagram of the polygon
boundary points, since the medial axis is equal to the line Voronoi diagram of the polygon
edges (Haunert & Sester, 2008). To generate a good approximation, the polygon outline
needs first to be densified. Figure 2 (left) presents the results of this approach (implemented
using the QGIS Processing Modeler (Graser & Olaya, 2015)), with the outline densified to
one point per meter. Another approach for constructing medial axes takes advantage of the
fact that the Voronoi diagram is the dual graph of the Delaunay triangulation. Therefore, the
approximated medial axis can also be constructed by connecting the centres of adjacent
triangles of the triangulation, as demonstrated, for example, in Elias (2007).

Graser

220

Figure 2: Two examples of algorithms used in GIS applications to generate polygons’ centrelines:

medial axis (left), and straight skeleton (right); centrelines are drawn in black, dashed green lines show

existing pedestrian network

Another approach found in GIS literature is known as the straight skeleton method,
introduced by Aichholzer et al. (1996). For example, Haunert & Sester (2008) use straight
skeletons to extract road centrelines from road polygons. A popular illustration of the
concept of straight skeletons is to imagine a roof which covers the polygon and consists of
planes which rise with a constant slope from each polygon edge. Figure 2 (right) shows the
straight skeleton computed using the 2D Straight Skeleton and Polygon Offsetting package
from the CGAL (Computational Geometry Algorithms Library) (Cacciola, 2015). The
construction of the straight skeleton is based on a stepwise shrinking of the polygon by
translating each of its edges at a fixed rate, keeping sharp corners at the reflex vertices.
During the shrinking, each edge collision is resolved, and skeleton edges to the collision
points are created. The straight skeleton can be computed in sub-quadratic time using the
algorithm by Eppstein & Erickson (1999). As illustrated by Figure 2 (right), the straight
skeleton is quite similar to the medial axis. The main difference is that straight skeletons
ensure continuous straight lines while the medial axis is more curved (Haunert & Sester,
2008).

Another GIS approach for finding routes through areal features is to compute least-cost
paths over a cost surface (Smith et al., 2009). To adopt this approach to pedestrian routing in
an urban environment, the cost surface can be configured to contain pedestrian-friendly
areas, such as sidewalks and open spaces (as surface cells with low costs), areas that can be
crossed but are less attractive, such as roads (medium costs), and areas that cannot be
traversed, such as buildings (extremely high costs), as illustrated in Figure 3. This approach
diff ers from previously presented approaches in that it does not transform the areal features
into a network model, but instead uses a cost surface to compute the least-cost path. Since
we are interested in generating a network-based routing graph, this approach was not
pursued any further.

Graser

221

Figure 3: Least-cost path over a cost surface (colours from green = low cost, to red = extremely high

cost); example using GRASS GIS r.walk at Dr.-Karl-Lueger-Platz, Vienna

In pedestrian simulation and wayfinding in digital worlds, such as in computer games, other
approaches have been developed. For example, in pedestrian simulation, it is common to
create a graph from a regular grid, where graph edges connect centres of empty (not
occupied/blocked) grid cells. This approach is straightforward to reproduce in a GIS
environment by generating a line grid and removing all lines which are not completely within
the open-space polygon. Figure 4 (left) shows a square grid example with a cell size of five
meters. Other commonly used grids include triangle and hexagonal grids.

Navigation meshes (Snook, 2000) are another approach used for simulations. A navigation
mesh is a collection of convex polygons where, for example, simulated pedestrians can walk
around without obstructions on straight lines between the polygon centres, edges and/or
corners (depending on the chosen algorithm). Van Toll et al. (2011), for example, describe
how to generate navigation meshes from medial axes by connecting the medial axis with line
segments to the nearest obstacle. An open source implementation of navigation meshes is
provided by Mononen (nd).

