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Abstract 

Mitotic cells in culture show a limited replicative potential and after extended 

subculturing undergo a terminal growth arrest termed cellular senescence. When 

cells reach the senescent phenotype, this is accompanied by a significant change in 

the cellular phenotype and massive changes in gene expression, including the 

upregulation of secreted factors. In human fibroblasts, senescent cells also acquire 

resistance to apoptosis. In contrary, in human endothelial cells, both replicative and 

stress-induced premature senescence is accompanied by increased cell death; 

however mechanisms of cell death are poorly explored. In this communication, we 

addressed the role of endonuclease G (EndoG), a mitochondrial mediator of 

caspase-independent cell death, in senescence-associated cell death of human 

endothelial cells. Using immunofluorescence microscopy, we found, that EndoG is 

localized in the mitochondria in young cells, but relocalizes to the nucleus upon 

senescence. When EndoG gene expression was downregulated by lentiviral shRNA 

vectors, we found a significant reduction in the replicative life span and a 

corresponding increase in cell death. We also observed a slight shift in the cell death 

phenotype from necrosis to apoptosis. Together these observations suggest an 

important role of EndoG in the senescence program of human endothelial cells. 
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1. Introduction 

Human ageing is accompanied by a degeneration of various tissues, which loose part 

of their physiological functions. Tissue degeneration is often accompanied by the loss 

of specialized cell types. In some cases, this is due to an exhaustion of the cell 

division capacity, as is best documented for ageing of the immune system (for 

review, see (Effros, 1996)) and for part of the skin ageing program (for review, see 

(Campisi, 1998)). Programmed cell death (apoptosis) apparently plays an important 

role during ageing of various tissues in vivo (for review, see (Warner et al., 1997)), 

and mice with a genetic defect in stress-related apoptosis display a significantly 

extended lifespan (Migliaccio et al., 1999). Tissue damage caused by age-dependent 

apoptosis has been documented in experimental animals (Adams et al., 1996; 

Nicosia et al., 1995; Usami et al., 1997). It is assumed that apoptosis plays an 

important role in tissue homeostasis, and the failure of cells to exert the apoptotic 

program can also lead to disorders which accumulate during ageing. For example, it 

was suggested that decreased efficiency of apoptosis contributes to the alterations 

characteristic of intrinsic (chronologic ageing) and extrinsic (photoageing) skin ageing 

(Haake et al., 1998). Together, these results suggest that regulation of programmed 

cell death plays an important role for the ageing process in vivo; however, the role of 

apoptosis for ageing may differ between various tissues. 

Concerning human ageing, many questions about molecular mechanisms have been 

addressed using in vitro senescence models derived from normal human cells. The 

proliferative potential of human primary cells in culture is limited, and extended 

passaging of such cells leads to a state of terminal growth arrest, referred to as 

replicative senescence. While the erosion of telomeres, due to insufficient telomerase 

activity (for review, see (Shawi and Autexier, 2008)), has been recognized as a 
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primary cause of replicative cellular senescence, a variety of other events have been 

identified that trigger premature senescence. Most notably, oxidative stress was 

found to induce premature senescence in human fibroblasts (Chen and Ames, 1994; 

von Zglinicki et al., 1995), endothelial cells (Kurz et al., 2004; Unterluggauer et al., 

2003), and a variety of other cell types (reviewed in ref. (Colavitti and Finkel, 2005)). 

It was shown that senescent fibroblasts are resistant to apoptosis (Wang, 1995), and 

p53-dependent apoptotic pathways are specifically blocked in senescent fibroblasts. 

Stabilization of p53 in response to DNA damage is impaired in old fibroblasts, 

resulting in induction of necrosis (Seluanov et al., 2001). While these results suggest 

a specific impairment of proapoptotic signalling in senescent fibroblasts, we found 

that human endothelial cells undergo age-associated cell death during in vitro ageing 

(Hampel et al., 2004; Wagner et al., 2001) and this was confirmed for bovine 

endothelial cells in independent experiments (Zhang et al., 2002). 

