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Abstract

Solar-like oscillations have now been detected for more than ten years and their frequencies
measured for a still growing number of stars with various characteristics (e.g. mass, chemical
composition, evolutionary stage ...). Excitation of such oscillations is attributed to turbu-
lent convection and takes place in the uppermost part of the convective envelope. Since
the pioneering work of Goldreich & Keely (1977), more sophisticated theoretical models of
stochastic excitation were developed, which differ from each other both by the way turbulent
convection is modeled and by the assumed sources of excitation. We briefly review here the
different underlying approximations and assumptions of those models. A second part shows
that computed mode excitation rates crucially depend on the way time-correlations between
eddies are described but also on the surface metal abundance of the star.

Individual Objects: Sun, o Cen A, HD 49933

Introduction

Solar p-modes are known to have finite lifetimes (a few days) and a very low amplitude (a few
cm/s in velocity and a few ppm in brightness). In the last decade, solar-like oscillations have
been detected in numerous stars, in different evolutionary stages and with different metallicity
(see recent review by Bedding & Kjeldsen, 2007). Their finite lifetimes are a consequence of
several complex damping processes that are not clearly identified so far. Their excitation is
attributed to turbulent convection and takes place in the uppermost part of the convective
envelope, which is the place of vigorous turbulent motions.

Measuring the mode amplitude and the mode lifetime enables to infer the excitation rate,
‘P (the energy which is supplied per unit time to the mode). Deriving P put constraints on
the theoretical models of mode excitation by turbulent convection (Libbrecht, 1988).

Goldreich & Keeley (1977, GK hereafter) have proposed the first theoretical model of
stochastic excitation of solar acoustic modes by the Reynolds stresses. Since this pioneering
work, different improved models have been proposed (Dolginov & Muslimov, 1984; Balmforth,
1992; Goldreich et al., 1994; Samadi & Goupil, 2001; Chaplin et al., 2005; Samadi et al.,
2003; Belkacem et al., 2006b, 2008). These approaches differ from each other either by the
way turbulent convection is described, or by the excitation process. In the present paper, we
briefly review the main assumptions and approximations on which the different theoretical
models are based.

As shown by Samadi et al. (2003), the energy supplied per time unit to the modes by
turbulent convection crucially depends on the way eddies are time-correlated. A realistic
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modeling of the eddy time-correlation at various length scales is then an important issue,
which is discussed in details below. The structure and the properties of the convective upper
envelope also has an important impact on the mode driving. In particular, the surface metal
abundance can significantly change the efficiency of the mode driving.

Theoretical models

Most of the theoretical models of stochastic excitation adopt GK's approach. This approach
first consists in solving, with appropriate boundary conditions, the equation that governs the
adiabatic wave propagation (also called the homogeneous wave equation). This provides the
well-known adiabatic displacement eigenvectors (£(7,t)). Then, one includes in the wave
equation turbulent sources of driving as well as a term of linear damping. The complete
equation (so-called inhomogeneous wave equation) is then solved.

Among the sources of driving, the contribution of Reynolds stresses, which represents a
mechanical source of driving, is considered. Goldreich et al. (1994, GMK hereafter) have
proposed to include in addition the entropy fluctuations (also referred to as non-adiabatic
gas pressure fluctuations). It is generally assumed that the entropy fluctuations behave as
a passive scalar. In that case, Samadi & Goupil (2001, SG hereafter) have shown that the
contribution of the Lagrangian entropy fluctuations vanishes. On the other hand, as shown
by SG, the advection of the entropy fluctuations by the turbulent velocity field contributes
efficiently to the mode driving in addition to the Reynolds stresses. This advective term
corresponds to the buoyancy force associated with the entropy fluctuations. Since it involves
the entropy fluctuations, it can be considered as a thermal source of driving.

The solution of the inhomogeneous wave equation corresponds to the forced mode dis-
placement, §7 (or equivalently the mode velocity Vosc = dér/dt). A detailed derivation of the
solution for radial acoustic modes can be found in Samadi & Goupil (2001, SG herefater) or
in Chaplin et al. (2005, CHE hereafter). It can be written as
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where wy is the mode frequency, P is the mode excitation rate (the rate at which energy is
supplied to the mode), 1 the mode damping rate (which can be derived from seismic data),
| the mode inertia, and finally C,% and Cg the contribution of the Reynolds stress and the
entropy fluctuations, respectively. The expressions for C‘,% and Cg are
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where as = (0Pg/0s)p, Pg is the gas pressure, s the entropy, po the mean density, G and
‘H are two anisotropic factors (see their expression in SG), Sg and Ss are the “source terms”
associated with the Reynolds stresses and entropy fluctuations respectively, £, the adiabatic
mode radial eigen-displacement, and finally g-(&r, r) a function that involves the first and
second derivatives of &, (see its expression in SG).

The source functions, Sg and Sg, involve the dynamic properties of the turbulent medium.
The expression for Sg is (see SG and Samadi et al. (2005)):
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where k is the wavenumber, E(k) the time averaged kinetic energy spectrum, xx(w) is the
frequency component of E(k, w) (the kinetic energy spectrum as a function of k and w). A
similar expression is derived for Ss (see SG). Note that the function x4(w) can be viewed
as a measure in the Fourier domain of the time-correlation between eddies. This function is
generally referred as 'eddy time-correlation’ function.

The derivation of Egs. (1)-(4) is based on several assumptions and approximations. Among
them, the main ones are:

e quasi-Normal approximation (QNA): the fourth-order moments involving the turbulent
velocity are decomposed in terms of second-order ones assuming the QNA, i.e. assuming
that turbulent quantities are distributed according to a Normal distribution with zero
mean. However, as shown recently by Belkacem et al. (2006a), the presence of plumes
causes a severe departure from this approximation. Belkacem et al. (2006a) have
proposed an improved closure model that takes the asymmetry between plumes and
granules as well as the turbulence inside the plumes into account. As shown by Belkacem
et al. (2006b), this improved closure model reduces the discrepancy between theoretical
calculations and the helioseismic constraints.

e jsotropic, homogeneous, incompressible turbulence: the turbulent medium is assumed
to be isotropic, homogeneous, and incompressible at the length scale associated with
the contributing eddies. This assumption is justified for low turbulent Mach number, M;
(see SG). However, when the anisotropy is small, it is possible to apply a correction that
takes the departure from isotropy into account. Such corrections have been proposed
by SG and CHE in two different ways. However, in both formalisms, the exact domain
over which these corrections are valid is unknown and remains to be specified.

e radial formalism: radial modes are usually considered. However, generalizations to non-
radial modes have been proposed by Dolginov & Muslimov (1984), GMK and Belkacem
et al. (2008).

e passive scalar assumption: as pointed out above the entropy fluctuations are supposed
to behave as a passive scalar (see the discussion).

e length-scale separation: eddies contributing to the driving are supposed to have a char-
acteristic length scale smaller than the mode wavelength. This assumption is justified
for low M; (see SG and the discussion).

