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Abstract 

Technological progress with regard to various sensors and mobile devices is constant. In 

the field of movement data analysis in particular, this has led to new opportunities thanks 

to data sources such as Global Positioning Systems (GPS). In recent years, many research 

groups have developed new approaches for analysing this data. Most of these 

approaches are computationally intensive and unable to deliver results in a reasonable 

time when run on a mobile device. This paper presents a light-weight approach, called the 

“cookie-cutter”, which follows an alternative path by using an Eulerian model to determine 

stays of individuals within reasonable computation time. The quality measures used in this 

work show that the approach is promising with regard to both accuracy and computing 

requirements. 
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1 Introduction 

Movement and movement behaviour of individuals has been of research interest for many 
years. Thanks to the technological progress in the last 40 years, the possibilities for recording 
and analysing movement behaviour have significantly improved. In the 1970s and 80s, for 
example, one had to use pencil-and-paper questionnaires, interviews, or manual counting in 
order to obtain data on the movements and movement behaviour of individuals (e.g. 
KONTIV, 1976, 1982, 1989; North American Breeding Bird Survey (Sauer et al., 2013)). 
With the triumphant advance of mobile devices at the beginning of the 21st century, 
different sensor systems – especially GPS – came into the spotlight of research (Schönfelder 
et al., 2002; Schuessler & Axhausen, 2009; Stopher et al., 2007). With former approaches, 
only specific points in time could be considered for analysis. Nowadays, time periods also 
can be recorded using GPS. The granularity and amount of data recorded with GPS offers 
new opportunities, so that it has become a lively research field in different disciplines, such 
as health or zoology (Handcock et al., 2009; Le Faucheur et al., 2008; Ungar et al., 2005; 
Wettstein et al., 2012). One of these opportunities is the possibility of continuously analysing 
the movements of one or more individuals, and of being able to predict future movements. 
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Stochastic Lagrangian approaches are widely used in research (Smouse et al., 2010). Some of 
these approaches are promising, but in practice they are computationally intensive. For 
example, as the amount of tracking data increases, mobile device memory and mobile 
connections reach their limits. Thus, complementary approaches have to be considered. 

Inspired by the work of Kang et al. (2004) and Ashbrook & Starner (2003), who extracted 
places from trajectories with the aim of being able to predict future movement, this study 
also considers the analysis of trajectories from a place-based point of view. In contrast to the 
aforementioned approaches, however, we have chosen an Eulerian approach, which allows 
both real-time and subsequent analysis. Our objective for this paper is to determine whether 
our Eulerian approach, called a “cookie-cutter” approach, is suitable for detecting stays and 
significant places from GPS trajectories. 

The remainder of this paper is structured as follows. In Section 0, related work is reviewed. 
The ground truth data, the cookie-cutter approach and quality evaluation are described in 
Section 0. In Section 0, the results are presented, before Section 5 concludes the study and 
gives an outlook. 

2 Related Work 

Stochastic modelling is widely used in the literature for modelling movements of individuals  
(Merki & Laube, 2012; Patterson et al., 2008; Pentland & Liu, 1999; Preisler et al., 2004; 
Smouse et al., 2010). Smouse et al. (2010), for instance, further differentiated between 
individual-based (Lagrangian approach) and place-based (Eulerian approach) analysis. While 
the Lagrangian approach uses the direct signature of an object’s movement, for example 
trajectories recorded by a GPS receiver, the Eulerian approach focuses on specific locations 
fixed in space and observes objects passing by, i.e. it describes movement in relation to an 
underlying grid (Merki & Laube, 2012; Turchin, 1998, p. 36). According to Smouse et al. 
(2010), the Lagrangian approach is intended to analyse an individual’s trajectories in detail, 
while the Eulerian approach is more suitable for extracting specific locations for an 
individual’s so-called “stays” or places which they are just passing by. 

This work attempts to transform data which is available in the Lagrangian model into the 
Eulerian model. It uses a raster where each cell acts as a target area. For this approach, entry 
and exit events are essential, similar to the discrete event simulation or “cookie-cutter-
detection” model described by Buss & Sanchez (2005). They use sensors with a fixed target 
range to detect movements. When the object enters the sensor range, an entry event is 
generated. The last detection of the object within the range creates an exit event. Using a 
raster grid effectively means that each cell acts as a target range of a movement sensor. 
Applying raster models to represent movement data has been investigated by van Bemmelen 
et al. (1993) and Birch et al. (2007). The former presents movement principles for raster and 
vector data models in order to find the best route. Rectangular raster models allow 
movement in the 4, 8, 16 or 32 directions, along cell edges, or using a quadtree. In contrast, 
hexagonal raster models can model movements more naturally as the distances to all six 
neighbouring cells are equal, while a rectangular grid yields different distances to the 
neighbouring cells (Birch et al., 2007). Both rectangular and hexagonal grids are used for 
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observation, experiments and simulations in ecology. The question of suitable raster cell sizes 
remains open. 

