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Abstract 

The objective of this study is the assessment of potential failure zones of landslides in un-
stable areas. For this purpose, two different stochastic classification models were used: A 
boosted decision tree approach with TreeNet (TN), and a bagging decision tree approach 
with Random Forests (RF). Both topographic and soil parameters were considered as pre-
dictor variables for training and testing the models. We assume that several predictor vari-
ables will lead to misclassification and incorrectness, especially soil parameters. Hence, the 
misclassification of these particular predictors should be avoided, using the strategy of tree 
boosting. The investigated area is the hydrological basin of Vernazza in Cinque Terre, 
Northwest Italy. A disastrous flash flood on the 25th of October 2011 with numerous land-
slides caused fatalities and economic losses amounting to millions of Euros. We mapped 
landslide areas in the field and checked the resulting maps with high resolution remote 
sensing images. Furthermore, the relevant soil parameters were collected based on a geosta-
tistical approach. We measured topographic parameters, and physical and hydrological soil 
characteristics such as maximum shear strength under saturated and unsaturated conditions, 
and hydraulic conductivity (Ksat), and attributed random points in three distinguished 
classes: i) initiation areas, representing the most likely failure areas for possible landslides, 
ii) transport areas which were considered as a mix of classes 1 and 3, and iii) stable areas, 
such as valley bottom, ridges, and unconditionally stable areas. We ran both models with a 
training dataset (0.8 of the total points Ntot) and a test dataset (0.2 of Ntot) and each with 
2000 grown decision trees. We validated the models with a Receiver Operating Characteris-
tic (ROC) curve integral. The regionalized results of the TreeNet dataset yielded potential 
susceptible landslide areas of a total area of 1.74 km², which is 29.74% of the total area. In 
contrast, the Random Forests model classified a much greater susceptible area (84.27% of 
the total area). The results show that Treenet is outperforming RF. The latter misclassifies 
especially the soil related variables, whereas TreeNet yields robust model results. 

1 Introduction 

GIS-based stochastic modelling approaches have successfully been used in several environ-
mental studies like erosion prediction (MÄRKER et al. 2011, SIDORCHUK 2005, MEI et al. 
2008), landscape reconstruction (VOGEL & MÄRKER 2010, CASTILLA-RHO et al. 2014, 
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SCHMALTZ et al. 2015), and landslide assessment (VORPAHL et al. 2012). Especially for 
determining the assessment of slope stability or landslide susceptibility, different ap-
proaches can be applied. These are basically: expert knowledge based approaches, sta-
tistical models, non-deterministic models, and mechanical approaches (WU et al. 2014). To 
overcome the high level of subjectivity from expert evaluation, quantitative or semi-
quantitative methods were developed (GHOSH et al. 2011, WU et al. 2014). Particularly, 
simple and multivariate statistical methods have been applied successfully to assess and 
evaluate landslide hazards, (BERNKNOPF et al. 1988, DIEU et al. 2011). To obtain accurate 
results in landslide assessment, a large amount of information concerning topography, soils, 
climate, and vegetation is required. In order to handle this amount of information, Geo-
graphical Information Systems (GIS) are used, improving the quality of a spatial landslide 
susceptibility assessment (WU et al. 2014, DIKAU et al. 1996, CARRARA & GUZZETTI 
1995). Statistical and machine-learning methodologies have made a huge progress since the 
last decades in geoinformatics and GIS-based analyses (MÄRKER et al. 2011). Several 
methods such as logistic regression (HOSMER & LEMESHOW 2000), artificial neural net-
works (KOHONEN 1984), and classification and regression trees (BREIMAN et al. 1984, 
DE'ATH & FABRICIUS 2000) have been applied in a wide range of geomorphologic studies 
in the past (MOORE et al. 1993, GESSLER et al. 1995, PARUELO & TOMASEL 1997, MER-
TENS et al. 2002, BRENNING 2005, GRIMM et al. 2008). Certainly, the application of several 
modelling approaches mentioned above might yield good results for shallow landslide 
assessments. However, the differentiation and determination of delimited landslide initia-
tion areas, as an input parameter for stochastic prediction using classification trees, have not 
been applied yet. We applied the statistical methods in this study to investigate the hydro-
logical basin of Vernazza, a medieval village of the Cinque Terre, situated at the coastline 
of the Mediterranean Sea in eastern Liguria, Northwest Italy. The popular touristic village 
was affected by a disastrous flash flood event on the 25th of October 2011, which 
 