Apoptotic cell death can be triggered by a wide variety of environmental stimuli and 

the apoptotic response of a given cell is modified by a plethora of cellular gene 

products. The current knowledge in this field can be briefly summarized as follows: 

Apoptosis triggered by cell death receptors (e.g. the Fas/Fas ligand system)  leads to 

the activation of a class of proteases, referred to as caspases, in particular caspase 8 

and 10, which activate effector caspases (e.g. caspases 3, 6 or 7) (Nicholson, 1999). 

Effector caspases then cleave key substrates and thereby cause nuclear 

fragmentation. In an alternative pathway, mitochondrial function is altered through a 

variety of signals, ultimately leading to the opening of the mitochondrial permeability 

transition pore (PTP). PTP opening is modulated, among others, by members of the 

Bcl-2 gene family (for review, see (Bernardi et al., 2001)). Subsequently, soluble 

factors are released from the mitochondria to trigger an apoptotic response. These 
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factors include cytochrome C which, in combination with Apaf-1 (Zou et al., 1997), 

leads to activation of caspase 9, which then activates effector caspases, such as 

caspase 3 (Bratton et al., 2001). Simultaneously, other proapoptotic proteins, such as 

Smac (DIABLO), apoptosis inducing factor (AIF), and endonuclease G, are released 

from the mitochondria (Li et al., 2001; Parrish et al., 2001). 

Endonuclease G is a member of the conserved DNA/RNA non-specific ββα-Me-finger 

nuclease family which is located exclusively in the mitochondrial intermembrane 

space (Cote and Ruiz-Carrillo, 1993; Schafer et al., 2004) for recent review, see 

(Varecha et al., 2007). It is translated as a ~33 kDa preprotein and cleaved upon 

translocation into the mitochondria to a ~28 kDa protein, forming an active 

homodimer nuclease. EndoG was first isolated from calf thymus and is highly specific 

for (dG)n.(dC)n tracts in DNA which was first thought to be important in mitochondrial 

replication (Cote et al., 1989). Homologues have been described in many model 

organisms such as C. elegans (Parrish et al., 2001), M. musculus (Li et al., 2001), S. 

cerevisiae (Buttner et al., 2007a). The catalysis of phosphodiesters is dependent on 

the conserved residues His143, Asn174, and Glu182 which are necessary for metal 

binding while Arg141 is important for substrate binding (Schafer et al., 2004). In 

mouse embryonic fibroblasts, EndoG is translocated into the nucleus upon apoptotic 

stimuli and cleaves DNA chromatin into nucleosomal fragments which is not 

dependent on caspases (Li et al., 2001). Extramitochondrial expression of active 

EndoG causes cell death in HeLa cells, while expression of EndoG, mutated in the 

active centre, does not (Schafer et al., 2004). Also in yeast, overexpression of the 

EndoG homolog (Nuc1p) leads to cell death (Buttner et al., 2007a).  
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2. Materials and methods 

2.1. Cell culture 

Endothelial cells of two different donors were isolated from human umbilical veins 

and maintained on gelatine covered plates in Endothelial Cell Medium (Cambrex 

BioScience) in 5% CO2 at 37°C as described in (Unterluggauer et al., 2003). Cells 

were passaged when 70-80% of confluence was reached. Population doublings 

(PDL) were estimated using the following equation: n= (log10 F−log10 I)/0.301 (with 

n=population doublings, F=number of cells at the end of one passage, I=number of 

cells that were seeded at the beginning of one passage). After roughly 20 population 

doublings, the cells reached growth arrest. The senescent status was verified by in 

situ staining for SA-β-galactosidase as described (Dimri et al., 1995).  

For production of lentiviral particles, HEK-293T cells [human embryonic kidney 293 

cells expressing the large T-antigen of SV40 (simian virus 40)] were maintained in 

DMEM (Dulbecco's modified Eagle's medium) containing 2 mM L-glutamine, 100 

units/ml penicillin, 0.1 mg/ml streptomycin and 10% (w/v) fetal bovine serum (heat-

inactivated). 

The research has been performed in accordance with the Declaration of Helsinki 

(2000) of the World Medical Association and has been approved by the Ethics 

Committee of the Innsbruck Medical University. Consent was obtained from each 

patient after full explanation of the purpose, nature and risk of all procedures. 