Eddy time-correlation

Most of the theoretical formulations explicitly or implicitly assume a Gaussian function for
Xk(w) (GK; Dolginov & Muslimov, 1984; GMK; Balmforth, 1992; CHE). However, hydrody-
namical 3D simulations of the outer layers of the Sun show that, at the length associated
with the energy bearing eddies, xj is rather Lorentzian (Samadi et al., 2003). As pointed
out by CHE, a Lorentzian x is also a result predicted for the largest, most-energetic eddies
by the time-dependent mixing-length formulation of convection by Gough (1977). Therefore,
there are some numerical and theoretical evidences that xy is rather Lorentzian at the length
scale of the energy bearing eddies.

The excitation of the low-frequency modes (v < 3 mHz) is mainly due to the large
scales. However, the higher the frequency the more important the contribution of the small
scales. Solar 3D simulations show that, at small scales, x is neither Lorentzian nor Gaussian
(Georgobiani et al., 2006). Then, according to Georgobiani et al. (2006), it is impossible
to separate the spatial component E(k) from the temporal component at all scales with
the same simple analytical functions. However, such results are obtained using Large Eddy
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Figure 1: Solar p-mode excitation rates, P, as a function of v = w/2m. The dots correspond to seismic
data from SOHO/Golf (filled circles) and from the BiSON network (diamonds). The thick lines correspond

to semi-theoretical calculations based on different choices for x,: Lorentzian xx (solid line), XiD ie. Xk
directly derived from the solar 3D simulation (dashed line), and a Gaussian x (dot-dashed line).

Simulation (LES). The way the small scales are treated in LES can affect our description of
turbulence. Indeed, He et al. (2002) have shown that LES results in a xx(w) that decreases
at all resolved scales too rapidly with w with respect to direct numerical simulations (DNS).
Moreover, Jacoutot et al. (2008a) found that computed mode excitation rates significantly
depend on the adopted sub-grid model. Furthermore, at a given length scale, Samadi et al.
(2007) have shown that x tends toward a Gaussian when the spatial resolution is decreased.
As a conclusion the numerical resolution or the sub-grid model can substantially affect our
description of the small scales.

As shown by Samadi et al. (2003), calculation of the mode excitation rates based on
a Gaussian xx results for the Sun in a significant under-estimation of the maximum of P
whereas a better agreement with the observations is found when a Lorentzian X is used
(see Fig. 1). A similar conclusion is reached by Samadi et al. (2008a) in the case of the star
a Cen A.

Up to now, only analytical functions were assumed for xx(w). We have here implemented,
for the calculation of P, the eddy time-correlation function derived directly from long time
series of 3D simulation realizations with an intermediate horizontal resolution (=~ 50 km).
As shown in Fig. 1, the mode excitation rates, P, obtained from XiD’ are found comparable
to that obtained assuming a Lorentzian one, except at high frequency. This is obviously the
direct consequence of the fact that a Lorentzian x reproduces rather well Xsz except at high
frequency where xiD decreases more rapidly than the Lorentzian function. At high frequency,
calculations based on a Lorentzian x result in larger P and reproduce better the helioseismic
constraints than those based on xiD. This indicates perhaps that xiD decreases too rapidly
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with frequency than it should do. This is consistent with He et al. (2002)’s results who found
that LES predicts a too rapid decrease with w compared to the DNS (see above).

CHE also found that the use of a Gaussian y severely under-estimates the observed solar
mode excitation rates. However, in contrast with Samadi et al. (2003), they mention that a
Lorentzian x results in an over-estimation for the low-frequency modes. They explain this by
the fact that, at a given frequency, a Lorentzian x decreases too slowly with depth compared
to a Gaussian xj. Consequently, for the low-frequency modes, a substantial fraction of the
integrand of Eq. (2) arises from large eddies situated deep in the Sun. This might suggests
that, in the deep layers, the eddies that contribute efficiently have rather a Gaussian xj (see
the discussion below).

Impact of the surface metal abundance

We have computed two 3D hydrodynamical simulations representative — in effective tem-
perature and gravity — of the surface layers of HD 49933, a star which is rather metal poor
compared to the Sun. One 3D simulation (hereafter labeled as S0) has a solar metal abun-
dance and one other (hereafter labeled as S1) has a surface iron-to-hydrogen abundance,
[Fe/H], ten times smaller. For each 3D simulation we match in the manner of Samadi et al.
(2008a) an associated global 1D model and we compute the associated acoustic modes.

The rates P at which energy is supplied into the acoustic modes associated with S1 are
found about three times smaller than those associated with SO. This difference is related
to the fact that a low surface metallicity implies surface layers with a higher mean surface
density. In turn, higher mean surface density implies smaller convective velocity and hence a
less efficient driving of the acoustic modes (for details see Samadi et al., 2008b). This result
illustrates the importance of taking the metallicity of the star into account when computing P.
This conclusion is qualitatively consistent with that by Houdek et al. (1999) who — on the
basis of a mixing-length approach — also found that the mode amplitudes decrease with
decreasing metal abundance.

Discussion and perspectives

The way mode excitation by turbulent convection is modeled is still very simplified. Some
approximations must be improved, some assumptions or hypothesis must be avoided:

e length-scale separation: This approximation is less valid in the super-adiabatic region
where the turbulent Mach number is no longer small (for the Sun M; is up to 0.3).
This spatial separation can however be avoided if the kinetic energy spectrum associated
with the turbulent elements (E(k)) is properly coupled with the spatial dependence of
the modes

e eddy time-correlation function, x: Current models assume that x varies with w in
the same way at any length scales and in any parts of the convective zone (CZ). At
the length scale of the energy bearing eddy and in the uppermost part of the CZ, there
are some strong evidences that xj is Lorentzian rather than Gaussian. However, as
discussed here, it is not yet clear what is the correct description for x, at the small
scales and also deep in the CZ. Use of more realistic 3D simulations would be very
helpful to depict the correct dynamical behavior of the small scales as well as in the
deep CZ.

e passive scalar assumption: This is a strong hypothesis that probably is no longer valid
in the super-adiabatic part of the convective zone where the driving by the entropy is
important. Indeed, the super-adiabatic layer is the seat of important radiative losses
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by the eddies. Assuming that the entropy behaves as a passive scalar is not correct.
To avoid this assumption, one needs to include eddy radiative losses in the model of
stochastic excitation.

Finally, we stress that some solar-like pulsators are young stars that show a strong activity
(e.g. HD 49933) which is often linked to the presence of strong magnetic fields. A strong
magnetic field can inhibit convection (see e.g. Proctor & Weiss, 1982; Vogler et al., 2005).
Furthermore, using 3D solar simulations, Jacoutot et al. (2008b) have studied the influence of
magnetic fields of various strength on the convective cells and on the excitation mechanism.
They found that a strong magnetic field results in turbulent motions of smaller scales and
higher frequencies than in the absence of magnetic field, and consequently in a less efficient
mode driving. Further theoretical developments are required to take the effects of a magnetic
field into account in the theoretical calculation of the mode excitation rates.