3 Methods 

This section describes the Ground Truth Data (GTD) and provides definitions related to the 
cookie-cutter approach. It also presents both the methodology applied to analyse the 
movement data, and the quality evaluation approaches used. 

Ground Truth Data 

Our test setting involved four test persons (P1, P2, P3 and P4) who carried the GPS trackers 
BT-Q1000XT and CR-Q1100P from Qstarz for five to six weeks, producing complete GPS 
traces of all their movements for the time period. The trajectories were compared with and 
evaluated against the GTD. Each test person produced detailed protocols, including all start 
and end locations. These locations were identified in OpenStreetMap, and its centroids acted 
as tagged places in the quality evaluation described in section 3.4. 

While long-term tracking is usually done using animals (Merki & Laube, 2012; Sommer et al., 
2015), this test attempted to do the same with humans, which created special circumstances. 
In contrast to animal tracking, in this test the usual sampling rate of three seconds is 
considerably higher, which requires higher hardware specifications and adapted methods for 
analysing. Another difference concerns GPS availability. Animals usually spend most of their 
time in nature, where the quality of the GPS signal is good. Humans spend most of their 
time in buildings, where the GPS signal might be weak or lost. For instance, GPS trajectories 
are not usually recorded during the night. After re-activating the GPS sensor before moving 

again, it takes some time before the sensor is ready for recording again. 

Definitions 

The following terms are used in this study. A visit refers to the time spent within a raster cell 
or cell group. A stay refers to a visit which exceeds the minimum duration for qualification as 
a stay (defined as an input parameter). A detected place covers the cell or cell group where 
the test person spends a stay. Tagged places are extracted from the manual GTD protocols. 
These protocols were prepared by the participants in the test at the same time as they were 
recording their tracks and are used to assess the detected places. A significant place is a 
detected/tagged place visited by a participant more than five times per month (which equals 
more than once per week). 

The two major input parameters are the distance (raster cell diameter and minimum distance 
between detected places) and minimum stay duration (the minimum duration of a stay in one 
raster cell or cell group required to define the time spent at this place as a stay and to define 
the cell as a detected place). Section 0 includes an explanation of how suitable values for the 
distance parameter were determined. For the minimum stay duration, a value of 15 minutes 
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was used. This was derived from Ashbrook & Starner (2003), who used 10 minutes. 
However, a greater value was deemed suitable here due to the raster model. 

The Cookie-Cutter Approach 

The trajectories are segmented based on a hexagonal raster, which is why the approach is 
called the “cookie-cutter” approach. The movement analysis relies on the entry and exit 
points of raster cells and the duration of a stay within a cell. The main advantages are the 
data abstraction and a significant reduction in data volume at an early stage. 

The five steps of the cookie-cutter approach are detailed below. 
Step 1: The recorded GPS trajectories (in our case in GPS eXchange Format – GPX) are 
read and pre-processed in two sub-steps as they are filtered and smoothed. Filtering includes 
the removal of duplicate track points (in respect to the time stamp and coordinates), the 
removal of track points before and after tunnels (or other tracking interruptions), and the 
removal of outliers. Afterwards, smoothing is performed using a triangular kernel function 
for determining weighting factors in order to produce more natural tracks and reduce spikes. 
Step 2: The trajectories are laid over a raster of hexagonal cells. The distance parameter is 
used as the cell diameter (between opposite sides). Due to its low distortion, the creation of 
the cells is based on the Universal Transverse Mercator coordinate system. The raster cells 
are assembled dynamically as required, instead of using a pre-processed raster, thus avoiding 
the existence of numerous unused cells. Analyses can be carried out without the need of a 
raster for the whole area, the extent of which is unknown at the start. The location of the 
first track point determines the starting cell. Every track point located within the current 
raster cell belongs to the same visit within the cell. When a track point falls outside the cell, a 
cell change is identified. Again, each track point which is located within this cell belongs to 
the same visit there. After each cell change, the movement in the previous cell is 
summarized. The track is divided where it intersects the cell perimeter, i.e. at the entry and 
exit points for the cell, in order to determine the real track within the cell. The duration (in 
seconds) and the length (in metres) of the stay in the raster cell are calculated and saved as an 
attribute of the stay. Lower tracking sampling rates produce some degree of inaccuracy, as 
the actual cell entry and exit times are unknown (cf. Buss & Sanchez (2005)). Figure 1 

illustrates a section of a track. 
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Figure 1: Detailed view of a track section showing the GPX track recorded by a participant (orange 

track) and the corresponding cell-based track (simplified, red); orange points indicate intersections 

