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Abstract 

Methods of earth observation deliver quick and reliable information covering large areas, 

which can be used for the management of natural disasters and humanitarian crises.  

However, optical sensors reach their limits in areas affected by cloud cover or atmospheric 

haze, while radar satellites are predominantly unaffected by atmospheric conditions. This 

paper discusses the application of radar imagery for the assistance of humanitarian 

operations. The opening section describes the need for complementary information 

gained from radar data as well as the challenges which arise when working with imaging 

systems. Subsequently, examples for the use of various sensors are given based on our own 

findings, and a literature review for various application domains. These include the 

monitoring of natural resources, the distribution of human settlements or dwellings, and the 

retrieval of hydrologic parameters. Against this background, limitations and how they were 

handled in selected studies are discussed. A summary reflects the findings in the light of 

new developments and discusses challenges for the future.  
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1 Introduction 

The contribution of geographical information systems (GIS) and remote sensing (RS) for 
humanitarian response has been discussed extensively during the last two decades (Kranz et 
al., 2016; Lang et al., 2015; Marx & Goward, 2013; Kaiser et al., 2003; Gentile et al., 1997). 
Many of the approaches based on earth observation (EO), however, report issues related to 
data availability or cloud cover (San-Miguel-Ayanz & Ravail, 2005; Song et al., 2001; Kogan, 
1997). According to estimates by the US Department of Energy, on average about 52% of 
global land surfaces are covered by clouds (Warren et al., 1986). Regions within the 
intertropical convergence zone (ITC) are affected by seasonal or even year-round cloud 
cover. It is often within these areas of extreme climatic conditions that humanitarian aid is 
required (e.g. in cases of flooding, famines or the spread of vector-borne diseases).  

This paper therefore discusses the application of synthetic aperture radar (SAR) imagery for 
humanitarian relief. It is based on work and experience gained in the research project 
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EO4HumEn+ (Extended EO-based Services for Dynamic Information needs in 
Humanitarian Action) funded by the Austrian Research Promotion Agency (FFG). The 
paper consists of a literature review enriched by the authors’ own examples, as summarized 
in Table 1. The locations of the examples are shown in Figure 1, as are other selected 
locations investigated within EO4HumEn+.   

Table 1: Overview of case studies. The Figure numbers refer to our Figures below. 

 Setting (area) Data 

Figure 3: Speckle filter Djabal refugee camp and the city of Goz 
Beïda, Eastern Chad 

TerraSAR-X (Spotlight Mode), 
07.03.2009 

Figure 4: Biomass 
estimation 

Border region between Chad and Sudan 
including refugee camps   

ALOS PALSAR (ScanSAR Mode), 
26.11.2010 

Figure 5: Multi-temporal 
analysis 

Minawao refugee camp, Northern 
Cameroon 

TerraSAR-X (Staring Spotlight 
Mode), 12.07., 25.08. and 26.10.2015 

Figure 6: Building 
detection 

Dagahaley refugee camp, Eastern Kenya TerraSAR-X (Staring Spotlight 
Mode), 10.03.2015 

Figure 8: Surface 
geology 

Settlement of Kidal, Eastern Mali ALOS PALSAR-2 (SM1Mode), 
31.12.2016; Sentinel-1 (IW Mode), 
29.12.2016 

 

Figure 1: Map of the study areas used for this paper (red) and within the research project (grey). 
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2 Characteristics of SAR data 

To overcome limitations described in section 1, satellites with synthetic aperture radar (SAR) 
were used. They operate at wavelengths of several centimetres, thus penetrating clouds. This 
makes them independent of atmospheric conditions and also capable of image acquisitions at 
night (Ulaby et al., 1981). 

 

Figure 2: Topographic effects in SAR images. Note how A’ and B’ appear closer together in the SAR 

image, caused by the temporal shift of the signal (foreshortening). In cases of steeper slopes, some 

parts of the image are not reached by the signal at all (the location of F’ is within the radar shadow). 

