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Abstract 

Reliable energy estimation methods are a very important step to addressing the range 
anxiety problem of electric vehicle adoption. Besides driving patterns and vehicle 
parameters, geographic information about elevation changes is one of the most important 
pieces of information to predict energy consumption. This paper presents a method to 
assess the impact of digital elevation model (DEM) quality on energy consumption 
estimation for electric vehicle routes. We demonstrate the use of this method by applying it 
to compare energy consumption estimates for 16,500 randomly generated routes, based on 
three recently released open DEM datasets: NASA Shuttle Radar Topographic Mission 
(SRTM) version 3.0, EU-DEM, and open government DEM data provided by the city of 
Vienna. Results show that energy consumption models tend to overestimate route energy 
consumption by a mean error of 2.9% and 15.8%, respectively, when lower-resolution 
DEMs are used to compute route elevation profiles. A spatial analysis of the error 
distribution shows that the mean error varies between different regions within the analysis 
area, with bigger error values in the hills and in the city centre indicating that high-
resolution elevation data is not only important in hilly and mountainous areas, but also in 
dense urban environments.  

1 Introduction 

Rising prices for fossil fuels and concern about the impact of greenhouse gases from 
combustion engines has led to the development of new vehicle technologies. Particularly 
electric vehicles have received a lot of attention in research and development. Their general 
acceptance and sales numbers, however, are still low, with shares of 0.3% of cars sold in 
the US in 2012 (GREEN et al. 2014), and 0.21% of cars sold in Western Europe in 2012 
(KVISLE 2013). One important problem electric vehicles face is their limited cruising range, 
leading to what is known as range anxiety. To address this problem, it is crucial to provide 
the user with information about the current energy status, and to reliably predict the energy 
required to complete planned routes. It is therefore necessary to develop solid methods to 
estimate energy consumption for routes prior to starting a trip. 
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In a related study, BACHOFER (2011) compares LIDAR data for Bavaria to Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and different versions 
of Shuttle Radar Topographic Mission (SRTM) data. The work focuses on energy estimates 
to provide a general overview of the driving range of electric vehicles by modelling the 
total energy consumption for travelling all the edges of the analysed street network. Results 
for individual routes which are required for operational route planning are not discussed in 
detail. He only reports that differences of more than 30% were observed for some route 
energy estimates.  

Energy usage models for regular (i.e. combustion engine) and electric vehicles have been 
discussed, for example, in KONO et al. (2008) and PRINS et al. (2012) respectively. PRINS et 
al. (2012) compare the measured energy usage value on a test route to model predictions 
using elevation data from different sources: two GPS trackers and the USGS database. 
They report that all predictions overestimated the energy usage required for the route with 
values ranging between 22% for the worse GPS tracker, 7.9% for the better GPS tracker, 
and the USGS elevation data scoring 11.3%. KONO et al. (2008) present a fuel consumption 
analysis for different geographic (mountainous or smooth) and traffic conditions 
(expressway or congestion) using elevation data provided by GSI of Japan with a spatial 
resolution of 50m. They present a comparison of fuel consumption factors in various 
geographic and traffic congestions, which shows that base consumption and elevation 
change cause the biggest changes in the composition of total fuel consumption, while fuel 
consumption due to friction, air drag, and acceleration does not change much between 
scenarios. 

A closely related problem is the problem of energy-optimal route planning for electric 
vehicles with recuperation, which is covered for example in BAUM et al. (2013) and JURIK 

et al. (2013). Due to the recuperation of electric energy, a negative edge weight is assigned 
to links running downhill. Basic routing algorithms such as Dijkstra’s algorithm are not 
suitable to address this problem, because they require non-negative edge weights. Elevation 
data in both studies was derived from SRTM. The focus of these papers lies in developing 
algorithms which can quickly compute energy-optimal routes in real-world-sized networks. 
Results and discussions therefore focus on query time, rather than evaluation of prediction 
results.  

In this study we focus on the geographic information used in energy consumption models 
and evaluate the influence of different DEM quality on energy consumption estimates for 
routes in the city of Vienna. The remainder of this paper is structured as follows: Section 2 
introduces the DEMs which were used in this comparison, and describes the process used to 
generate the test route dataset. In Section 3 we describe the energy consumption model. 
Section 4 presents the results of our comparison, before Section 5 discusses findings, and 
Section 6 covers opportunities for future work. 