Figure 4: Two examples of algorithms used in pedestrian simulation and wayfinding in computer

games: regular grid with 5m grid size (left), and visibility graph (right)

To describe complex open spaces, for example in indoor navigation scenarios (Liu &
Zlatanova, 2015) and pedestrian simulation (Matyus et al., 2015), the construction of a

Graser

222

visibility graph is often suggested, instead of using regular grids or navigation meshes. In a
visibility graph, each edge represents a visible connection between given point locations
(Lozano-Pérez & Wesley, 1979). As depicted in Figure 4 (right), for our use case, these point
locations are the nodes that make up the polygon outline. This approach is straightforward
to reproduce using GIS APIs, by first generating a complete graph connecting all nodes and
then checking which of the resulting lines are completely within the corresponding polygon.
All lines which are partially or completely outside the polygon are removed, leaving us with
the polygon’s visibility graph.

The approaches presented in this section provide different solutions to the problem of
generating linear representations of areal features. These approaches differ with respect to
the characteristics of the resulting linear representation of the open space, as well as with
respect to the complexity of the method used to generate this representation. The following
section describes how selected approaches (including medial axis, straight skeleton, regular
grid and visibility graph) can be used to integrate open spaces into OSM pedestrian routing
graphs, and discusses the advantages and disadvantages of the different approaches with
respect to the use case of realistic crossing behaviour.

3 Evaluation of linear representations for crossing open spaces

To create a continuous pedestrian routing graph, which includes edges for crossing open
spaces, it is necessary to integrate the linear representation of the open spaces into the
routing graph in a way that ensures that all entrances and exits to the open space are
connected to the edges crossing the space. The connections can be constructed by either 1)
connecting each entrance/exit of the open space polygon with the nearest point on a
crossing edge, or 2) by intersecting crossing edges and extension edges, which are
constructed by extending the incoming pedestrian graph edges, as described in Elias (2007).
This step can be skipped for the straight skeleton and the visibility graph, since these
approaches automatically ensure that all polygon border nodes – and thus all entrances and
exits to the square – are connected.

Figure 5 presents the routing results for crossing the open space at Josefsplatz, Vienna on
the medial axis, straight skeleton, regular square grid with a grid size of 5m, and the visibility
graph. The resulting routes differ in shape and length, with the longest route on the regular
grid and the shortest route on the visibility graph.

Graser

223

Figure 5: Routing results (red lines) for different linear representations of areal features (black lines):

medial axis with route length 100m (top left); straight skeleton with route length 102m (top right);

regular 5m grid with route length 116 (bottom left); visibility graph with route length 91m (bottom right)

As Figure 5 shows, neither medial axis nor straight skeleton produces optimal results with
respect to realistic crossing behaviour, which we defined as the pedestrian being able to cross
the open space on the most direct path without unnecessary detours. Neither returns the
most direct path possible but follows an S-shape, which makes the paths longer (100m and
102m respectively) than the shortest path on the visibility graph (91m).

In a regular grid, a shortest-path algorithm will usually find multiple routes of the same
length. The most direct route will usually run on a zig-zag path from start to destination, but
other routes with fewer turns and of the same length are possible as well. Figure 5 (bottom
left) shows one example with a route length of 116m, which makes it the longest routing
result in this comparison.

Furthermore, it is also worth noting that the direction changes in the routes analysed so far
pose a challenge for potential consecutive navigation instruction algorithms, which evaluate
changes in the route direction to provide turn instructions, as described, for example, by
Dräger & Koller (2012).

The comparison shows that visibility graphs are preferable with respect both to the
complexity of the implementation as well as to the properties of the resulting routing graph,
since they provide direct connections without unnecessary detours. In the following section,

Graser

224

we discuss the integration of open spaces into the pedestrian graph using visibility graphs,
with a focus on the OSM data structure.

4 Integrating open spaces into OSM pedestrian routing graphs

The OSM data model consists of nodes, ways and relations. Nodes can be used to represent
point features, such as traffic lights or trees, but at the same time they are the building blocks
for ways. Ways, in turn, can represent linear features, such as roads or rails, or – in the case
of closed ways – polygonal features, such as squares and plazas. Finally, relations can
describe complex features, such as polygons with holes, or logical relationships, such as all
the features belonging to a bus route. Each node, way and relation has a unique OSM ID
which is used to reference it within the database.