Acknowledgments. RS is grateful to the SOC for the invitation to this workshop and ac-
knowledges HELAS for the financial support.
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DISCUSSION

Houdek: The scaling law (L/M)® in Houdek et al.(1999) refers to amplitudes at the photosphere. At
the height of h = 200 km, we obtained the (L/M)*! law.

Bruntt: You find that low metallicity implies low pulsation amplitudes for solar-like oscillations. Have you
tried to include metallicity as a parameter in your scaling relation of amplitudes?

Samadi: The scaling law (L/M)°7 proposed in Samadi et al. (2007) was indeed derived using stellar 3D
simulations with solar metal abundances. Part of the remaining discrepancies between the scaling law
(L/M)°7 and the observations may be explained by the fact that some stars have a metal abundance
significantly different to that of the Sun. This is particularly so for HD 49933.

Noels: You talked about “solar” abundances. What abundances and metallicity are you refering to?

Samadi: We have considered both the “old” and the “new” solar abundances. At fixed [Fe/H], the “new”
solar abundances result in a lower total metal abundance than the “old” ones and hence in lower P. In
the case of HD 49933, mode excitation rates, 77, computed by assuming the “new” solar abundances are
found ~ 30 % smaller than those computed assuming the “old” solar abundances (see Samadi et al.,
2008b).

Noels: Could we have some solar-like oscillations in stars as massive as 3 Cepheid stars if a convection
zone appears near the surface due to an accumulation of iron ?

Samadi: As far as we have a surface convective envelope, it is potentially possible to excite p modes.
However, the excitation is efficient when the characteristic eddy turn-over time is of the same order than
the period of the p modes confined near the surface.

Glinter Houdek enjoying the boat ride
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Abstract

A review on the current state of mode physics in classical pulsators is presented. Two,
currently in use, time-dependent convection models are compared and their applications on
mode stability are discussed with particular emphasis on the location of the Delta Scuti
instability strip.

Introduction

Stars with relatively low surface temperatures show distinctive envelope convection zones
which affect mode stability. Among the first problems of this nature was the modelling of the
red edge of the classical instability strip (IS) in the Hertzsprung-Russell (H-R) diagram. The
first pulsation calculations of classical pulsators without any pulsation-convection modelling
predicted red edges which were much too cool and which were at best only neutrally stable.
What follows were several attempts to bring the theoretically predicted location of the red edge
in better agreement with the observed location by using time-dependent convection models
in the pulsation analyses (Dupree 1977; Baker & Gough 1979; Gonzi 1982; Stellingwerf
1984). More recently several authors, e.g. Bono et al. (1995, 1999), Houdek (1997, 2000),
Xiong & Deng (2001, 2007), Dupret et al. (2005) were successful to model the red edge of the
classical IS. These authors report, however, that different physical mechanisms are responsible
for the return to stability. For example, Bono et al. (1995) and Dupret et al. (2005) report
that it is mainly the convective heat flux, Xiong & Deng (2001) the turbulent viscosity, and
Baker & Gough (1979) and Houdek (2000) predominantly the momentum flux (turbulent
pressure pt) that stabilizes the pulsation modes at the red edge.

Time-dependent convection models

The authors mentioned in the previous section used different implementations for modelling
the interaction of the turbulent velocity field with the pulsation. In the past various time-
dependent convection models were proposed, for example, by Schatzman (1956), Gough

4

Figure 1: Sketch of an overturning hexagonal (dashed lines)
convective cell. Near the centre the gas raises from the hot
bottom to the cooler top (surface) where it moves nearly
horizontally towards the edges, thereby loosing heat. The
cooled gas then descends along the edges to close the circular
flow. Arrows indicate the direction of the flow pattern.
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Table 1: Summary of time-dependent convection model differences.

Balance between buoyancy & Kinetic theory of accelerating

turbulent drag (Unno 1967, 1977) eddies (Gough 1965, 1977a)

- acceleration terms of convective - acceleration terms included: w,
fluctuations w, T’ neglected T’ evolve with growth rate o

- nonlinear terms approximated - nonlinear terms are neglected
by spatial gradients o< 1/¢ during eddy growth

- characteristic eddy lifetime: - 7 = 2/0 determined stochas-
T~ {/2w tically from parametrized shear

instability

- variation ¢; = 6¢/¢ (Unno 1967): - variation of mixing length
wr<1l: {1 ~H according to rapid distortion
wr>1: li~n theory (Townsend 1976), i.e.
or (Unno 1977): variation also of eddy shape

01 ~ (1 +iw?r?)"Y(Hy — iwTp1/3)
(H is pressure scale height)

- turbulent pressure p: neglected - pt = pww included in mean
in hydrostatic support equation equ. for hydrostatic support

(1965, 1977a), Unno (1967, 1977), Xiong (1977, 1989), Stellingwerf (1982), KuhfuB (1986),
Canuto (1992), Gabriel (1996), Grigahceéne et al. (2005). Here | shall briefly review and
compare the basic concepts of two, currently in use, convection models. The first model
is that by Gough (1977a,b), which has been used, for example, by Baker & Gough (1979),
Balmforth (1992) and by Houdek (2000). The second model is that by Unno (1967, 1977),
upon which the generalized models by Gabriel (1996) and Grigahcene et al. (2005) are based,
with applications by Dupret et al. (2005).

Nearly all of the time-dependent convection models assume the Boussinesq approximation
to the equations of motion. The Boussinesq approximation relies on the fact that the height of
the fluid layer is small compared with the density scale height. It is based on a careful scaling
argument and an expansion in small parameters (Spiegel & Veronis 1960; Gough 1969). The
fluctuating convection equations for an inviscid Boussinesq fluid in a static plane-parallel
atmosphere are

Oruj + (uj-aju,- — uj'aju,') = —ﬁ_la;pl + gaT/ 6i3, (1)
Ot T + (uiaj T — uj'aj T’) = fBw-— (ﬁ?p)_laiFi/ ) (2)

supplemented by the continuity equation for an incompressible gas, 9;u;=0, where u=(u, v, w)
is the turbulent velocity field, p is density, p is gas pressure, g is the acceleration due to grav-
ity, T is temperature, ¢ is the specific heat at constant pressure, @ = —(9Inp/0InT),/ T,
Fi is the radiative heat flux, (3 is the superadiabatic temperature gradient and §;; is the
Kronecker delta. Primes (/) indicate Eulerian fluctuations and overbars horizontal averages.
These are the starting equations for the two physical pictures describing the motion of an
overturning convective eddy, illustrated in Fig. 1.