2 Input Data and Preparation 

This section gives an overview of DEMs and test routes which were used for the impact 
assessment of DEM quality on route energy estimation for electric vehicles. In this study, 
DEMs from NASA, the European Environment Agency (EEA) and the city of Vienna were 
used to estimate the energy consumption of 16,500 randomly generated routes. Figure 1 
provides a preview of the level of detail in the three DEMs.  
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Fig. 1: Details of the hills and river side of northern Vienna in all three DEMs 

NASA SRTM V3.0 (from now on referred to as SRTM3.0) was released on November 
20th, 2013. SRTM3.0 has eliminated all voids found in previous versions with fill, 
primarily from ASTER Global Digital Elevation Model Version 2, and secondarily from 
USGS GMTED2010 or USGS National Elevation Dataset. SRTM3.0 data is provided in 
WGS84 (EPSG:4326) with one-arc-second postings for the US and its territories, and three-
arc-second postings (approximately 90m) for the rest of the world. (NASA 2013)  

The EU-DEM is a digital surface model covering Europe, created in the course of the 
Copernicus programme funded by the European Union. The data was released in November 
2013 (INSPIRE FORUM 2013) and is provided in EU-LAEA (EPSG:3035) at a resolution of 
25m. EU-DEM is based on SRTM and ASTER GDEM data. The data is provided without 
formal validation so far. Publication of an independent statistical validation has been 
announced for the course of 2014. (EEA 2013) 

The open government DEM dataset published by the city of Vienna (from now on referred 
to as Wien-DEM) is based on surface points, break lines (slope edges, shoreline), and 
airborne laser scanning data. It is provided as a regular vector point grid in WGS84 
(EPSG:4326) and MGI/Austria GK East (EPSG:31256), at a resolution of 5m. The DEM is 
regularly updated with new data, and artificial structures such as houses and bridges are 
excluded from this DEM (STADTVERMESSUNG WIEN 2013). The data is provided free of 
charge under a Creative Commons license via a Web Feature Service (WFS) with a 
reported limit of 300,000 features per request (OGD WIEN 2013b). In practice, it was 
necessary to request considerably smaller numbers of features using bounding boxes of 
1km² size to successfully download the data from the WFS. 

To achieve a good spatial distribution of test routes within the analysis area, we first 
generate a hexagonal grid with a cell size of 1km² covering Vienna. The set of random test 
routes is then generated by overlaying the hexagonal grid to the road graph, i.e. the GIP 
street network published by the city of Vienna (OGD WIEN 2013a). The road network is 
defined as a graph ܩ ൌ ሺܸ,  ሻ, where the set of vertices ܸ represents the intersections andܧ
the set of edges ܧ represents the street segments. For each neighbouring pair of cells, ten 
unique pairs of randomly selected graph edges ܧ are created. Cells containing fewer than 
ten edges are excluded from the analysis. The minimal air-line distance between edge pairs 
is defined as 800m, in order to avoid too short routes which would distort the analysis 
results.  

For each edge pair, the central points of both start and end edge are then extracted and used 
as input for a shortest path routing. Each route is represented by an ordered set of all 



A. Graser, J. Asamer and M. Dragaschnig 168

geometry nodes of the graph edges comprising it. Subsequently, route elevation profiles are 
generated by extracting the DEM values at the node positions using nearest neighbour 
sampling. The resulting routes have a mean length of 2,109m (min: 802m, max: 15,754m, 
median: 1,830m). Only routes which are completely covered by all three DEM datasets are 
used in the following route energy consumption estimation. 

3 Energy Consumption Modelling 

This section presents the energy consumption model used to estimate energy consumption 
for individual routes. The test routes are computed based on the GIP street network as 
described in Section 2.  

To estimate energy consumption on a route, we use a vehicle longitudinal dynamics model 
based on TREIBER & KESTING (2010). One part of this model estimates the required energy 
on the drive train. While in TREIBER & KESTING (2010) a model for a conventional 
combustion engine is used to estimate the overall energy consumption (amount of fuel), we 
in this study assume an electric motor. It is worth noting that the maximum efficiency of 
combustion engines is limited to a small operating range for torque and speed. Since this is 
not the case for electric engines, efficiency is much less dependent on current speed and 
torque, and therefore can be assumed as rather constant. 

The total power estimate is composed of power to overcome acceleration resistance ( ௞ܲ௜௡ሻ, 
rolling resistance ( ௥ܲ௘௦ሻ, wind resistance ( ௔ܲ௜௥ሻ, and elevation changes ( ௣ܲ௢௧ሻ, as well as the 
power ( ଴ܲሻ for appliances such as heating, air conditioning and lights. The required power 
on the drive train for moving a vehicle therefore is 

ௗܲ௥௜௩௘ ൌ max	ሺ0, ௞ܲ௜௡ ൅ ௥ܲ௘௦ ൅ ௔ܲ௜௥ ൅ ௣ܲ௢௧ሻ. (1) 

Since in this study we focus on the influence of different DEM quality on energy 
consumption estimates, we are mainly interested in changes to the term related to potential 
energy ௣ܲ௢௧ ൌ ݉݃∆݄, where ݉ is the mass of the vehicle, ݃ is gravity, and ∆݄ is the 
elevation difference. 