 

Fig. 1: Study area of Vernazza basin with the mapped shallow landslides that occurred 
at or after the 25th of October 2011 flash flood event 



Assessment of Shallow Landslide Initiation Areas Using Stochastic Modelling 63 

caused significant damages, including seven fatalities and an economic loss amounting to 
millions of Euros. A specific problem in Cinque Terre is the changing land use over the last 
decades, such as the abandonment of formerly cultivated vineyard terraces, caused by much 
higher income potentials from the tourism and the service sectors. 

As shown in Fig. 1, landslides occur primarily in abandoned vineyard terraces with a typi-
cal coverage of shrubs and bushes. Moreover, landslides are found on geological forma-
tions with sandstone, linearly distributed in the centre of the basin from NNW to SSE. 

The objective of this study is the implementation of physical and hydro-pedological soil 
data in stochastic models, to obtain additional information about susceptible landslide areas. 
We concentrated on the landslide initiation areas characterized by the failure edges of the 
mapped landslides that occurred since the 25th of October 2011. We compare two stochastic 
modelling approaches and focus especially on their performance using topographic predic-
tors, as well as with physically and hydro-pedologic predictors. 

2 Input Data and Pre-Processing 

The collection and pre-processing of the data was performed in the Vernazza study area 
during field trips in March, August, and October 2014. Land use conditions and landslide 
areas were mapped, both in the field, and with remote sensing data based on World View 
and Geo Eye images. We also measured physical and hydro-pedological soil parameters. 
Saturated hydraulic conductivity – Ksat – was measured in 25cm, 50cm, and 100cm depth 
with a compact constant head permeameter (Amoozemeter; AMOOZEGAR 1989). Addi-
tionally, we conducted infiltrability measurements with a Hood-Infiltrometer IL-2700. To 
estimate the maximum shear resistance under saturated and unsaturated conditions, shear 
strength measurements were taken with a light Torvane shear strength device. To acquire 
supporting information about the pedogenic properties of the soil, samples were collected, 
and analysed considering texture, skeleton, pH, and water content. In total, 33 locations 
were sampled. 

The physical and hydro-pedological data were pre-processed with ArcGIS, SAGA, and R to 
use them as input data for the stochastic modelling. To obtain a proper regionalization of 
the restricted hydro-pedological dataset, it is necessary to select a suitable interpolation 
method. The dataset consists of 41 spatial data points for the infiltration and shear stress at 
the topsoil (≤25cm), respectively, 33 for a depth of 50cm and 100cm. We applied a multi-
variate geostatistical interpolation method. Due to the very high diversity of the vegetation 
coverage and the geological setting, as well as the low quantity of spatial data points, 
mathematical interpolation methods such as Inverse Distance Weighting (IDW), cannot 
reproduce the natural conditions in this case. For this reason, Cokriging was used to obtain 
the best possible estimation of the infiltrability, shear stress, and saturated hydraulic con-
ductivity, considering the land use and the geology. The correlation between the principal 
variable of interest and other, more easily measured auxiliary variables is the basis of the 
Cokriging technique (SHAHROKHNIA et al. 2004, ELDEIRY & GARCIA 2009, ODEH et al. 
1995). A weighted spherical based model was applied to obtain the best fit of the Cokriging 
input data (Fig. 2). However, Cokriging is a quite sensitive method when the quantity of the 
sample point population is fairly low. Therefore, we performed an iterative cross-validation 
by not including 5% of the data set for each depth in every iteration. This was performed 
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for three cases of the Cokriging assumption in the interpolation process, considering: i) land 
use and geology, ii) only land use, iii) only geology. The combination of land use and geol-
ogy yielded the best interpolation results for both parameters, Ksat for all three depths and 
shear stress (Table 1). The input of other parameters, like complex topographic indices, 
yielded non-satisfying interpolation results.  

Table 1:  Cross-validation results for the Cokriging interpolation performance of saturated 
hydraulic conductivity (Ksat) and shear stress under unsaturated (unsat.) and 
saturated (sat.) conditions in all three investigated depths 

 Interpolation performance after cross-validation (R²) 

Ksat Shear stress unsat. Shear stress sat. 