Since OSM raw data is not directly routable, it is necessary to pre-process the data to
generate a routing graph. This process requires knowledge of the OSM data structure in
order to preserve bridges and tunnels while inserting valid intersections, as well as to
correctly resolve the various restrictions on different modes of transport, such as one-ways
and turning restrictions for vehicles, or roads closed to pedestrians such as motorways and
some tunnels. The main concept for making OSM routable is to split the ways at valid
intersections. The convention is that two roads intersect if they share a common node. A
way representing a bridge can cross an underlying road, but they don’t share a node at the
intersection point. A detailed description of the necessary pre-processing steps is outside the
scope of this paper, but the OSM Wiki (Wiki, 2015a) provides a good introduction to the
topic. Existing tools which implement the necessary data pre-processing steps include the
open source tools osm2pgrouting (Wiki, 2011), Open Source Routing Machine (OSRM)
(Luxen & Vetter, 2011), and the freeware tool osm2po (Möller, nd).

In OSM, open spaces for pedestrians are modelled using closed ways with the tag
combination area=yes and highway=pedestrian (Wiki, 2015b). Open spaces and incoming
road and pedestrian ways also share nodes where the road intersects the closed way that
describes the open space. Our example at Josefsplatz in Vienna is a closed way consisting of
31 nodes (http://www.openstreetmap.org/way/29067366). Other open spaces can be much
more complex, for example, nearby Stephansplatz, which is modelled as a relation
(http://www.openstreetmap.org/relation/152813) with one closed way describing its outer
border and another closed way describing the inner border, consists of 234 nodes due to the
detailed mapping of the cathedral at its centre, as depicted in Figure 6.

Graser

225

Figure 6: OSM pedestrian area Stephansplatz, Vienna, Austria (screenshot from openstreetmap.org on

2016-01-01)

It is worth noting another common pattern found in OSM: in some places, such as
Stephansplatz, OSM mappers have manually created additional pedestrian ways (marked by
dotted lines in Figure 6) traversing the open space, in order to make it possible for default
routing applications to find routes through complex open spaces. The same can be observed
in other maps besides OSM, including Google and Bing Maps, but the coverage is far from
complete and many open spaces have not been manually enhanced by adding such helping
edges. However, these additional edges do not negatively affect the approach presented in
this paper.

Figure 7 presents our base algorithm for integrating open spaces into a pedestrian OSM
routing graph by constructing corresponding visibility graphs. The visibility graph is
generated by creating a complete graph and removing all edges which are not completely
within the open-space polygon. The edge start- and end-node IDs, which are needed by the
routing algorithm, are derived from the corresponding original OSM node IDs. Since each
open-space polygon is processed independently, this algorithm can be parallelized for faster
processing but, since this is a pre-processing procedure which only needs to be executed
once to generate the graph, this is not necessarily a priority.

Figure 7: Base algorithm for the integration of open spaces into a pedestrian OSM routing graph

Graser

226

A proof of concept for this algorithm has been implemented using the QGIS Python
application programming interface (API) with PostGIS as a data store. In the data-
preparation stage, a regular pedestrian routing graph is generated and loaded into PostGIS.
Open spaces are extracted from OSM by first importing the OSM data into PostGIS using
ogr2ogr and then selecting the open-space pedestrian area features from the polygon table
using an appropriate SQL query.

Figure 8 shows example routes through Josefsplatz and Stephansplatz which were computed
on the pedestrian network that was generated using our base algorithm. These examples
show routes that start on the normal pedestrian routing network and then continue on to
cross the open space using the most direct route possible. As illustrated by Figure 8
(bottom), this approach is also suitable for open spaces which contain obstacles such as
buildings, which are modelled as holes within the polygon.