In cases of signal layover, the signal reaches the top of the hill before its slopes, leading to inversion of 

geometries (H’ G’).  

For humanitarian response, SAR satellites offer gap-free images with a high degree of 
temporal flexibility. Their analysis does, however, present difficulties. As shown in Figure 2, 
images are distorted because of the side-looking geometry of the sensor, especially in areas 
with pronounced topography (Bayer et al., 1991). These distortions are of a geometric and 
radiometric nature and must either be reduced by the use of a digital elevation model, e.g. 
SRTM 1 ArcSec (Jarvis et al., 2008), or at least be considered in later steps of analysis. 
Additionally, the active nature of the signal causes positive and negative interference, which 
adds up to noise-like patterns within the data (Lee, 1981). This so-called speckle effect is 
shown in Figure 3 and reduces the sharpness of images. It, too, has to be dealt with by the 
user before reliable information can be retrieved.  
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Figure 3: TerraSAR-X image (spatial resolution of 1m) of the Djabal refugee camp and the city of Goz 

Beïda, Eastern Chad. Left: Unfiltered. Right: After application of a speckle filter, which uses local 

statistics to reduce random noise-like structures while preserving actual edges.  

3 Applications in the humanitarian domain 

Natural resources 

The use of SAR imagery at the landscape level dates back to the early 1990s when the first 
SAR satellites were launched, ERS-1 (European Space Agency) and JERS-1 (Japan 
Aerospace Exploration Agency) amongst others. Both delivered images of medium spatial 
resolution (20 to 30 metres) and comparably wide coverage (swathes of 75 to 100 
kilometres). Surface characteristics such as roughness, texture, shape and moisture were 
enhanced by the wavelength of their signal, making them a valuable source of information 
complementary to the optical images of early Landsat missions (Kuplich et al., 2000; Solberg 
et al., 1994). The long wavelengths of ALOS PALSAR and JERS-1 (L-band) in particular 
were found to be effective for vegetation mapping because of their ability to penetrate 
canopies and their strong interaction with voluminous structures (Fransson, 1999; Paloscia et 
al., 1999).  

For humanitarian action, information about the surrounding landscapes and the natural 
resources available is crucial (Haile, 2005; Bannon & Collier, 2003). Applications address the 
distribution of drinking water, firewood or building materials, as well as the management and 
monitoring of limited resources in terms of ecosystem capacities.  

Mitchard et al. (2009) investigated the relationship between L-band backscatter intensity and 
above-ground biomass (AGB) and found a stable ratio based on samples collected within 
four different savannah landscapes. This finding was then used to quantify changes related to 
landscape degradation in Africa (Mitchard et al., 2011) and later extended to studies of 
carbon stocks in tropical regions across three continents (Saatchi et al., 2011). The work of 
Saatchi et al. can be considered a milestone as this was the first time that a calibrated model 



Braun & Hochschild 

 

232 
 

was transferred to other areas lacking sufficient ground measurements. Their findings were 
incorporated in numerous studies addressing the monitoring of natural resources in areas 
affected by deforestation and land degradation (Carreiras et al., 2012; Ryan et al., 2012; 
Englhart et al., 2011).  

Besides the need for ground data used for validation, one of the main limitations of 
regression-based approaches is the issue of saturation (Imhoff, 1993). Above a certain level, 
often reported as being between 150 and 300 tons per hectare, SAR backscatter no longer 
increases accordingly. Estimations above this point are therefore considered to be 
increasingly inaccurate, as shown in Figure 4.  

Long-term observations and monitoring of biomass were additionally limited by the failure 
of ALOS PALSAR in April 2011. ALOS-2 was launched in May 2014, leaving a temporal 
gap of three years without any L-band SAR satellite imagery available.  

 

Figure 4: Saturation of SAR backscatter intensities for biomass estimation, adapted from Yu and 

Saatchi (2016). The chart shows backscatter coefficients plotted against field measurements 

conducted in six different forests. Note the flattening of the curves and increasing uncertainty with 

biomass values larger than 100 t/ha.  