In the first physical picture, adopted by Unno (1967), the turbulent element, with a
characteristic vertical length ¢, evolves out of some chaotic state and achieves steady motion
very quickly. The fluid element maintains exact balance between buoyancy force and turbulent
drag by continuous exchange of momentum with other elements and its surroundings. Thus
the acceleration terms O:u; and 8; T’ are neglected and the nonlinear advection terms provide
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Figure 2: Mode stability of an 1.7 Mg Delta Scuti star computed with Gough's (1977a,b) convection
model. Left: Stability coefficient n = wi/w, as a function of surface temperature T across the IS.
Results are shown for the fundamental radial mode (n = 1) and for two values of the mixing-length
parameter «. Positive 1 values indicate mode instability. Right: Integrated work integral W as a function
of the depth co-ordinate log(T) for a model lying just outside the cool edge of the IS (T = 6813 K).
Results are plotted in units of 17 and for a = 2.0. Contributions to W (solid curve) arising from the gas
pressure perturbation, W, (dashed curve), and the turbulent pressure fluctuations, W; (dot-dashed curve),
are indicated (W = W+ W;). The dotted curve is the ratio of the convective to the total heat flux F./F.
lonization zones of H and He (5% to 95% ionization) are indicated (from Houdek 2000).

dissipation (of kinetic energy) that balances the driving terms. The nonlinear advection terms
are approximated by u;6;u; — u;Oju; ~ 2w? /¢ and u;j0; T' — u;0; T’ ~ 2wT’ /L. This leads
to two nonlinear equations which need to be solved numerically together with the mean
equations of the stellar structure.

The second physical picture, which was generalized by Gough (1965, 1977a,b) to the time-
dependent case, interprets the turbulent flow by indirect analogy with kinetic gas theory. The
motion is not steady and one imagines the convective element to accelerate from rest followed
by an instantaneous breakup after the element’s lifetime. Thus the nonlinear advection terms
are neglected in the convective fluctuation equations (1)-(2) but are taken to be responsible
for the creation and destruction of the convective eddies (Gough 1977a,b). By retaining only
the acceleration terms the equations become linear with analytical solutions w o< exp(ot)
and T’ oc exp(ot) subject to proper periodic spatial boundary conditions, where t is time and
R(o) is the linear convective growth rate. The mixing length £ enters in the calculation of the
eddy’s survival probability, which is proportional to the eddy's internal shear (rms vorticity),
for determining the convective heat and momentum fluxes. Although the two physical pictures
give the same result in a static envelope, the results for the fluctuating turbulent fluxes in a
pulsating star are very different (Gough 1977a). The main differences between Unno's and
Gough'’s convection model are summarized in Table 1.

Application on mode stability in § Scuti stars

Fig. 2 displays the mode stability of an evolving 1.7 Mg Delta Scuti star crossing the
IS. The results were computed with the time-dependent, nonlocal convection model by
Gough (1977a,b). As demonstrated in the right panel of Fig. 2, the dominating damping
term to the work integral W for a star located near the red edge is the contribution from the
turbulent pressure fluctuations W;.

Gabriel (1996) and more recently Grigahcéne et al. (2005) generalized Unno's time-
dependent convection model for stability computations of nonradial oscillation modes. They
included in their mean thermal energy equation the viscous dissipation of turbulent ki-
netic energy, €, as an additional heat source. The dissipation of turbulent kinetic energy
is introduced in the conservation equation for the turbulent kinetic energy K := uju;/2
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Figure 3: Stability computations of Delta Scuti stars which include the viscous dissipation rate € of turbulent
kinetic energy according to Grigahcéne et al. (2005). Left: Blue and red edges of the IS superposed on
evolutionary tracks on the theorists H-R diagram. The locations of the edges, labelled p,g and p.r, are
indicated for radial modes with orders 1 < n < 7. Results by Houdek (2000, o = 2.0, see Fig. 2) and
Xiong & Deng (2001) for the gravest p modes are plotted as the filled and open circles respectively. Right:
Integrated work integral W as a function of the depth co-ordinate log(T) for a stable n = 3 radial mode
of a 1.8 M, star (see ‘star’ symbol in the left panel). Contributions to W arising from the radiative flux,
WkR, the convective flux, W, the turbulent pressure fluctuations, W, (Wr + We + W), and from the
perturbation of the turbulent kinetic energy dissipation, W (Wg + W, + W,), are indicated (adapted from
Dupret et al. 2005).

(e.g. Tennekes & Lumley 1972, §3.4; Canuto 1992; Houdek & Gough 1999):
D¢K + 8;(Ku; + 5 1p'uj) — vd?K = — w0 Uy + gy, T' — ¢, (3)

where D is the material derivative, U; is the average (oscillation) velocity, i.e. the total
velocity d; = U; + u;, and v is the constant kinematic viscosity (in the limit of high Reynolds
numbers the molecular transport term can be neglected). The first and second term on the
right of Eq. (3) are the shear and buoyant productions of turbulent kinetic energy, whereas the
last term e = v(d;u; + O;ju;)? /2 is the viscous dissipation of turbulent kinetic energy into heat.
This term is also present in the mean thermal energy equation, but with opposite sign. The
linearized perturbed mean thermal energy equation for a star pulsating radially with complex
angular frequency w = wy + iw; can then be written, in the absence of nuclear reactions, as
(‘6" denotes a Lagrangian fluctuation and | omit overbars in the mean quantities):

doL/dm = —iwep T(6T /T — Va4dp/p) + e, (4)

where m is the radial mass co-ordinate, V,q4 = (0InT/dInp)s and L is the total (radia-
tive and convective) luminosity. Grigahcéne et al. (2005) evaluated e from a turbulent
kinetic energy equation which was derived without the assumption of the Boussinesq ap-
proximation. Furthermore it is not obvious whether the dominant buoyancy production
term, gau; T’ (see Eq. 3), was included in their turbulent kinetic energy equation and so
in their expression for €.