Assumption / Input 25 50 100 25 50 100 25 50 100 

Land use & geology 0,93 0,98 0,91 0,95 0,95 0,93 0,91 0,88 0,90 

Land use 0,72 0,60 0,32 0,55 0,49 0,52 0,68 0,72 0,66 

Geology 0,37 0,45 0,89 0,56 0,42 0,77 0,69 0,80 0,75 

 

 

Fig. 2: Example of semivariogram from spherical model applied on maximum shear 
strength point dataset for 100cm depth under saturated conditions 

A Topographic Wetness Index (TWI), calculated with BEVEN & KIRKBY’S (1979) equation 
used in TOPMODEL, as well as land use and geology were applied as input grids. Finally, 
nine different grids with infiltrability (for the topsoil ≤25cm), saturated hydraulic con-
ductivity (for measurements deeper than 50cm) and maximum shear strength for each depth 
under saturated and unsaturated conditions were calculated with the gstat-package imple-
mented in R.  

The topographic data were derived from a Digital Elevation Model (DEM) with 5m resolu-
tion in SAGA. Certain relief variables describing the slope stability, such as elevation, 
slope, plan, and profile curvature were implemented as input parameters in the statistical 
prediction.  

We distinguished the landslide area in three different classes: i) “initiation” class, which 
represents the areas most prone to failure, ii) “slipping” class, which can be considered as 
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areas with mixed conditions of class 1 and 3, and iii) deposition areas, stable and moderate 
stable areas, as well as inconsistently stable areas. For each class, 200 random points were 
created according to the several class areas (In total: Ntot=600). The derived topographic 
parameters and regionalized soil parameters were attributed to these prediction points. 

To avoid a doubled inclusion in the performance of the model, the TWI was excluded from 
the training dataset, since it was used in the geostatistical interpolation of the soil para-
meters. However, land use and geology classification were included, to analyse the effect 
on model performance.  

3 Methodology 

Applications of classification and regression trees can be distinguished in two well-known 
methods (LIAW & WIENER 2002): boosting (SHAPIRE et al. 1998) and bagging (BREIMAN 
1996). With boosting, successive trees give an extra weight to misclassified or incorrectly 
predicted variables. Finally, a weighted vote is taken for the predicted points. In contrast, 
successive trees do not depend on earlier grown trees in the bagging approach. Finally, a 
simple majority vote is taken for prediction (LIAW & WIENER 2002).  

3.1 Random Forests 

Random Forests append an additional layer of randomness to bagging. In addition, Random 
Forests change how the classification or regression trees are constructed. However, in Ran-
dom Forests, each node is split using the best among a subset of predictor variables, ran-
domly chosen at the respective node (BREIMAN 2001, LIAW & WIENER 2002). Compared to 
many other classification routines ‒ including discriminant analysis, support vector ma-
chines, and neural networks ‒ this method turns out to perform well and is robust against 
overfitting (BREIMAN 2001). The error ratios of the training data can be obtained by “out-
of-bag” data (OOB) by predicting the data, which is not in the bootstrap sample using the 
grown tree within the bootstrap sample. Further, the OOB is aggregated as an estimation of 
the error rate (BREIMAN 2002). Variable importance is hard to define accurately, due to the 
interaction of possibly important variables. Random Forests estimates the variable impor-
tance by evaluating the quantification of misclassified or incorrect predictors and the in-
crease of the prediction error of the respective variable.  

For the two models (train and test) performed with Random Forests, we use the following 
settings: random separation of the entire dataset (Ntot=600) into the training fraction and 
the test fraction (Ntrain=480, 0.8 of Ntot, and Ntest=120, 0.2 of Ntot) with 2000 as a 
maximum number of trees. 