The example given in Figure 5 shows how the calibrated models of Mitchard et al. (2009) can 
be applied to similar savannah ecosystems along the Sahel border. Although this approach 
may not deliver precise estimates and lacks ground validation, seasonal abundancies of 
biomass can be quickly assessed for large areas. Linking this information to locations of 
refugee camps can then assist collection of firewood and resource management.  
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Figure 5: Continuous biomass estimates along the Chad–Sudan border based on ALOS PALSAR.  

Settlements 

One of the most important pieces of information retrieved by EO techniques can help to 
identify the distribution of people in impassable or insecure areas, or in emergencies of 
unclear situation. In the humanitarian sector, this applies mostly in the detection of urban 
growth, the discrimination of districts, and the classification and counting of building types. 
While approaches based on VHR optical data are already highly developed (Kemper & 
Heinzel, 2014; Spröhnle et al., 2014; Voigt et al., 2014; Ergünay et al., 2013), SAR 
applications in urban emergency situations are rare.  

One main limitation of SAR in urban areas is spatial resolution: the discrimination of 
dwelling types requires spatial resolutions down to 1 metre. To achieve this, special modes of 
image acquisition are applied which are currently provided by only a few radar satellites, as 
shown in Table 2. However, the area which can be covered with such modes is limited. 
Obtaining complete images of large cities or regions in a single overflight is nearly 
impossible. Additionally, these modes compete with the regular imaging modes and have to 
be tasked specifically. This results in only small amounts of data actually being acquired and 
archived.  
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Table 2: Very high resolution SAR satellites 

Satellite  

(operator) 

Imaging mode  

(spatial resolution) 

Maximum area 

covered  

Time of 

operation 

TerraSAR-X (DLR) 
Staring Spotlight 

(0.6m) 
4 x 3.7km 2013 – today  

COSMO SkyMed (ASI) Spotlight-2 (0.8m) 10 x 10km 2007 – today  

HRWS (DLR) StripMap (1m) 70 x 70km expected 2019 

TerraSAR-X (DLR) Spotlight (1m) 10 x 10km 2007 – today  

Radarsat-2 (CSA) Spotlight (1m) 8 x 18km  2007 - today 

Radarsat-2 (CSA) UltraFine (3m) 20 x 20km 2007 – today  

ALOS PALSAR-2 

(JAXA) 
Spotlight (3m) 25 x 25km 2014 – today 

RISAT-1 (ISRO) FR Stripmap (3m) 25 x 25km 2012 – today  

Sentinel-1 StripMap (5m) 80 x 80km 2014 – today  

Urban areas often show high radar backscatter because of so-called double-bounce effects. 
These can be observed when the incoming signal is reflected by rectangular structures (e.g. 
buildings) and returns directly to the sensor. This leads to over-saturation in images of 
densely built-up areas. In turn, this type of corner reflexion has also been exploited for the 
detection of buildings (Balz & Liao, 2010; Brunner et al., 2009; Guillaso et al., 2005) 

 

Figure 6: RGB colour composite of TerraSAR-X scenes for the Minawao refugee camp, Cameroon. 

Red: 12.07.2015, Green: 25.08.2015, Blue: 26.10.2015. Note that the blue image was acquired from a 

different direction, leading to shadow-like structures next to the trees.  
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In the humanitarian context, VHR SAR data can be used for monitoring developments 
within refugee camps. Figure 6 shows a colour composite of three TerraSAR-X scenes, 
where red and yellow indicate that buildings have already been removed and buildings shown 
in blue were built before the acquisition of the last image. Camp structures like 
administrative buildings or neighbourhoods of simple tents can be identified clearly. 

However, the detection of single dwellings is constrained by the density and orientation of 
dwellings, as well as by vegetation cover. Figure 7 clearly demonstrates the advantages and 
limits of SAR data: clouds hinder the analysis of the optical image but white buildings can be 
clearly delimited. The SAR image is not affected by atmospheric constraints, but the 
presence of many shrubs and hedges separating the single households causes volume 
scattering to such an extent that the footprint of the dwellings nearly vanishes. So even if the 
buildings stand on flat terrain and the area is only sparsely built, detection of dwellings can 
be difficult.  

