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Abstract

In main-sequence stars, the chemical composition gradient that develops at the edge of the
convective core is responsible for a non-uniform period spacing of high-order gravity modes.
In this work we investigate, in the case of a 1.6 M� star, the effects on the period-spacing
of extra mixing processes in the core (such as diffusion and overshooting).

1. Effects of overshooting and diffusion on the central µ-profile

We consider three models of a 1.6 M� star on the main sequence: a model without any
“extra-mixing” process (model A), considering overshooting from the convective core (B) and
including helium diffusion (C). Though the central hydrogen abundance is the same (Xc =
0.3), the models have a different chemical composition profile near the outer edge of the
convective core (see Fig. 1). Taking A as the reference model, we see that overshooting (B)
displaces the location of the µ-gradient, whereas diffusion (C) leads to a smoother chemical
composition profile. As shown in the lower panel of Fig. 1, such differences are also reflected
in the behaviour of the Brunt-Väisälä frequency N that, in its turn, determines the properties
of gravity modes.

2. Effects on the period spacing

In white dwarfs it has been theoretically predicted and then observed (see for instance Metcalfe
et al. (2003) and references therein) that the period spacing (hereafter ∆P ) of g-modes is
not constant, contrary to what is predicted by the first order asymptotic approximation of
gravity modes (Tassoul 1980). This has been interpreted as the signature of sharp variations
in N due to chemical composition gradients in the envelope and core of the star.

In analogy with the case of white dwarfs, in main-sequence models with a convective
core we expect the formation of a nonuniform period distribution; this is in fact the case
as presented in Fig. 2. The period spacing shows clear periodic components superposed
to a constant ∆P expected for a model without sharp variations in N . The periodicity and
amplitude of these components can be related to the location and sharpness of the µ-gradient
region by means of analytical expressions.

2.1 Analytical approximations

As described e.g. in Montgomery et al. (2003) the effect of a sharp feature in the model
(a chemical composition gradient, for instance) can be estimated as the periodic component



90 Effects of “extra-mixing” processes on the periods of high-order gravity modes

Figure 1: Behavior of the the hydrogen abundance profile (upper panel) and of the Brunt-Väisälä frequency
(lower panel) in models of 1.6 M� with Xc ' 0.3. The different lines correspond to models calculated with
no extra-mixing (A, continuous lines), overshooting (B, dashed-dotted) and helium diffusion (C, dashed).
The different location and sharpness of the chemical composition gradient determines the behaviour of N
(lower panel).

of the difference δP between the periods of the star showing such a sharp variation and the
periods of an otherwise fictitious smooth model.

As a first example we model as a step function the sharp feature δN in the Brunt-Väisälä
frequency located at a normalized radius x = xµ.

We then define
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where x0 is the boundary of the convective core and we consider a model with a radiative
envelope.

Following the approach of Montgomery et al. (2003), and using the asymptotic expression
for g-modes periods Pk derived by Tassoul (1980):

Pk = π2 Π0

L
(2k + ne) , (2)

where ne is the effective polytropic index of the superficial layers, k is the radial order of the
mode and L = [`(`+ 1)]1/2 , we find
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Figure 2: Period spacing ∆P = Pk+1 − Pk as a function of the radial order k in ` = 1 g-modes for
the models presented in Figs 1 and 3. The periods of g modes were computed using the adiabatic stellar
oscillation code OSC.

where A is related to the sharpness of the variation in N .
From this simple approach we derive that the signature of a sharp feature in the Brunt-

Väisälä frequency is a periodic component in the periods of oscillations, and therefore in
the period spacing ∆P , whose periodicity in terms of the radial order k is given by

∆k ' Πµ

Π0
, (4)

and whose amplitude does not depend on the order k.
We now compare this approximation to the numerically computed period spacing. In

Fig. 2 the periods (in terms of k) of the components are approximately 7 for model A and
5 for model B and C. Following Eq. (4) these periods should correspond to a location of
the discontinuity (expressed as Π0/Πµ ' k−1) of 0.14 and 0.2: as shown in Fig. 3, these
estimates accurately describe the locations of the sharp variation of N in the models.

The period spacing of the model computed with diffusion deserves, however, further
inspection. As shown in lower panel of Fig. 2, the amplitude of the components in the period
spacing of model C, compared to model A and B, is considerably reduced. Moreover, the
amplitude also becomes a decreasing function of the order k: this behaviour can be directly
related to a smoother chemical composition profile.

In fact, the simple approach followed so far allows us to easily evaluate the effect of
having a smoother variation in the Brunt-Väisälä frequency. Instead of modelling δN as a
step function, we use a ramp function that, as shown in Fig. 3, better represents the variation
of δN in model C.
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In this case integration by parts leads to a sinusoidal component in δPk whose amplitude

is modulated by a factor 1/Pk and therefore decreases with increasing k, i.e.
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Figure 3: The Brunt-Väisälä frequency versus Πµ/Π0 for the models. Whereas the sharp variation in N
in model A and B can be represented by a step function, in the case of model C (calculated with diffusion)
it is better modelled by a ramp function.

This simplified approach is therefore sufficient to account for the behaviour of ∆P (Fig.
2) in the model computed with diffusion, where the sharp feature in N described by a
discontinuity not in N itself, but in its first derivative, generates a periodic component whose
amplitude decreases with k.

3. Conclusions and prospects

In main-sequence stars, similarly to the case of white dwarfs, the deviations from a constant
g-mode period spacing are sensitive probes of µ-gradients that develops at the outer edge
of a convective core. These deviations can be interpreted by means of simple analytical
expressions that could represent a possible seismic tool to study the detailed properties of
chemical mixing in γ Doradus and SPB stars, where high-order gravity modes are observed.

The question whether such signatures could be detected given realistic observational errors
and other uncertainties (e.g. effects of rotation on g-modes periods) needs, however, further
investigation. A more detailed study will be presented in a forthcoming paper.
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