3.2 Boosted Decision Trees (TreeNet) 

The second method, TreeNet (TN), is also based on classification trees, but uses a stochas-
tic gradient boosting technique (Salford Systems implementation: TN, cf. FRIEDMAN 1999, 
also called boosted regression trees: ELITH et al. 2008). The method of boosted decision 
trees applied in TreeNet is based on FRIEDMAN'S stochastic gradient boosting (FRIEDMAN 
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1999). Gradient boosting constructs additive regression models by sequentially fitting a 
simple parameterized function to current ‘pseudo’ residuals by least squares for each itera-
tion (VOGEL & MÄRKER 2010). The pseudo residuals are the gradient of the loss function 
being minimized, with respect to the model values at each training data point, evaluated at 
the current step (FRIEDMAN 1999). Practically, the method derives several hundreds to 
thousands of small trees. Each of the small trees typically contains six nodes, which were 
also used in our study. Each tree is devoted to contributing a small portion of the overall 
model, whereas the final model prediction is constructed by adding up each of the individ-
ual tree contributions. A big advantage of this methodology is its robustness against data 
errors in the input variables. Especially for our study, since the soil parameters are sup-
posed to be heterogeneous and might lead to misclassifications. 

Similar to the Random Forest approach, two models with the following input parameters 
and settings were performed: The entire dataset (Ntot=600) used for the modelling was 
separated into a training fraction and a test fraction (Ntrain=480, 0.8 of Ntot, and 
Ntest=120, 0.2 of Ntot). The separation between train and test data was performed by ran-
dom selection. The maximum number of trees to use was set to 2000. The TreeNet model 
uses a regression model with the Huber-M loss function. 

4 Results and Discussion 

We found significant differences between the performances of the two compared models 
RF and TN with the predicted variables. RF yielded an average balanced error rate (OOC) 
of misclassifications of 0.4923 in all three classes, respectively 49.23%. In contrast, 54.61% 
of the total point data was successfully predicted. 

 

Fig. 3: ROC validation of each class for the train (black, continuous) and test (red, 
dashed) model in RF 

The gains in the ROC validation demonstrate the much lower robustness of Random For-
ests compared with the training and test dataset performed with TreeNet (Fig. 3 and 4). 
Even though the training dataset in TN yields good results with a prediction success of 0.94 
(class I), 0.87 (class 2), and 0.91 (class 3), the test data does not show this high accuracy in 
the ROC intervals (Fig. 4). This can be explained with the low number of point data in the 
test dataset (40 for each class). The test data tended to overfit after 365 trees.  
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Fig. 4: ROC validation of each class for the train (black, continuous) and test (red, 
dashed) model in TN 

Considering the variable importance (Fig. 5), substantial differences of predictors in TN 
and RF can be distinguished. In RF, soil parameters do not play an elementary role in the 
decision process of the model. In contrary, in TN the variable importance of soil parameters 
like MSS100_sat and MSS50_sat (maximum shear strength under saturated conditions in a 
depths of 100cm, respectively 50cm) is significantly higher. As expected, geology and land 
use are not important for both models. 

  

Fig. 5: Comparison of variable importance between TN and RF 
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After regionalization of the predicted point values, the dataset was interpolated and quan-
tified in GIS. Table 2 shows the quantification of the several predicted areas according to 
the total area of the basin.   

Table 2: Comparison of areal quantification of TN and RF results after regionalization 

Model/issue Class Area [km²] Percentage of total area (~5.8km²) 

TreeNet 

Initiation 1.74 29.74% 

Slipping 0.59 10.09% 

Stable 3.52 60.17% 

Random Forests 

Initiation 4.93 84.27% 

Slipping 0.84 14.36% 

Stable 0.08 1.37% 

Landslides ‒ 0.03 0.51% 

According to the high variable importance of topographic parameters and underrating of 
soil parameters, steep slopes appear as high-risk (initiation) areas. Even ridges appear as 
slipping areas in the RF model. 

  

Fig. 6: TN (left) and RF (right) results with initiation, slipping, and stable areas 

The linear structure of the sandstone lithology imprints through the predicted high-risk 
(initiation) areas from TreeNet and is well noticeable. Forested areas in the North-eastern 
half of the catchment are less hazardous, which fits with the low number of mapped land-
slides in forest areas. Even though RF yields the greatest areas of initiation, not all landslide 
initiation edges are within class 1 (87.4%). On the contrary, all initiation edges of the 
mapped landslides are located within class 1 areas of the TN model. The results of the 
TreeNet model show that potential failure zones are good and significantly representable in 
GIS with certain soil parameters as predictor variables. 
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5 Conclusion 