These issues can be addressed in various ways. Possible solutions include the aggregation of 
buildings to urban structure types (Reigber et al., 2007), combinations with optical 
information (Wegner et al., 2011; Sportouche et al., 2009), or the use of SAR images acquired 
from different angles (Thiele et al., 2007; Simonetto et al., 2005).  

 

Figure 7: Detection of dwellings in Dagahaley refugee camp, Kenya. Comparison between 

WordView-3 (left) and TerraSAR-X (Staring Spotlight mode, right). The red polygons indicate detected 

houses based on WorldView-3 by Tiede et al. (2013). 

Hydrology 

Radar imagery has often been used to detect variations of moisture at the earth’s surface 
(Baghdadi et al., 2012; Engman & Chauhan, 1995; Dubois et al., 1995). This information can 
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efficiently assist the provision of drinking water, especially in arid regions (Wendt et al., 
2015). However, as indicated by Figure 8, microwaves are sensitive not only to dielectricity 
(as the main proxy for soil moisture), but also to surface characteristics and the local 
incidence angle (Mason et al., 2016; Shi et al., 1997). The direct relationship of backscatter 
intensity and soil moisture cannot therefore be exploited based on single images or for wide 
areas covering different types of land-use at high resolutions. Additionally, every model 
needs field measurements for calibration purposes, which are not given in cases of 
emergencies. At the global scale, systems such as SMOS (Soil Moisture and Ocean Salinity, 
satellite operated by ESA), SMAP (Soil Moisture Active Passive, satellite operated by NASA) 
or ASCAT (Advanced Scatterometer, instrument on the MetOp-A weather satellite) deliver 
radiometer-based soil moisture estimates at an operational level, but at spatial resolutions of 
several kilometres (Al-Yaari et al., 2014).  

 

Figure 8: Influence of surface characteristics, vegetation cover and soil moisture on radar backscatter. 

While backscatter intensity caused by surface roughness and landcover (light area) is mostly stable 

during the year, phonologic variations are highly dynamic and contribute to the overall signal (green 

area). Changes in moisture of surfaces additionally enhance/attenuate the signal fluctuations (blue 

dashed line). 

To overcome these limitations, different solutions have been proposed. Moran et al. (2000) 
used the variation of SAR values for the SAR images from the rainy and dry seasons in order 
to minimize the effect of surface roughness. A similar approach was proposed by Srivastava 
et al. (2003), who used SAR data of different incidence angles to overcome geometric 
variations. Upsampling techniques applied on global soil moisture data sets, such as those 
provided by SMOS or ASCAT, are used in other studies that are based on SAR images of 
finer resolution (Pierdicca et al., 2014; Gruber et al., 2013). These approaches manage to 
increase the spatial resolution to the kilometre scale, but are still limited to specific parts of 
the earth or require field measurements for calibration. They are first steps towards fine-
scaled operational services but cannot as yet fulfil the needs of humanitarian organizations 
for near real-time information. 

For the provision of drinking water, other approaches seem more promising. Quesney et al. 
(2000) propose a SAR-based index for soil moisture over different types of land-use. 
Although few absolute estimates are given, the approach incorporates seasonal fluctuations 
and the influence of vegetation cover. In the context of food security and agricultural yield, 
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Brisco and Brown (2015) investigated SAR data as predictors for drought stress for various 
crop types.  

In arid regions, investigation of subsurface geology allows the detection of groundwater 
flows and recommendations on drilling activities (Paillou et al., 2010; Verjee & Gachet, 2007; 
Dabbagh et al., 1997). Many approaches use the penetration of microwaves into dry surfaces, 
which can reveal buried structures. Importantly, the combination of SAR sensors of different 
wavelengths can lead to new insights into geomorphologic and hydrologic features, because 
systems of higher wavelength have higher penetration capabilities than shorter ones.  