On downhill sections, the potential energy can outweigh acceleration, rolling, and wind 
resistance, and excessive power can be recuperated back to the battery up to a certain 
maximum. Therefore recuperation power is described by 

௥ܲ௘௖ ൌ min	ሺ0, ௞ܲ௜௡ ൅ ௥ܲ௘௦ ൅ ௔ܲ௜௥ ൅ ௣ܲ௢௧ሻ. (2) 

From (1) and (2) it is clear that neither ௗܲ௥௜௩௘ nor ௥ܲ௘௖ is null, which means that the electric 
engine can be operated either as a motor or as a generator with different conversion 
efficiency rates. The total energy which has to be provided by the battery can be described 
as the difference between total energy spent and recuperated energy  

ܧ ൌ ሾ ௗܲ௥௜௩௘/ߙௗ௥௜௩௘ ൅ maxሺെ ௠ܲ௔௫, ௥ܲ௘௖ߙ௥௘௖ሻ ൅ ଴ܲ	ሿ∆(3) ,ݐ 

where ߙௗ௥௜௩௘	and ߙ௥௘௖	are the efficiency rates of the power train (composed of efficiency 
rates for motor/generator, gear unit, charging and discharging), depending on the direction 
of energy flow, and ∆ݐ is the time span. If ܧ is negative, energy will be restored to the 
battery. In this study, ߙௗ௥௜௩௘ is set to 0.78, ߙ௥௘௖ to 0.77 (SCHWINGSHACKL 2009) and the 
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maximum recuperation power ௠ܲ௔௫ is 10kW. The value for ߙ௥௘௖ is dependent on the type 
of vehicle and strategy for regenerative breaking. 

This energy consumption model (3) has been applied to 16,500 routes which are covered by 
all three DEM datasets. For this evaluation, a typical average urban travelling speed of 
35km/h is assumed, and the speed is kept constant for the entire route to keep the non-
elevation-dependent parameters fixed, since this evaluation focuses solely on the impact of 
DEM quality on energy estimates.  

4 Energy Estimates 

This section presents the results of a statistical evaluation of the model (3) predictions. 
Table 1 shows a comparison of indicators for the estimates based on all three DEMs. The 
data shows that the minimum energy consumption values for all three DEMs are negative, 
meaning that electric vehicles would be able to recuperate energy on some of the test 
routes. The mean energy consumption ranges between 13.01 and 15.06kWh per 100km, 
with the lowest values based on the Wien-DEM, and the highest values based on the 
SRTM3.0. The low overall energy consumption values can be attributed to the constant low 
vehicle speed of 35km/h which is used for the energy estimation. 

Tab. 1: Energy consumption estimations  

 SRTM3.0 EU-DEM Wien-DEM 

min kWh per 100km -8.76 -12.50 -14.67 

max kWh per 100km 67.29 64.73 66.37 

mean kWh per 100km 15.06 13.40 13.01 

standard deviation kWh per 100km 6.41 6.19 6.31 

median kWh per 100km 13.86 12.69 12.36 

Next, we compare energy estimates based on EU-DEM and SRTM3.0 to energy estimates 
based on Wien-DEM. For the sake of this study, the estimates based on Wien-DEM serve 
as reference values because Wien-DEM is the most detailed DEM in the sample, and it is 
not practical to collect real-world energy consumption data for a test route set of this size. 
The results of this comparison as summarized in Table 2 show that energy estimates based 
on EU-DEM and SRTM3.0 tend to be higher by 0.38 and 2.06kWh, respectively. This 
corresponds to errors of 2.9% and 15.8% relative to the Wien-DEM mean energy 
consumption rate of 13.01kWh per 100km.  

Figure 2 shows the correlation of average slope on the route and associated energy 
consumption. The black line shows the predicted energy consumption on a virtual route 
with a constant slope which serves as a reference. The graph clearly shows that – except for 
a small number of outliers – all energy estimates for real-world routes are equal to or higher 
than the energy estimate for the virtual route, whereby constant slope and estimates based 
on SRTM3.0 tend to deviate most from the reference line.  
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Tab. 2: Energy estimation errors based on EU-DEM and SRTM3.0 (Percentage values 
refer to the Wien-DEM mean energy consumption rate of 13.01kWh per 100km.) 