In conclusion, it could be shown that: firstly, boosted decision trees are preferable to a 
Random Forest approach for the classification of potential failure spots in a catchment 
within unstable areas. In the range of the predictor variables we used, soil parameters as 
predictors have the tendency to be misclassified. Boosting avoids the misclassification of 
these predictors and yields significantly better results than unboosted approaches like Ran-
dom Forests. Secondly, the boosted decision tree method with TreeNet has appeared as a 
robust approach for the quantification of hazardous slope areas of a landslide endangered 
basin, combining topographic parameters as well as soil parameters as predictor variables 
for the model. Several physical and hydro-pedological input parameters can provide infor-
mation about soil saturation and soil failure under certain conditions in different depths. 
Hence, it could be a next step to simulate scenarios with different triggering parameters 
such as saturation and shear conditions considering rainfall or seismic activity. Thirdly, the 
combination of fieldwork for point analysis and the application of GIS in the field of quan-
tifying hazardous slope areas encourages us to regionalize theses point patterns. This en-
ables us to find areas with a high risk of landslide occurrence. 

References 

AMOOZEGAR, A. (1989), A compact constant-head permeameter for measuring saturated 
hydraulic conductivity of the vadose zone. Soil Science Society of America Journal, 53, 
1356-1361. 

BERNKNOPF, R. L., CAMPBELL, R. H., BROOKSHIRE, D. S. & SHAPIRO, C. D. (1988), A pro-
babilistic approach to landslide hazard mapping in Cincinnati, Ohio, with applications 
for economic evaluation. Bull. Assoc. Eng. Geol., 25, 39-56. 

BEVEN, K. J. & KIRKBY, M. J. (1979): A physically-based variable contributing area model 
of basin hydrology. – Hydrological Science Bulletin, 24, 43-69.  

BREIMAN, L. (1996), Bagging predictors. Machine Learning, 24 (2), 123-140. 
BREIMAN, L. (2001), Random forests. Machine Learning, 45 (1), 5-32. 
BREIMAN, L. (2002), Manual on setting up, using, and understanding random forests.  

http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf (v. 3.1). 
BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A. & STONE, C. J. (1984), Classification and 

Regression Trees. Chapman and Hall, Boca Raton. 
BRENNING, A. (2005), Spatial prediction models for landslide hazards: review, comparison 

and evaluation. Natural Hazards and Earth System Sciences, 5, 853-862. 
CARRARA, A. & GUZZETTI, F. (1995), Geographical Information Systems in Assessing 

Natural Hazards. Kluwer Academic Publisher, Dordrecht, The Netherlands, 353 p. 
CASTILLA-RHO, J. C., MARIETHOZ, G., KELLY, B. F. J. & ANDERSEN, M. S. (2014), Stochas-

tic reconstruction of paleovalley bedrock morphology from sparse datasets. Environ-
mental Modelling & Software, 53, 35-52. 

DE'ATH, G. & FABRICIUS, K. E. (2000), Classification and regression trees: a powerful yet 
simple technique for ecological data analysis. Ecology, 81, 3178-3192. 

DIEU, T. B., OWE, L., NGE, R. & OYSTEIN, D. (2011), Landslide susceptibility analysis in 
the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. 
Hazards, 59 (3), 1413-1444. 



 E. Schmaltz, H.-J. Rosner and M. Märker 70

DIKAU, R., CAVALLIN, A. & JAGER, S. (1996), Databases and GIS for landslide research in 
Europe. Geomorphology, 15 (3-4), 227-239. 

ELDEIRY, A. & GARCIA, L. A. (2009), Comparison of Regression Kriging and Cokriging 
Techniques to Estimate Soil Salinity Using Landsat Images. In: Proceedings of Hydrol-
ogy Days, Colorado State University, March 2009, 27-38. 

ELITH, J., LEATHWICK, J. R. & HASTIE, T. (2008), A working guide to boosted regression 
trees. Jour. Anim. Ecol., 77, 802-813. 

FRIEDMAN, J. H. (1999), Stochastic gradient boosting. Technical Report. Department of 
Statistics, Stanford University, USA. http://www.salford-systems.com/treenet.html. 