 

2.2. Lentiviral gene knockdown 

Production of lentiviral particles was carried out according to the manufacturer's 

protocol (Addgene) using the packaging plasmids pMD2.G and psPAX2 (both 
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purchased from Addgene) and the lentiviral vector pLKO.1, containing EndoG-

specific shRNA (small-hairpin RNA) and control (scrambled) shRNA, respectively 

(Open Biosystems). For lentiviral infection, early passage HUVEC were cultivated in 

six-well plates. Upon reaching ~70% confluence, culture medium, containing lentiviral 

particles to the amount of 2 MOI (multiplicity of infection), was added to the cells in 

presence of 8 μg/ml hexadimethrine bromide (Sigma–Aldrich), which increases the 

efficiency of viral infection. At 24 h after infection, medium was changed. Puromycin 

selection was initiated (500 ng/ml) 72 h post infection. 

2.3. Measurement of mitochondrial membrane potential 

The electric potential of the inner mitochondrial membrane was measured in situ 

using flow cytometry in intact cells stained with JC-1 fluorescent probe (Cossarizza, 

1993). 

HUVECs were detached, cell number counted and 100 000 cells used for analysis. 

Cells were resuspended in EGM containing 0.5 µg/ml JC-1. Positive control was 

treated additionally with 5 µM FCCP. Cells were incubated for 30 min at 37°C, 

washed once with PBS containing 1 mM pyruvate and 5 mM glucose and 

resuspended in 300 µl PBS. JC-1 fluorescence was measured using a flow cytometer 

(BD FACSCanto™ II) (excitation with an argon laser at 488 nm and emission 

wavelength of 530/590 nm).  

2.4. FACS analysis of cell death 

For detection of apoptosis, HUVECs were detached and incubated in a fluorochrome 

buffer containing 0.1% (v/v) Triton-X-100, 50 µg/ml propidium iodide, dissolved in 

ddH2O. Cells were incubated for 30 min at 4°C, then analysed in FACS (BD 

FACSCanto™ II)(Nicoletti et al., 1991). For necrosis quantification, HUVECs were 
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detached and resuspended in 300 µl buffer containing 10 mM Hepes, 140 mM 

sodium chloride, 2.5 mM CaCl2, pH 7.4. Shortly before FACS measurement 1µl 

propidium iodide (1 µg/µl) was added. Measurement was done with and without 

addition of PI. 

2.5. Immunofluorescence 

HUVEC were seeded on glass slides (diameter 13mm) in six-well-plates using 100 

000 early passage cells or 50 000 late passage cells. On the following day cells were 

washed and fixed in 4% paraformaldehyde in PBS for 20 min at RT. Glass slides 

were transferred into 24-wells and cells were permeabilized with 0.1% Triton-X-100 

and 0.1% sodium citrate diluted in PBS for 2 min on ice. Cells were washed with PBS 

and incubated in blocking buffer (1% BSA in PBS) for 20 min at RT. Afterwards, glass 

slides were incubated with 50 µl of a 1:50 diluted rabbit polyclonal EndoG antibody 

(Abcam, Cambridge, US) in blocking buffer. After 45 min of incubation time, slides 

were washed three times with PBS and blocked for further 5 min in the blocking 

solution. Anti-rabbit antibody conjugated with FITC was applied in the same manner 

for 30 min. At last, 7-AAD (1 µg/ml) was added to blocking buffer for 30 min. Glass 

slides were washed with PBS twice and embedded in 7 µl DABCO. Analysis followed 

in a confocal microscope (Zeiss Axiophot). 

2.6. Western Blot 

Cells were harvested and lysed for 30 min on ice in a lysis buffer containing 50 mM 

Tris–HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% Na-deoxycholate, 

0.2 mM phenylmethylsulfonyl-fluoride, 1 mM NaF, 10 μg/ml aprotinin, 10 μg/ml 

leupeptin. The lysates were centrifuged at 20 000 g for 10 min at 4 °C. 30 µg of 

protein for each sample was separated on a 12.5% SDS–polyacrylamide gel. After 
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electrophoresis, the proteins were transferred to PVDF membranes by wet 

electroblotting in a buffer containing 25 mM Tris–HCl, 190 mM glycine, 0.5% SDS, 

10% methanol. Transfer was controlled by staining the membrane with Ponceau S. 