Dupret et al. (2005) applied the convection model of Grigahcéne et al. (2005) to
Delta Scuti and « Doradus stars and reported well defined red edges. The results of their stabil-
ity analysis for Delta Scuti stars are depicted in Fig. 3. The left panel compares the location of
the red edge with results reported by Houdek (2000, see also Fig. 2) and Xiong & Deng (2001).
The right panel of Fig. 3 displays the individual contributions to the accumulated work in-
tegral W for a star located near the red edge of the n = 3 mode (indicated by the ‘star’
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Figure 4: Accumulated work integral W as a function of the depth co-ordinate log(p). Results are shown
for the n = 1 radial mode of a Delta Scuti star located inside the IS (left panel) and outside the red edge
of the IS (right panel). The stability calculations include viscous dissipation by the small-scale turbulence
(Xiong 1989; see Eq. 6). Contributions to W (solid curve) arising from the fluctuating gas pressure, W,
(dashed curve), the turbulent pressure perturbations, W; (long-dashed curve), and from the turbulent
viscosity, W, (dotted curve), are indicated (W = Wz + W; + W,,). The ionization zones of H and He are
marked (adapted from Xiong & Deng 2007).

symbol in the left panel). It demonstrates the near cancellation effect between the contribu-
tions of the turbulent kinetic energy dissipation , We, and turbulent pressure, W;, making the
contribution from the fluctuating convective heat flux, W, the dominating damping term.
The near cancellation effect between W, and W; was demonstrated first by Ledoux & Wal-
raven (1958, §65) (see also Gabriel 1996) by writing the sum of both work integrals as:

M
We + W, = 37r/2/ (5/3 — 13)3(3p7 5p)p2 dm, (5)

my

where M is the stellar mass, my is the enclosed mass at the bottom of the envelope and
v3 = 14(0In T/Inp)s (s is specific entropy) is the third adiabatic exponent. Except in
jonization zones 3 ~ 5/3 and consequently W, + W; ~ 0.

The convection model by Xiong (1977, 1989) uses transport equations for the second-
order moments of the convective fluctuations. In the transport equation for the turbulent
kinetic energy Xiong adopts the approximation by Hinze (1975) for the turbulent dissipation
rate, i.e. € = 2xk(Timip?/3p2)3/2, where x = 0.45 is the Heisenberg eddy coupling coefficient
and k o £~ ! is the wavenumber of the energy-containing eddies. However, Xiong does not
provide a work integral for ¢ (neither does Unno et al. 1989, §26,30) but includes the viscous
damping effect of the small-scale turbulence in his model. The convection models consid-
ered here describe only the largest, most energy-containing eddies and ignore the dynamics
of the small-scale eddies lying further down the turbulent cascade. Small-scale turbulence
does, however, contribute directly to the turbulent fluxes and, under the assumption that
they evolve isotropically, they generate an effective viscosity v+ which is felt by a particular
pulsation mode as an additional damping effect. The turbulent viscosity can be estimated
as (e.g. Gough 1977b; Unnoetal.1989, §20) v ~ )\(W)l/zﬂ, where ) is a parameter of
order unity. The associated work integral W, can be written in Cartesian co-ordinates as
(Ledoux & Walraven 1958, §63)
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M
W, = —2r wr/ " [e,-je,-j _Yv.e2| dm, (6)
mp 3
where e; = (9;&; + 9;§;)/2 and £ is the displacement eigenfunction. Xiong & Deng (2001,
2007) modelled successfully the IS of Delta Scuti and red giant stars and found the dominating
damping effect to be the turbulent viscosity (Eq. 6). This is illustrated in Fig. 4 for two
Delta Scuti stars: one is located inside the IS (left panel), the other outside the cool edge of
the IS (right panel). The contribution from the small-scale turbulence was also the dominant
damping effect in the stability calculations by Xiong et al. (2000) of radial p modes in the
Sun, although the authors still found unstable modes with orders between 11 < n < 23. The
importance of the turbulent damping was reported first by Goldreich & Keeley (1977) and
later by Goldreich & Kumar (1991), who found all solar modes to be stable only if turbulent
damping was included in their stability computations. In contrast, Balmforth (1992), who
adopted the convection model of Gough (1977a,b), found all solar p modes to be stable due
mainly to the damping of the turbulent pressure perturbations, W, and reported that viscous
damping, W, is about one order of magnitude smaller than the contribution of W4. Turbulent
viscosity (Eq. 6) leads always to mode damping, where as the perturbation of the turbulent
kinetic energy dissipation, de (see Eq. 4), can contribute to both damping and driving of the
pulsations (Gabriel 1996). The driving effect of de¢ was shown by Dupret et al. (2005) for a
~ Doradus star.

Summary

We discussed three different mode stability calculations of Delta Scuti stars which success-
fully reproduced the red edge of the IS. Each of these computations adopted a different
time-dependent convection description. The results were discussed by comparing work inte-
grals. All convection descriptions include, although in different ways, the perturbations of
the turbulent fluxes. Gough (1977a), Xiong (1977, 1989), and Unno et al. (1989) did not
include the contribution W to the work integral because in the Boussinesq approximation
(Spiegel & Veronis 1960) the viscous dissipation is neglected in the thermal energy equation.
In practise, however, this term may be important. Grigahcéne et al. (2005) included W,
but ignored the damping contribution of the small-scale turbulence W,,, which was found by
Xiong & Deng (2001, 2007) to be the dominating damping term. The small-scale damping
effect was also ignored in the calculations by Houdek (2000). A more detailed comparison
of the convection descriptions has not yet been made but Houdek & Dupret have begun to
address this problem.
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Council is acknowledged.
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DISCUSSION

Christensen-Dalsgaard: How does the mixing length affect the red edge of the v Dor instability strip?

Houdek: The location of the red edge is predominantly determined by radiative damping which gradually
dominates over the driving effect of the so-called convective flux blocking mechanism (Dupret et al. 2005).
A change in the mixing length will not only affect the depth of the envelope convection zone but also
the characteristic time scale of the convection and consequently the stability of g modes with different
pulsation periods. A calibration of the mixing length to match the observed location of the v Dor
instability strip will also calibrate the depth of the convection zone at a given surface temperature.
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Abstract

Wave propagation, excitation and associated transport are modified by the Coriolis and the
centrifugal accelerations in rotating stars. In this work, we focus on the influence of the
Coriolis acceleration on the volumetric stochastic excitation in convection zones of rotating
stars. First, we present the complete formalism which has been derived and discuss the
different terms which appear due to the Coriolis acceleration. Then, we use this formalism to
compute the solar mode excitation rates and emphasize the peculiar behavior due to rotation.
Consequences on wave transport in rotating stars are eventually discussed.

Introduction

The motivation of this work is to investigate the effect of uniform rotation on the stochas-
tically excited mode amplitudes. Several issues can be addressed; is the amplitude of a
non-axisymmetric mode (m # 0) the same as for an axisymmetric one (m = 0)? Are pro-
grade and retrograde modes excited in the same manner and what are the consequences?
This can have some important consequences from both an observational point of view as well
as a theoretical one.

As a first step, we neglect the centrifugal acceleration that induces a deformation of the
star. We then focus our attention on the effect of the Coriolis acceleration. We also restrict
the study to uniform rotation. In the first section, we present a formalism of stochastic
excitation developed for a rotating star, and we apply it to the solar case by performing
a perturbative development. Some consequences on the angular momentum transport by
modes are briefly discussed in a third section. Conclusion and perspectives are provided in
the last section.