GESSLER, P. E., MOORE, I. D., MCKENZIE, N. J. & RYAN, P. J. (1995), Soil-landscape mod-
elling and spatial prediction of soil attributes. International Journal of Geographical In-
formation Systems, 9, 421-432. 

GHOSH, S., CARRANZA, E. J. M., VAN WESTEN, C. J., JETTEN, V. G. & BHATTACHARYA, D. 
N. (2011), Selecting and weighting spatial predictors for empirical modeling of land-
slide susceptibility in the Darjeeling Himalayas (India). Geomorphology, 131, (1-2),  
35-56. 

GRIMM, R., BEHRENS, T., MÄRKER, M. & ELSENBEER, H. (2008), Soil organic carbon Con-
centrations and stocks on Barro Colorado Island – digital soil mapping using Random 
Forest analysis. Geoderma, 146, 102-113. 

HOSMER, D. W. & LEMESHOW, S. (2000), Applied Logistic Regression. 2nd Ed. Wiley, 
New York, 392 p. 

LIAW, I. & WIENER, M. (2002), Classification and Regression by random Forest. R News, 
2-3, 18-22. 

MÄRKER, M., PELACANI, S. & SCHRÖDER, B. (2011), A functional entity approach to predict 
soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern 
Chianti, Italy. Geomorphology, 125, 530-540. 

MEI, S.-L., DU, C.-J. & ZHANG, S.-W. (2008), Linearized perturbation method for stochastic 
analysis of a rill erosion model. Applied Mathematics and Computation, 200 (1), 289-
296. 

MERTENS, M., NESTLER, I. & HUWE, B. (2002), GIS-based regionalization of soil profiles 
with Classification and Regression Trees (CART). Journal of Plant Nutrition and Soil 
Science, 165, 39-44. 

MOORE, I. D., GESSLER, P. E., NIELSEN, G. A. & PETERSON, G. A. (1993), Soil attribute 
prediction using terrain analysis. Soil Science Society of America Journal, 57, 443-452. 

ODEH, I. O. A., MCBRATNEY, A. B. & CHITTLEBOROUGH, D. J. (1995), Further results on 
prediction of soil properties from terrain attributes: Heterotopic cokriging and regres-
sion-kriging. Geoderma, 67 (3-4), 215-226. 

PARUELO, J. M. & TOMASEL, F. (1997), Prediction of functional characteristics of eco-
systems: a comparison of artificial neural networks and regression models. Ecological 
Modelling, 98, 173-186. 

SCHMALTZ, E., MÄRKER, M., ROSNER, H.-J. & KANDEL, A. W. (2015), The integration of 
landscape processes in archaeological site prediction in the Mugello basin (Tusca-
ny/Italy). In: 21st Century Archaeology ‒ Proceedings of the 41th Annual Conference on 
Computer Applications and Quantitative Methods in Archaeology, Paris, France, April 
2014. 

SHAHROKHNIA, M. A., SEPASKHAH, A. R. & JAVAN, M. (2004), Estimation of hydraulic 
parameters for Karoon River by Co-Kriging and residual Kriging. Iranian Journal of 
Science & Technology, Transaction B, 28 (B1), 153-163. 



Assessment of Shallow Landslide Initiation Areas Using Stochastic Modelling 71 

SHAPIRE, R., FREUND, Y., BARTLETT, P. & LEE, W. (1998), Boosting the margin: A new 
explanation for the effectiveness of voting methods. Annals of Statistics, 26 (5),  
1651-1686. 

SIDORCHUK, A. (2005), Stochastic components in the gully erosion modeling. Catena,  
63 (2-3), 299-317. 

VOGEL, S, & MÄRKER, M. (2010), Reconstructing the Roman topography and environ-
mental features of the Sarno River Plain (Italy) before the AD 79 eruption of Somma-
Vesuvius. Geomorphology, 115, 67-77. 

VORPAHL, P., ELSENBEER, H., MÄRKER, M. & SCHRÖDER, B. (2012), How can statistical 
models help to determine driving factors of landslides? Ecological Modeling, 239,  
27-39. 

WU, Y., CHEN, L., CHENG, C., YIN, K. & TÖROK, A (2014), GIS-based landslide hazard pre-
dicting system and its real-time test during a typhoon, Zhejiang Province, Southeast 
China. Enigneering Geology, 175, 9-21. 