Membrane was blocked in 5% non-fat dried milk in TBS-T [20 mM Tris–HCl pH 7.6, 

137 mM NaCl, 0.1% Tween 20] for 1 h at RT. Incubation with the anti-EndoG 

antibody (Abcam, Cambridge, US) was performed for 1h at RT; the membrane was 

washed twice with TBS-T and incubated with an anti-rabbit antibody from Dako 

(Glastrup, Denmark) conjugated with horseradish peroxidase (HRP) for 30 min. 

Immunoreactive proteins were detected using an enhanced chemiluminescence 

system (Amersham Life Science, Braunschweig, Germany).  

2.7. Caspase activity assay 

The Apo-ONE Homogeneous Caspase-3/7 Assay Kit obtained from Promega was 

used according to the protocol. Briefly, 70 000 cells per 96-well were used in 70 µl 

volume; 100 x substrate and buffer were mixed and 70 µl of the mixture was added to 

the cells. Background measurement was carried out with empty medium without 

cells; normal measurement was performed in duplicates measured at different time 

points with multiple reads per well using a TECAN® fluorimeter. Standard deviation 

was calculated from different reads of two wells. Fluorescence was measured using 

485 nm excitation and 530 nm emission wavelength. 

2.8. Subcellular fractionation using Qiagen Qproteome® Cell compartment Kit 

5 x 106 of early passage and 3x 106 of late passage HUVEC NS5 were used. Cells 

were detached and washed with ice-cold PBS and centrifuged at 500 x g for 10 min 

at 4°C. The cell pellets were resuspended in 2 ml ice-cold PBS, transferred into 

microcentrifuge tubes and centrifuged again at 500 x g for 10 min at 4°C. The cell 
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pellets were resuspended in 1 ml ice-cold Extraction buffer CE1 by pipetting up and 

down. Solutions was incubated for 10 min in an end-over-end shaker at 4°C. The 

lysates were centrifuged at 1000 x g for 10 min at 4°C. The supernatants (fraction 1 / 

cytosolic proteins) were transferred into fresh microcentrifugation tubes. The pellets 

were resuspended with 1 ml CE2 buffer and incubated for 30 min in an end-over-end 

shaker. Suspension were centrifuged at 6000 x g for 10 min at 4°C. Supernatants 

(fraction 2 / membrane proteins) were transferred into fresh microcentrifugation 

tubes. 7µl Benzoate was mixed with 13 µl distilled H2O, added to each pellet and 

incubated for 15 min at room temperature. After incubation time 500 µl ice-cold 

Extraction buffer CE3 was added to the solutions, incubated for 10 min at 4°C on an 

end-over-end shaker. The mixtures were centrifuged at 6800 x g for 10 min at 4°C. 

Supernatant (fraction 3 / nuclear proteins) were transferred to fresh tubes and stored 

on ice.  

Different fractions were applied on a 10% SDS-polyacrylamide gel loading 15µl of 

fraction 1, 25µl of fraction 2 and 35µl of fraction 3 to load equal protein contents. To 

qualify the fractionation process, immunodetection was carried out in the same way 

as described in 2.6. using a corresponding antibody per fraction For cytosolic 

proteins M2PK (ScheBo, Germany), for membrane proteins anti-OxPhos Complex V 

subunit (Invitrogen, Austria) and for nuclear proteins p84 (Abcam, Cambridge, US) 

antibodies were used. 
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3. Results  