Physical assumptions and formalism

Following Samadi & Goupil (2001) and Belkacem et al. (2008), we establish the inhomoge-
neous wave equation

<8t2 - ZQ) Tose + C (Tose, Tt) = St (@) .1 1)

. . . _— n .
THere the following notation for partial derivatives % = Oynf is adopted.
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Uosc IS the velocity field of the waves and i is the turbulent one associated to the convective
eddies. The 5(17056, dt) vector field, which is not detailed here, is related to the wave-
turbulence interaction that corresponds to the dynamical damping, 7. ZQ is the operator that
rules the wave dynamics in the case of the star free oscillations

EQ (17osc) = 6 [asﬁosc . 650 + C526 . (poﬁosc)] - g:eff6 . (9017056)
— 020k, Tose — 2 oS3 X Bt Tiose — por sin O <8t1705c : 69) 3. )

P, 8eff and  are respectively the fluid density, effective gravity acceleration (including the
centrifugal one) and angular velocity. ¢s is the sound speed while as = (ap/as)p, where
p is the pressure and s the macroscopic entropy. Xp and Xi (where X = {p, p,s} ) are
respectively the hydrostatic value of X and its wave-associated fluctuation. Finally, (r, 0, ¢)
are the classical spherical coordinates.

The source terms that drive the eigenmodes are

S, (@) = Ssg — O [m (Qawat +28 x Ge + rsind (at : 69) a,)] . 3)

The term §$G contains the source terms as derived by Samadi & Goupil (2001) and
Belkacem et al. (2008), in which the dominant ones are the Reynolds and entropy contri-
butions. The three last terms are those induced by rotation and can be re-expressed such
as

e (2 16 x ﬁt) =28 x 9 (prie) = —28 x [6 - (poidt) Et] (4)
B (90, ) = [V - (poiie) 0] (5)
O [plr sin @ (L_it . 69)] = —rsinf [ﬁ - (podt) Et] v/} (6)

where Q is supposed uniform and steady on a dynamical time scale. These last three terms
scale as M3 (M, is the turbulent Mach number), while Samadi & Goupil (2001) have shown
the Reynolds contribution scales as M2. Thus the above rotational contribution can be
ignored in front of the Reynolds one. Moreover, in the case where the turbulent convective
motions are assumed to be anelastic (V - (po@i:) = 0), they can be neglected. Therefore, the
only source terms we must retain are the Reynolds and the entropy ones.

Following the procedure detailed by Samadi & Goupil (2001) and Belkacem et al. (2008),
the power supplied into the modes (P) is derived

P=(Ch+Ci+C2)/(8) (@)

where C,%, Cg, and CC2 are respectively the contributions of the Reynolds stresses, of the
entropy fluctuation advection, and the crossed terms. The crossed terms are ignored in front
of C,% and Cg (see Belkacem et al. 2008 for details). In addition, as shown above the source
terms related to the rotation have been neglected.

The Reynolds stresses contribution is given by

c3 :47r3/dm R(r) Sr(wo), (8)

where
Sk(eo)= [ 5 20 [ @ xuteo-+ ) sule). ©)
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E(k) and xx(w) are respectively the kinetic energy spectrum and the temporal correlation
function which are also modified through the action of rotation on turbulence. The frequencies
wp and w are associated with pulsation and convection, respectively. Furthermore

R(r) = Rspheroidal + Rioroidal (10)
1 ,|d 2
with Rtoroidal = o L2 ﬁ — Sl
15 dr r
er? (11 1o 8 2 2)
ST (22212 = 2) = S Fy ) — =L 11
+ |5 5 ( ) AL (11)
where  Rgpheroidal IS given by  Eq. (23) of Belkacem et al. (2008),
Fppm = PEE (12 (m2 4 1)], 12 = €€ + 1), and (&,Em, E7) are the radial,

horizontal and toroidal components of the eigenfunction corresponding to a spherical
harmonic (YZ’"). Rspheroidal corresponds to the non-rotating case. It is modified by the
Coriolis acceleration through the modification of & and of £y it induces.

The second source term, the entropy fluctuation contribution is obtained as

A3 H [ dr d(ln|a dD,
i 2/7ﬁ‘w(|sD_e
wy r dinr dinr

2
+ 12 Dz|2> Ss(wo) (12)

with H an anisotropy factor (defined in Samadi & Goupil 2001), D, = %2 % (r2§,) - LTZ En
and

Ss(en) = [ 45 EWER) [ doxaen +0)xulw) (13

Es being the spectrum associated to the entropy turbulent fluctuations. As for Rypheroidal NO
direct changes are due to uniform rotation.

Application to the excitation of solar oscillation modes

In this section, we apply the formalism to spheroidal solar oscillation modes for which 2Q/wg
(where wyq is (hereafter) the mode frequency in the non-rotating case) is such that they are
only slightly perturbed by the Coriolis acceleration. In this case, we get respectively for each
displacement eigenmode component (cf. Unno et al. 1989)

o= am(Z) e and &= ()€ (14)
wo wo

where o = {r, H}, fg)) being the component in the non-rotating case for which 5(7(_)) =0, and

5&1) and gﬂrl) are given by Unno et al (1989).
Using these expansions in Eq. (7), we get

2Q
Pn,l,m = Pl(w?l),m—"_ m (7) P(vl)v

wo

(15)

so that the excitation rate is different for prograde (m < 0) and retrograde (m > 0)? modes
since it depends explicitly on m. To better quantify this bias introduced by the Coriolis
acceleration, we define

OPm/P—_m = (Pm — P_m)/P-m (16)

2The mode phase is expanded as exp [i (mp + wot)].
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Figure 1: Left panel: Bias between prograde and retrograde modes (see Eq.(16)) for £ = 1 modes,
computed with a standard solar model. Right panel: Bias between prograde and retrograde modes as
a function of the mode angular degree (¢) and for a radial order n = 5.

which is plotted in Fig. (1). In this first application, the simplest turbulent spectrum of
Kolmogorov is assumed in evaluating Eqs (9) and (13). For low-frequency g modes that
are excited in the bottom of the convection zone, where 2Q ~ wc (wc being the convective
frequency) the effect of rotation on the convective velocity field has to be taken into account
(work in progress).

First, 0Pm/P—_m scales as 22 /wg. Therefore, in the solar case, we find that acoustic mode
excitation rates are only weakly affected by the Coriolis acceleration while gravity modes are
affected up to 50 % for the most low-frequency modes. On the other hand, for a given m,
O0Pm/P—m increases for decreasing £ (it becomes maximum for / = |m|); in other words the
bias is stronger for low-{ degrees.