Figure 8: Screenshots of the routing results (red lines) through Josefsplatz (top) and Stephansplatz

(bottom) generated using the proof of concept implementation in QGIS

Graser

227

It is worth noting that a disadvantage of this implementation is that OSM node IDs for the
open-space polygons and pedestrian network edges are lost during the data-preparation
stage. Therefore, it is necessary to resort to geometry-matching of nodes in order to connect
the routing and visibility graphs. To avoid the need for this matching procedure and to allow
the use of the original OSM node IDs, the visibility graph generation should in the future be
integrated directly into OSM pre-processing tools such as osm2po or osm2pgrouting.

Another potential improvement to the algorithm presented is to reduce the number of
inserted visibility graph edges by removing irrelevant edges. Figure 9 outlines this extended
algorithm. Visibility graph edges are considered relevant if they belong to the shortest path
between two entrance/exit points of the open space – that is, where the open space meets
the existing pedestrian routing network.

Figure 9: Extended algorithm for adding only relevant visibility graph edges to the routing graph

This approach can reduce the number of additional edges in the graph considerably. For
example, on Josefsplatz the number of edges is reduced from 282 to 19, as illustrated by
Figure 10. This extension provides an important step towards making the algorithm scal-able
to bigger areas, since the number of graph edges aff ects both the speed of routing requests,
as well as the memory requirements.

Figure 10: Visibility graph reduced to the relevant edges located on the shortest paths between

entrances and exits of the open-space polygon

Graser

228

The resulting pedestrian routing graph enables us to compute more realistic routes and better
navigation instructions. On Josefsplatz, for example, current Graphhopper walking
directions for the route depicted in Figure 1 (right) instruct the user to first “Turn left onto
Josefsplatz”, then walk along the outline of the square (there are no explicit directions for
this), followed by another “Turn left” after 140 meters to exit the square. In contrast,
instructions based on our routing graph state “Bear left and cross Josefsplatz”, followed by
“Bear right (and use the building passage through Hofburg)” after 91 metres. These
instructions represent pedestrian behaviour much more realistically, since turning
instructions can be computed with respect to the direct path between entrance and exit of
the square rather than the outline.

5 Conclusion

Pedestrians are still second-class citizens in current routing applications, even though data
sources such as OSM contain extensive information relevant to pedestrian wayfinding. This
paper addresses the shortcomings of current typical integrations of open spaces, such as
squares and plazas, into pedestrian routing graphs.

We presented an algorithm for the effcient integration of open spaces into pedestrian routing
graphs using visibility graphs – a concept commonly used for wayfinding in digital worlds.
This approach enables realistic crossing behaviour following direct routes, without
unnecessary detours, and respects potential obstacles such as buildings within the open
space. We demonstrated the algorithm using a proof of concept implementation for QGIS
to compute routes through open spaces in the city of Vienna, Austria. For an effcient,
scalable implementation, the algorithm should be integrated directly into OSM graph-
generation tools, such as osm2pgrouting or osm2po.

A better integration of open spaces into routing graphs does not just improve routing results.
It should also enable the generation of more appropriate navigation instructions to describe
routes that cross open spaces, which are needed to improve current pedestrian navigation
systems.

Acknowledgements

This work was supported by the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT) within the programme “Mobilität der Zukunft” under Grant 844434
(project PERRON).

Graser

229

References

Aichholzer, O., Aurenhammer, F., Alberts, D., and Gärtner, B. (1996). A novel type of skeleton for
polygons. Springer.

Bauer, C., Almer, A., Ladstätter, S., and Luley, P. M. (2014). Optimierte Wegefindung für Fußgänger
basierend auf vorhandenen OpenStreetMap-Daten. In Angewandte Geoinformatik 2014, pages
408-413, Salzburg, Austria. Herbert Wichmann Verlag.

Cacciola, F. (2015). 2D Straight Skeleton and Polygon Offsetting. In CGAL User and Reference
Manual. CGAL Editorial Board, 4.7 edition.

Chin, F., Snoeyink, J., and Wang, C. A. (1995). Finding the medial axis of a simple polygon in linear
time. In Algorithms and Computations, pages 382-391. Springer.

Dräger, M. and Koller, A. (2012). Generation of Landmark-based Navigation Instructions from
Open-source Data. In Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, EACL '12, pages 757-766, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Elias, B. (2007). Pedestrian Navigation – Creating a tailored geodatabase for routing. In WPNC, pages
41-47. IEEE.