3.1. Senescence-associated relocalization of EndoG  

To address a potential role of EndoG and its subcellular relocalization in senescence-

associated cell death of HUVEC, young and senescent cells were stained with 

antibodies to EndoG. To reveal a potential nuclear localization of EndoG, cells were 

counterstained with the DNA-specific nuclear dye 7-AAD. In young HUVEC, cytosolic 

localization of EndoG was observed, consistent with its known localization in 

mitochondria in healthy unstressed cells (Fig.1, upper panel). When EndoG was 

stained in senescent cultures, about 20 – 30% of the cells displayed nuclear 

localization of EndoG. This was particularly evident in cells with an irregular nuclear 

shape, indicative of cells undergoing apoptosis (Fig.1, lower panel). To corroborate 

these findings, early and late passage HUVEC were fractionated in a cytosolic, 

membrane and nuclear part where in both membrane and nuclear fractions, the 

EndoG signal was visible. The fractions were also probed with antibodies staining 

marker proteins known to be in the cytosolic, membrane and nuclear fraction. When 

comparing the amount of EndoG in the membrane fraction, early and late passages 

look the same but when comparing the nuclear fraction, the signal was stronger in 

late passage HUVEC. These results suggest that mitochondrial EndoG translocates 

to the nucleus in senescence-associated endothelial cell apoptosis. 

3.2. Functional consequences of EndoG inactivation 

To further address the role of EndoG in senescence-associated cell death, lentiviral 

vectors were constructed, which are suitable to knock down EndoG which is 

expressed in both young and, to a lesser extent, in senescent HUVEC (Fig.2A). 

Starting with five different knock down constructs, transfected in U2OS and analysed 
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by Western blot and immunofluorescence (data not shown), the two most promising 

ones (sh32 and sh35) were used in this study. Early passage and late passage 

HUVEC of two different donors were infected with lentiviral vectors carrying two 

different EndoG specific shRNA sequences, for control, a scrambled virus carrying a 

nonspecific (scrambled) shRNA was used. The knockdown was followed by Western 

blot (Fig.2 B) suggesting that significant reduction of EndoG protein levels could be 

obtained. Functional consequences of EndoG knock down were subsequently 

monitored. We found that knocking down EndoG in both early passage and late 

passage cells led to a significant delay in cell proliferation (Fig.2). This was 

accompanied by an increase in the percentage of cells staining positive for 

senescence-associated ß-galactosidase (Fig.2), suggesting that depletion of EndoG 

from human endothelial cells induces premature senescence. In yeast, EndoG was 

shown to be essential for mitochondrial function (Buttner et al., 2007a). To address, 

whether EndoG affects mitochondrial function in human endothelial cells, 

mitochondrial membrane potential was determined by staining with JC-1, a dye, 

which is sensitive to changes in mitochondrial membrane potential (Fig.3A). To 

control the experiment, mitochondrial membrane potential in young HUVEC was also 

measured with and without addition of the uncoupling agent FCCP. As expected, 

mitochondrial membrane potential was reduced to background levels by FCCP 

treatment. Under the same conditions, we found that knocking down EndoG in two 

different HUVEC strains by two different shRNA vectors had no significant effect on 

mitochondrial membrane potential (data not shown). 

3.3. EndoG and endothelial cell death 

Since cellular senescence of human endothelial cells is associated with an increased 

rate of spontaneous apoptosis, the effect of EndoG depletion on the rate of apoptosis 
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was monitored. To quantitate the rate of apoptosis, cells were permeabilized and 

DNA stained with propidium iodide; the percentage of subG1 fragments was 

determined by flow cytometry, increased from 16 ± 3 % in control cells to 36 ± 4 % in 

EndoG-depleted cells (Fig.3B, and data not shown). This experiment revealed a 

significant increase in apoptotic cell death as a result of EndoG knockdown, 

suggesting that EndoG is required for optimal survival of human endothelial cells. 

Increased apoptotic cell death was also confirmed by a Caspase-3/7 activity assay 

(data not shown), Interestingly, the group of cells with 4N DNA content, which 

contains tetraploid cells in G1 phase (Wagner et al., 2001) was significantly reduced 

upon depletion of EndoG (Fig.3 B). This could reflect the general anti-proliferative 

effect of EndoG knockdown; alternatively, the absence of cells with a DNA content of 

4N may also reflect preferential killing of polyploid cells by EndoG knockdown, as 

described previously (Buttner et al. 2007b). More work will be required to address this 

point. 