Mode-induced transport

Let us now examine the mode-induced transport of angular momentum. The eulerian flux of
angular momentum introduced by the Reynolds stresses, for each azimuthal order m is given
by (see Lee & Saio 1993)

}—AM;m:/ porsineur;mu;;mdﬁ where &= iwpé, (17)
41

dQ = sin 0dOdp being the solid angle. In the non-rotating adiabatic case, we get
Famim + Fam;—m = 0; (18)

therefore, modes do not transport any net flux of angular momentum. In the rotating dissi-
pative case, introducing Eq.(14) into Eq.(17) , we get

}-AM;m + ]:AM;fm =
—2D (n) por »_ w5 (2Q/wo) Im { (42,19 g, + a2, 1 g2} #£0 (19)

n,l

where Z,, denotes the imaginary part, and
1) (0) 0) (1)* 0) m (1 m (1 *
G1 = [m? (55;/)5(&)/ +¢850el) ) + 55;)(‘1/715(7;)/71 - ﬂ/+1§(T;)/+1> ] (20)
Gp = —m? )€y (21)
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. (£+1)2 —m2 _ 02— m?
m=0 1) +3) ™ Bem=U+ D\ i D@i— 1 (22)

D corresponds to the phase shift between urm and uym due to dissipative processes
(e.g., the thermal diffusion or the viscous friction) that causes a net transport of angular
momentum (Goldreich & Nicholson 1989). Here, we assume that the damping is quasi-
independent of m since wp > m< for the considered modes. Then, the amplitude is devel-
oped as for the power, i.e.

with

0 2Q 1
B = 1)@ 4 m (23] 140 @
PO 20\ PO "
N 277le tm (70) 277/0.)% ' (24)

Therefore, the Coriolis acceleration introduces extra biases between prograde and retro-
grade waves through the modifications of the eigenfunctions (G1) and of the excitation rate

([A7 ).

Conclusion

In this work, we derive the formalism that allows to treat the stochastic excitation of modes
by convective regions in presence of rotation. Then, we applied it, as a first application, to
the solar spheroidal oscillations. We show that a bias between pro- and retrograde waves is
introduced in the excitation by the Coriolis acceleration. It can be relatively important for
low-frequency g-modes while it is quite negligible for acoustic ones. We showed that the
azimuthal asymmetries both in eigenfunctions and their excitation rates introduce an extra
contribution. The associated mode-induced transport of angular momentum remains to be
quantified as in Talon & Charbonnel (2005).

Future works must apply the formalism to the case of rapid rotators for both inertial and
gravito-inertial modes (Dintrans & Rieutord 2000, Rieutord et al. 2001) and include the effect
of differential rotation.
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DISCUSSION

Guzik: Do you see the asymmetry in excitation introduced by the Coriolis acceleration in any stellar
g-mode data? Where should we look for it?

Mathis: | have not seen it yet in any data, but we have to look at this to eventually get an additional
observational constraint on gravity mode behaviour.
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Abstract

The longstanding problem of modeling double-mode behaviour of classical pulsators was
solved with the incorporation of turbulent convection into pulsation hydrocodes. However,
the reasons for the computed double-mode behaviour were never clearly identified. In our
recent papers (Smolec & Moskalik 2008a,b) we showed that the double-mode behaviour
results from the neglect of negative buoyancy effects in some of the hydrocodes. If these
effects are taken into account, no stable nonresonant double-mode behaviour can be found.
In these proceedings, we focus our attention on the role of negative buoyancy effects in
classical Cepheid models.

Introduction

Since the early days of nonlinear pulsation computations, modeling double-mode (DM) phe-
nomenon was one of the major objectives. However, the search for nonresonant double-mode
behaviour with radiative hydrocodes failed (see however , Kovdcs & Buchler 1993). The
typical modal selection observed was first overtone (10) pulsation at the hot side of the
instability strip (IS), fundamental mode (F) pulsation at the red side, and either-or domain
(F/10) in between. The incorporation of turbulent convection into pulsation hydrocodes led
to stable and robust double-mode pulsation (Kollath et al. 1998, Feuchtinger 1998). Most of
the double-mode models published so far were computed with the use of the Florida-Budapest
hydrocode (e.g. Kolldth et al. 2002). This hydrocode adopts a time-dependent convection
model based on the KuhfuB (1986) work. Although the KuhfuB model was also adopted
in our pulsation hydrocodes (Smolec & Moskalik 2008a), we could not find a double-mode
behaviour, despite our extensive search for it (Smolec & Moskalik 2008b). We linked the
difference in the computed modal selection to a different treatment of negative buoyancy
effects in both codes. In the Florida-Budapest code, negative buoyancy is neglected, while
it is present in our hydrocodes. The comparison of both treatments (performed with our
hydrocodes) allows us to understand the reasons for double-mode behaviour computed with
hydrocodes that neglect negative buoyancy.

Turbulent convection model

In the KuhfuB model of turbulent convection, equations of motion and energy conservation
are supplemented with an additional, single equation for generation of turbulent energy, e:.
Details of the model can be found e.g. in Smolec & Moskalik (2008a). Here we focus our
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attention on the turbulent energy equation and its crucial terms (turbulent pressure and flux
of turbulent kinetic energy neglected):

det

—=S-D+E.V. 1

" 1)
In the above equation, S is the turbulent source function (or driving function), responsible for
the driving of turbulent eddies through the buoyant forces. The source function is proportional

1/2

to the superadiabatic gradient, Y = V—V,, and to the speed of convective elements, ~ e,
The D-term models the decay of turbulent eddies, through the turbulent cascade, D ~ e§/2.
E.V. describes energy transfer through eddy-viscous forces. It describes the interplay between
turbulent motion and mean gas motion, being proportional to the speed of convective elements
and to the spatial derivative of the scaled mean velocity field, U/R. It always damps the
pulsations and contributes to the driving of turbulent energy!.

The crucial difference between our and the Florida-Budapest formulation is the treatment
of the turbulent source function in convectively stable (Y < 0) regions of the model. In our
hydrocode, we allow for negative values of the source function, just as in the original KuhfuB
model (S ~ Y). In the Florida-Budapest approach, the source term is restricted to positive
values only (S ~ Y.), which is equivalent to the neglect of negative buoyancy. Following the
convention introduced in Smolec & Moskalik (2008a), we will denote the convective recipe
and models ignoring negative buoyancy as PP models (Florida-Budapest approach), while
convective recipe and models including negative buoyancy will be denoted by NN (our default
formulation).