 EU-DEM – Wien-DEM SRTM3.0 – Wien-DEM 

min error  -19.01 -146.1% -13.25 -101.8% 

max error  17.36 133.4% 34.23 263.0% 

mean error  0.38 2.9% 2.06 15.8% 

standard deviation of errors  1.64 12.6% 2.85 21.9% 

RMSE 1.69 13.0% 3.52 27.0% 

mean absolute error 1.15 8.8% 2.36 18.1% 

 

Fig. 2: Energy consumption values over average route slope 

The evaluation so far represents a summary of the results for all routes within the analysis 
area. Since DEM error values correlate with terrain characteristics such as slope and aspect 
(GOROKHOVICH & VOUSTIANIOUK 2006), we also compute the spatial distribution of 
energy estimation errors. Figure 3 shows the spatial distribution of energy estimation errors 
of EU-DEM and SRTM3.0 in the analysis area.  

Each line in Figure 3 represents the mean energy estimation error of the routes between the 
corresponding ordered pair of grid cell neighbours. Obviously, the errors are dependent on 
the sequence of start and end cell. Therefore, all lines are drawn with an offset to the right 
from the centre line to distinguish between the two possible directions. Overestimation is 
shown in pink, underestimation in green. Wider lines represent bigger errors.  
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Fig. 3: Spatial distribution of energy estimation errors based on EU-DEM and SRTM3.0 
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The background of both maps shows contour lines at 25m intervals derived from Wien-
DEM which serve as an indicator of the terrain characteristics in the different regions of 
Vienna. While the eastern regions are dominated by flat terrain of the Vienna Basin, the 
western regions are dominated by the north-eastern foothills of the Alps. As expected, the 
maps confirm that errors in the predictions based on SRTM3.0 are bigger than in the 
predictions based on EU-DEM and in both cases the biggest error values are located in the 
hills in the north-west and in the city centre. 

5 Discussion  

The statistical analysis results as summarized in Tables 1 and 2 show that energy estimates 
tend to be higher when the estimation is based on EU-DEM or SRTM3.0, than when the 
estimation is based on the high-resolution Wien-DEM. The reason for this behaviour 
becomes clearer when we compare individual route profiles for the same route on different 
DEMs. An example is depicted in Figure 4. It shows all three profiles of one of the test 
routes in the north-western hills. The profiles based on EU-DEM and SRTM3.0 clearly 
exhibit more elevation changes – including steep drops and rises – than the profile based on 
Wien-DEM which is smoother and overall more realistic since roads for vehicle traffic are 
built with moderate slopes rather than abrupt changes. The error based on EU-DEM is 
generally smaller than the error based on SRTM3.0 because the SRTM3.0 profile exhibits 
the biggest and most sudden elevation changes as can be seen in Figure 4. This behaviour 
can be observed for the vast majority of routes.  

 

Fig. 4: Route profiles of a sample route, energy estimate difference: +12.96kWh (EU-
DEM) and +31.94kWh (SRTM3.0) 

In the spatial analysis of error distributions, two regions exhibit higher errors than the rest 
of the analysis area: the hills in the north-west and the city centre. These results are 
consistent with other studies on DEM accuracy such as GOROKHOVICH & VOUSTIANIOUK 
(2006) who show that SRTM error values correlate with terrain characteristics such as slope 
and aspect, and COLOSIMO et al. (2009) who evaluate SRTM and ASTER data and show 
higher errors in urban and forested areas compared to more open landscapes. Furthermore, 
since EU-DEM is based on SRTM and ASTER data, similarities in the spatial distribution 
of errors are not unexpected.  
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The results of this study indicate that – in areas within Europe where no high-resolution 
elevation data is available – it is recommendable to use EU-DEM instead of SRTM data for 
route energy consumption modelling. Using these DEM, one should be aware that energy 
consumption tends to be overestimated. For the test route set in this study, mean errors of 
+2.9% and +15.8% were observed using EU-DEM and SRTM3.0 respectively. The spatial 
analysis furthermore shows that high-resolution elevation data is not only important in hilly 
and mountainous areas, but also in dense urban environments. 

6 Outlook 

In this study, route elevation profiles were generated using nearest neighbour sampling to 
extract elevation values for the route geometry nodes. Sampling at geometry nodes is the 
most commonly used approach described in related studies, but most do not report on 
which sampling method was employed. The current study therefore serves as a base line 
reference. Further work will look into possible improvements by sampling elevation values 
in regular intervals along the route, and by applying more sophisticated methods such as 
bilinear resampling.  

One open issue with route profiles derived from Wien-DEM currently is that they contain 
sudden drops and jumps at bridges and tunnels since the DEM does not include artificial 
and underground structures. To handle this issue more gracefully, and improve energy 
predictions for such routes, alternative approaches as shown for example by SCHILLING et 
al. (2009) will be implemented and evaluated.  

Further work is planned which will compare energy consumption estimates to data 
collected by test vehicles. Battery state of charge and capacity information will be used to 
derive ground truth data about energy consumption. The model described in section 3 will 
then be applied to the vehicle GPS data which makes it possible to compare estimation 
results and observed energy demand.  
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