As it was reported that EndoG controls the balance between apoptosis and necrotic 

cell death in yeast cells (Buttner et al., 2007a), we also addressed the question, 

whether necrotic cell death may be modulated by EndoG knockdown. To monitor 

EndoG-dependent effects on necrosis, living cells were stained with propidium iodide, 

the uptake of which is characteristic of necrotic, but not apoptotic cell death (Fig.3C). 

Senescent HUVEC contained about 2.5% of necrotic cells, and this amount was 

slightly reduced by depletion of EndoG. Together these results suggest that EndoG 

protects human endothelial cells from apoptosis and at the same time increases the 

amount of necrotic cell death. 
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4. Discussion  

We show here that Endonuclease G is localized in the mitochondria in young human 

endothelial cells and appears in the nucleus in senescent HUVEC cultures, 

suggesting that senescence-associated cell death in human cells involves EndoG. 

This is further supported by our observation that knocking down EndoG in human 

endothelial cells leads to premature senescence, irrespective of the passage number 

at infection. Surprisingly, EndoG knockdown had no significant effect on 

mitochondrial membrane potential, but led to a significant increase in apoptotic cell 

death. Finally, we observed a trend for a decrease in necrosis in cells depleted of 

EndoG.  

4.1. Role of endonuclease G in cell death and disease 

Although well described as a potent inducer of caspase-independent cell death in 

response to stress, the physiological role of endonuclease G in mammalian cells has 

not been fully established. A former study showing the necessity of EndoG in 

embryogenesis (Zhang et al., 2003) couldn’t be verified by later studies, where 

EndoG knockout mice showed no deficiency in apoptosis or had any other phenotype 

(David et al., 2006; Irvine et al., 2005). Recent data from yeast established a mode of 

action for the yeast homolog of EndoG, and suggested that EndoG can have both 

vital and lethal activity, depending on the functional status of the mitochondria. 

Moreover the available data in yeast suggest a shift from age-associated apoptosis to 

necrosis upon depletion of EndoG (Buttner et al., 2007a). Recently, an inhibitor of 

EndoG  (EndoGI) was found in the D. melanogaster gene cg4930 which consists of 2 

homologous domains, each of them able to bind one EndoG nuclease (Temme et al., 

2009). The crystal structure of the complex was resolved which supported the 2:1 

stoichiometry (Loll et al., 2009). The group proposed a life insurance function for 
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EndoGI for leakage of mitochondria by release of EndoGI from the nucleus and 

binding EndoG in the cytosol. No human homolog was found yet. Nuclear localization 

of EndoG has also been observed in a variety of age-associated pathologies. Thus, 

cerebral ischemia (Lee et al., 2005; Nielsen et al., 2009) and muscle atrophy 

(Leeuwenburgh et al., 2005; Marzetti et al., 2008) have been connected to a nuclear 

translocation of EndoG, resulting in apoptosis and degeneration.  

4.2. Endothelial cell senescence and cell death in vascular pathology 

For ageing of the vascular system, a tissue-damaging role of apoptosis is well 

established (Heinrich and Holz, 1998). Arteriosclerosis, a major age-related disease 

of humans, is accompanied by a degeneration of vascular endothelial cells and 

vascular smooth muscle cells due to programmed cell death. In this context, the 

activation of the cellular suicide pathway leading to apoptosis of the endothelial cells 

represents an initial step in the development of arteriosclerotic lesions (Bennett, 

1999). Increased incidence of apoptosis in vitro was also observed when vascular 

smooth muscle cells from human atherosclerotic plaques were grown in vitro and 

compared to control cells (Bennett et al., 1998). Whereas there is compelling 

evidence that cell death by apoptosis contributes to vascular damage under 

pathological conditions (e.g., arteriosclerosis), the role of apoptosis during normal 

vascular ageing remains to be established. Our finding that endothelial cells undergo 

ageassociated apoptosis during in vitro ageing (Wagner et al., 2001) may provide a 

good model system for further studies. Age-related apoptosis is believed to play an 

important role during tissue ageing (Adams et al., 1996; Nicosia et al., 1995; Usami 

et al., 1997), and in vitro senescence of HUVEC may provide a new model for age-

related apoptosis that could be useful for studying the role of intrinsic and extrinsic 

ageing in certain vascular pathologies, e.g., arteriosclerosis  (Bennett, 1999). 
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Whereas the role of cellular senescence in normal ageing is still controversial, 

cellular senescence has been widely used as a model system to study ageing of 

various human tissues. Experimental evidence suggests that the occurrence of cells 

with a senescence-like phenotype is not restricted to tissue culture experiments. 