Figure 9 demonstrates the information content of different wavelengths compared to optical 
images, using the example of Kidal, Eastern Mali. While in arid regions most of the surface is 
covered by sand, rock or shrub vegetation, waves of different penetration depths help to 
define subsurface structures, such as smaller wadis and buried river channels, which often 
contain usable drinking water. As demonstrated, only large geologic structures are shown as 
darker patterns in the optical image, while a combination of SAR images of different 
wavelengths provides detailed insights regarding surface geology (blue granites), wadi 
channels (red lines), and lineaments and ridges around the city of Kidal (light lines on green 
and yellow background). 

 

Figure 9: Area around settlement of Kidal, Mali during the dry season. Left: Optical information from 

Sentinel-2. Right: SAR composite of L-band (red, ALOS PALSAR-2, HH), L-band (green, ALOS PALSAR-2, 

HV) and C-band (blue, Sentinel-1, VV). 

4 Discussion and Outlook  

The examples presented are just a few of the many possible applications of SAR imagery in 
the humanitarian sector. Besides resources, settlements and hydrology, solutions for the 
following domains have already been proposed: image classification for the analysis of 
changes or ecosystem capacity (Braun et al., 2016; Mitchard et al., 2011); damage assessment 
after earthquakes or tsunamis (Plank, 2014; Chen & Sato, 2013); ground subsidence resulting 
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from water extraction or mining (Engelbrecht & Inggs, 2011; Tomás et al., 2005); the 
detection of flood-prone areas (Schlaffer et al., 2015; Long et al., 2014).  

Two factors have been largely responsible for promoting the use of radar data during the last 
decade: 

a) Availability of data: With the launch of Sentinel-1 A and B within the Copernicus 
programme, data is collected systematically according to acquisition plans and freely 
available for scientific, commercial and civilian use. This service will be complemented 
by Sentinel-1 C and D, creating an unprecedented constellation of SAR data-acquisition 
of both high temporal and high spatial coverage. Furthermore, more and more data of 
former radar missions, such as ENVISAT, ALOS or ERS, is becoming publicly available 
through the provision of access to the long-term archives.  

b) Software: for a long time, SAR processing was mainly restricted to engineers or research 
facilities, and only a few specialized software packages existed. Triggered by 
multidisciplinary discourse and collaborative software development, an increasing 
number of open-source tools are now available. While many of them are command line-
based and highly specialized (StaMPS, GIAnT or GMTSAR), others address more basic 
tasks and provide graphical user interfaces, allowing less-experienced users to enter the 
field of radar data (MapReady by the ASF, SNAP by the ESA, or PolSARpro by the 
IETR). Consequently, a larger user community will further boost the development of 
new methods and applications. 

Despite the emergent use of SAR data in many fields of study, their intensive exploitation in 
humanitarian action seems still to come. As limitations of a technical nature, such as speckle, 
terrain effects or spatial resolution, become less important in the future, the focus will shift 
towards the delivery of automatic and reliable services. Most of the existing studies are of a 
scientific nature and achieve results of high quality based on intensive research. But 
emergency scenarios require a short response time, precluding lengthy periods of research. In 
addition, many scientific approaches produce results with high producer accuracies, while 
user’s accuracy is insufficiently low for humanitarian-response purposes. Currently, therefore, 
there is still a trade-off between quality, speed, transferability, and the degree of automation. 
Both scientists and users need to collaborate in order to minimize these limitations. It is the 
scientists’ task to develop robust methods based on both data and software which will be 
part of operational workflows. In turn, users of these services will have to specify their needs 
and contribute to calibration and validation in order to improve the methods and products.  

While optical approaches are considerably closer to becoming operational (Drusch et al., 
2012; Eisen & Lozano-Fuentes, 2009; San-Miguel-Ayanz & Ravail, 2005; Hielkema & 
Snijders, 1994), awareness of the potential and limitations of SAR data is needed to close this 
gap, as are people working with confidence with radar imagery. The increasing amounts of 
available data and a growing community contributing to open software development are 
ideal conditions for this.  
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