Eppstein, D. and Erickson, J. (1999). Raising roofs, crashing cycles, and playing pool: Applications of
a data structure for finding pairwise interactions. Discrete & Computational Geometry, 22(4):569-
592.

Graser, A. and Olaya, V. (2015). Processing: A Python Framework for the Seamless Integration of
Geoprocessing Tools in QGIS. ISPRS International Journal of Geo-Information, 4(4):2219.

Haunert, J.-H. and Sester, M. (2008). Area collapse and road centerlines based on straight skeletons.
GeoInformatica, 12(2):169-191.

Liu, L. and Zlatanova, S. (2015). An Approach for Indoor Path Computation among Obstacles that
Considers User Dimension. ISPRS International Journal of Geo-Information, 4(4):2821.

Lozano-Pérez, T. and Wesley, M. A. (1979). An algorithm for planning collision-free paths among
polyhedral obstacles. Communications of the ACM, 22(10):560-570.

Luxen, D. and Vetter, C. (2011). Real-time routing with OpenStreetMap data. In Proceedings of the
19th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS '11, pages 513-516, New York, NY, USA. ACM.

Matyus, T., Seer, S., and Schrom-Feiertag, H. (2015). Simulation-based Forecasts of Crowd Flows at
Major Events using Real-time Measurements. In Proceedings of the 11th Conference on Traffic
and Granular Flow (TGF2015).

Millonig, A. and Schechtner, K. (2007). Developing landmark-based pedestrian-navigation systems.
Intelligent Transportation Systems, IEEE Transactions on, 8(1):43--49.

Möller, C. (n.d.). osm2po. http://osm2po.de/; accessed 2016-01-02.
Mononen, M. (n.d.). recastnavigation – Navigation-mesh Toolset for Games.

https://github.com/recastnavigation/recastnavigation; accessed 2016-01-03.
Retscher, G. (2004). Pedestrian navigation systems and location-based services. In 3G Mobile

Communication Technologies, 2004. 3G 2004. Fifth IEE International Conference on, pages 359-
363. IET.

Roberts, S. A., Hall, G. B., and Boots, B. (2005). Street Centreline Generation with an Approximated
Area Voronoi Diagram. In Developments in Spatial Data Handling, pages 435-446. Springer.

Smith, M. J. d., Goodchild, M. F., and Longley, P. A. (2009). Geospatial Analysis - A Comprehensive
Guide to Principles, Techniques and Software Tools (Third Edition). Matador (an imprint of
Troubador Publishing Ltd) on behalf of The Winchelsea Press.

Snook, G. (2000). Simplified 3d Movement and Pathfinding using Navigation Meshes. In Game
Programming Gems, pages 288-304. Charles River Media, Newton, MA.

http://osm2po.de/
https://github.com/recastnavigation/recastnavigation

Graser

230

Van Toll, W., Cook IV, A. F., and Geraerts, R. (2011). Navigation meshes for realistic multi-layered
environments. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, pages 3526-3532. IEEE.

Wiki, O. (2011). Osm2pgrouting OpenStreetMap Wiki.
http://wiki.openstreetmap.org/w/index.php?title=Osm2pgrouting&oldid=667728; accessed
2016-01-01.

Wiki, O. (2015a). Routing OpenStreetMap Wiki.
http://wiki.openstreetmap.org/w/index.php?title=Routing&oldid=1256183; accessed 2016-01-
01.

Wiki, O. (2015b). Tag:highway=pedestrian OpenStreetMap Wiki,.
http://wiki.openstreetmap.org/w/index.php?title=Tag:highway%3Dpedestrian&oldid=1242393;
accessed 2016-01-01.

http://wiki.openstreetmap.org/w/index.php?title=Osm2pgrouting&oldid=667728
http://wiki.openstreetmap.org/w/index.php?title=Routing&oldid=1256183
http://wiki.openstreetmap.org/w/index.php?title=Tag:highway%3Dpedestrian&oldid=1242393