Senescent cells have been described in mitotic tissue of ageing rodents 

(Krishnamurthy et al., 2004), non-human primates (Jeyapalan et al., 2007), as well as 

in human aged tissues, such as the skin (Dimri et al., 1995; Ressler et al., 2006), the 

vascular system (Vasile et al., 2001) and the kidney (Melk et al., 2004). The 

premature appearance of senescent cells in the vascular endothelium has been 

associated with the onset of age-associated cardiovascular diseases, such as 

arteriosclerosis (Minamino et al., 2002). In light of these findings, our current 

observation, by both immunofluorescence and biochemical fractionation studies, that 

EndoG localizes to the nucleus in senescent endothelial cells and its role in 

modulating cell death may be of relevance for vascular diseases; however, more 

work will be required to elucidate the precise role of EndoG in age-associated 

vascular pathology. 
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Legends to Figures 

Fig.1: Immunodetection of endogenous EndoG in human umbilical vein endothelial 

cells (HUVEC)  

A. The upper row shows young cells at passage 7, the lower row senescent cells at 

passage 20. Anti-EndoG antibody was stained in green, nucleus was stained with 7-

AAD (red). Images were taken in the same microscope with identical settings.  

B. Fractionation analysis of early and late passage HUVEC, showing cytosolic (1), 

membrane (2) and nuclear fraction (3). For each fraction a marker protein antibody 

was probed. EndoG is visible in the membrane fraction together with the 

mitochondrial marker OxPhos Complex V subunit, as well as in the nuclear fraction 

colocalizing with p84. No EndoG was found in the cytosol colocalizing with M2-PK.   

 

Fig.2: Effects of EndoG knockdown on cell proliferation and senescence.  

Experiments were done with two different donors (HUVEC #1 in B, HUVEC #5 in C) 

at early (ep) and late (lp) passages.  

A. Extracts were prepared of HUVEC in early and late passage as indicated and 

probed for EndoG by Western blot.  

B. Western blot probed with anti-EndoG shows reduced levels in knockdown samples 

(sh32, sh35) for early passage HUVEC two weeks post infection compared to control 

(upper left). The percentage of cells staining positive for senescence-associated β-

Galactosidase (SA-β-Gal) and the effects of knockdown are shown (upper right). 

Population doublings (PDL) are indicated in HUVEC infected with scrambled RNA 

and with EndoG shRNA (lower panel).  
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C. Western blot probed with anti-EndoG shows reduced levels in knockdown 

samples (sh32, sh35) for late passage HUVEC two weeks post infection compared to 

control (upper left). The percentage of cells staining positive for senescence-

associated β-Galactosidase (SA-β-Gal) and the effects of knockdown are shown 

(upper right). Population doublings (PDL) are indicated in HUVEC infected with 

scrambled RNA and with EndoG shRNA (lower panel). 

 

Fig.3: Effects of EndoG knockdown on cell death 

A. The ratio between a number of cells with high mitochondrial membrane potential 

(∆Ψ) and the uncoupled state is shown. ∆Ψ has been determined in JC-1 stained 

cells using FACS. As a positive control serve early passage (ep) cells, as a negative 

control the cells pre-treated with FCCP. Two different donors (HUVEC #1 and #5) 

were analysed in late passage (lp).  

B. HUVEC in late passage were permeabilized and stained with propidium iodide. 

Flow cytometry was performed and the percentage of subG1 DNA fragments was 

determined, as a measure for apoptotic cell death. 

C. HUVEC in late passage, as indicated, were directly stained with propidium iodide. 

Flow cytometry was performed and the percentage of PI positive cells was 

determined, as a measure for necrotic cell death.  
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