Consequences of neglecting negative buoyancy

Using our pulsation hydrocodes, we have performed a detailed comparison of models, differing
only in the treatment of the source function (NN vs. PP models). Crucial differences are
observed for single-mode limit cycle (full amplitude, monoperiodic oscillation) models. The
amplitude of the models neglecting negative buoyancy (PP) is much lower than the amplitude
of the models including negative buoyancy effects (NN). The lowering of amplitude in case
of the PP models is connected with the eddy-viscous damping of pulsations in the deep
convectively stable regions of the model. This damping is clearly visible in the nonlinear work
integrals presented in Fig. 1. For the PP model, a significant eddy-viscous damping below
zone 70 (marked with arrows in the Figure), not present in the NN model, is visible. These
internal zones are convectively stable (Y < 0), however, in the PP model significant turbulent
energies are present in these zones, and hence eddy-viscous damping is possible. How are
these turbulent energies built up? The bottom boundary of the envelope convection zone,
connected with hydrogen-helium ionization, is located roughly at zone 70 for both PP and
NN models. Below this boundary, turbulent motions are effectively braked in the NN model
due to the negative value of turbulent source function (eq. 1). Negative buoyancy slows down
the turbulent motions very effectively and eddy-viscous damping is not possible in the inner
parts of the model, due to negligible turbulent energies. The situation is different in case
of PP models, in which the turbulent source function is set equal to zero in convectively
stable layers. Therefore, in these layers, turbulent energies are set by the balance between
the turbulent dissipation term (D term in eq. 1), which damps the turbulent motions, and
the eddy-viscous term, which drives the turbulent energies. Due to the neglect of negative
buoyancy, turbulent motions cannot be braked effectively. On the contrary, they are driven
at the cost of pulsation, through the eddy-viscous term. Below the envelope convection zone
turbulent energies are as high as 10° — 100 erg/g — only three orders of magnitude smaller

LExact form of this term differ in different pulsation hydrocodes, see Smolec & Moskalik 2008a, however results presented
here are insensitive to these differences.
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Figure 1: Nonlinear work integrals plotted versus the zone number. Surface at right.

than in the center of the convection zone. Such high turbulent energies extend to more than
six local pressure scale heights below the envelope convection zone, leading to significant
eddy-viscous damping, visible in the left panel of Fig. 1. Deeper in the envelope, turbulent
energies slowly decay, reflecting the vanishing amplitude of the pulsations.

To check the effect of neglecting negative buoyancy on modal selection, we have computed
several sequences of nonlinear Cepheid models using both PP and NN convective recipes. De-
tails of mode selection analysis can be found in Smolec & Moskalik (2008b). Each model was
initialized (kicked) with several different initial conditions (mixtures of F and 10 linear velocity
eigenvectors) and time evolution of the fundamental mode and first overtone amplitudes, Ap
and Aj, was followed. Exemplary results are shown in Fig. 2. The computed trajectories are
plotted with solid lines for the PP model and dotted lines for the NN model. Hydrodynamic
computations coupled with amplitude equation analysis allow to find all stable pulsation states
to which trajectories converge (attractors, solid squares in Fig. 2), and all unstable solutions,
that repel the trajectories (open squares in Fig. 2). For single-mode solutions, stability coef-
ficients are computed. These are 71,0, which describes the stability of the fundamental mode
limit cycle with respect to first overtone perturbation (switching rate toward 10) and 701,
which measures the stability of the first overtone limit cycle. The negative value of v means
that the respective limit cycle is stable. If both coefficients, 1,0 and 7,1 are simultaneously
positive, both limit cycles are unstable, and double-mode pulsation is unavoidable. The run
of stability coefficients across the instability strip, for sequence of Cepheid models, computed
with both PP and NN convective recipes, is presented in Fig. 3. The arrow in this Figure
marks the location of the model, for which hydrodynamic integrations are presented in Fig. 2.

The amplitude of the given mode is a main factor affecting its stability. The higher the
amplitude of the mode, the more able it is to saturate the pulsation instability alone, and
hence, the more stable its limit cycle is. For NN models, the amplitude of the fundamental
mode is much higher than the amplitude of the first overtone (see Fig. 2) across a significant
part of the instability strip. Therefore, the stability coefficient of the fundamental mode limit
cycle, 71,0, becomes negative, very close to the blue edge of the IS at temperature ~ 6290K
(Fig. 3). A double-mode state is not possible, as first overtone becomes unstable (yg1 > 0)
for much lower temperature (T ~ 6165K). In a temperature range in which both limit cycles
are stable, either-or domain is observed, in which pulsation in either limit cycle is possible.

In case of PP models, amplitudes of both modes are reduced as compared to NN models,
but not to the same extent. As you can see in Fig. 2, the amplitude of the fundamental mode
is much more reduced than the amplitude of the first overtone. This effect is explained by
a higher amplitude of the fundamental mode (in comparison to 10) in convectively stable
layers of the PP model, in which significant turbulent energies are observed. As a result,
eddy-viscous damping is stronger for the fundamental mode. Differential reduction of mode
amplitudes is crucial in bringing up double-mode behaviour in the PP model sequence. At
the hot side of the IS, the amplitude of the fundamental mode is lower, or comparable to
the amplitude of the first overtone. Hence, the fundamental mode limit cycle is unstable
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Figure 2: Hydrodynamic integrations for a particular Cepheid model. Solid lines - model computed with
PP convection, dotted lines model computed with NN convection.
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Figure 3: The run of stability coefficients along a sequence of Cepheid models of constant mass/luminosity.
Solid lines for the PP models, dashed lines for the NN models.

(y10 > 0) in a wide temperature range. It becomes stable at much lower temperature
(T = 6100K) in comparison to the NN sequence. At this temperature, the first overtone is
already unstable. Consequently, in a relatively wide temperature range (~ 50K in Fig. 3),
both limit cycles are unstable and double-mode state emerges.

Summary
Neglect of negative buoyancy has serious consequences for the computed Cepheid models. It

leads to high turbulent energies in convectively stable layers, and consequently to strong eddy-
viscous damping. This damping acts differentially on pulsation modes, which promotes the
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double-mode behaviour. If buoyant forces are taken into account, as they should be, no stable
nonresonant double-mode behaviour can be found (Smolec & Moskalik 2008b). Therefore,
the problem of modeling F/10 double-mode behaviour in classical Cepheids remains open.
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DISCUSSION

Kovacs: Let me note that purely radiative RR Lyrae models with a proper choice of the artificial viscosity
lead also to sustained double-mode models (see Kovacs & Buchler 1993). Furthermore, the convective
models of Buchler and coworkers (e.g. Kollath, Buchler, Szabé et al. 2002) have been able to reproduce
the bulk properties of the observed double-mode RR Lyrae and § Cephei stars. The former ones were
successfully modeled also by Feuchtinger (1998), who used similar type of convective modeling as Kollath,
Buchler & Szabé.

Smolec: Radiative double-mode models of Kovacs & Buchler were obtained by decreasing artificial
viscosity. These models are sensitive to numerical details and do not reproduce all observational
constraints. Detailed comparison of nonlinear convective double-mode models of Buchler and coworkers
with observations (Fourier decomposition of light curves) was not performed. Using Vienna pulsation
hydrocode Feuchtinger (1998) computed one double-mode RR Lyrae model. This is the only double-mode
model published by the Vienna group. As both Florida-Budapest and Vienna codes are claimed to give
essentially the same results in case of single-mode models (Feuchtinger, Buchler & Kollath 2000), we
suspect that also in the Vienna code negative buoyancy was neglected. However, as we haven't computed
any RR Lyrae models, we cannot make definite statements about double-mode RR Lyrae models.
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