where the track changes to another raster cell 

Step 3: In some situations raster cells identified consecutively are not contiguous. This occurs 
if the distance between two track points exceeds the cell diameter, for example, when the 
participant goes through a tunnel, or if their speed is very high. If the corresponding raster 
cells of two consecutive track points do not touch each other, interpolation points are added 
between the two track points. These interpolation points help to identify the raster cells 
which eliminate gaps in the cell-based track. A linear interpolation between the surrounding 
track points is used because the raster representation would eliminate most curves anyway. 
However, it can be noted that alternative interpolation methods (see Long, 2011) could be 
applied. The example illustrated in Figure 2 includes such interpolation points (the black 
points) in order to close the gaps in the resultant raster cell-based track. In this example, the 
interpolation points result from a tunnel (to the west in the map) and from avoiding gaps 
when the GPX track points skip adjacent raster cells (north-east). If the distance between 
two track points exceeds 1 kilometre, no interpolation between them is derived. 

Step 4: Cell groups are created where the track goes back and forth between neighbouring 
cells multiple times. This usually occurs when the person stays at one place. At least three 
changes between cells are necessary to generate a group. The individual cell changes within 
the cell group are ignored, and the time spent within the group is regarded as one visit. 
Possible cell movements to identify cell groups include A–B–A–B and A–B–C–A. A cell 
group can grow if the continued track also matches the recognition pattern. An example of a 
cell group consisting of four raster cells is included in Figure 2. 
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Figure 2: GPX track recorded by a participant (orange track) and the corresponding cell-based track 

(red); black points indicate interpolation points, inserted in order to fill in gaps in the raster-based track; 

the blue cells represent a cell group consisting of four cells 

Step 5: Finally, a raster cell-based track is generated. This new track features just one track 
point per raster cell, located in the centroid of the cell. For further analysis, either the 
distance attribute (which represents the real distance derived from the GPX track) or the 
standard distance between hexagon cells (which matches the diameter of the cell) can be 
used as distance calculation model. Table 1 shows an extract of the protocol file which is 
written during the processing of the GPX tracks. Each stay is recorded in the file, along with 
the entry and exit times, the distance covered (in metres) and the duration of the visit (in 
seconds). 

Table 1: Extract from list of stays, including entry and exit times, distance and duration (rows from ID 

3318426689 to the bottom correspond with Figure 1) 

Raster Cell 
ID 

Entry time Exit time Distance (m) Duration (sec) 

3318440689 2014-08-14 08:26:03 2014-08-14 16:10:56 972.1 27,893 

… … … … … 

3318426689 2014-08-14 16:33:55 2014-08-14 16:33:59 57.8 4 

3318425689 2014-08-14 16:33:59 2014-08-14 16:34:07 79.4 7 

3318424690 2014-08-14 16:34:07 2014-08-14 16:34:16 71.3 9 

3318425690 2014-08-14 16:34:16 2014-08-14 16:34:26 59.6 9 

3318423690 2014-08-14 16:34:26 2014-08-14 16:34:37 36.0 10 

3318424691 2014-08-14 16:34:37 2014-08-14 16:34:50 71.9 12 

3318426691 2014-08-14 16:34:50 2014-08-14 16:34:56 73.1 6 

The detected and significant places can be extracted from the cell-based track. Any cell or 
cell group where the person has stayed longer than the minimum stay duration is considered 
a detected place. Detected places are merged if the distance between their centroids is less 
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than the distance parameter. This situation can only occur if cell groups are involved. 
Detected places where the person has stayed more than five times are called significant 
places. Usually, these places include the person’s home, workplace and leisure-related 
locations. 

Quality Evaluation 

The performance of the Cookie Cutter approach is assessed using quality parameters in 
combination with a confusion matrix which reveals the matches between detected and 
tagged places. For the assessment, the detected and tagged places along with the entry and 
exit times are extracted from the cell-based track and the GTD. Before the quality 
parameters are calculated, matches between detected and tagged places are derived by 
analysing the coordinates of their centroids as well as the entry and exit times. In order to 
recognize a match, a detected and a tagged place must be close to each other (the distance 
between them must not exceed the value from the distance parameter), and the time spans 
between the entry and exit times must overlap. If more than one tagged place is located near 
a detected place, the nearest tagged place is considered for the match. 

Spatial Accuracy (QSA) describes the average distance between the centroids of the detected 
places and the centroids of the associated tagged places. Detected places without associated 
tagged places are not considered. A value of 1.0 indicates that the locations of tagged and 
detected places are identical. A value of 0.0 indicates that all detected places have the 
maximum offset (distance parameter) from the tagged place. 

Spatial Uniqueness (QSU) is the proportion of detected places which are associated with 
more than one tagged place. A value of 1.0 indicates that no detected place is associated with 
more than one tagged place. A value of 0.0 indicates that all detected places are associated 
with more than one tagged place. 

Temporal Accuracy (QTA) refers to the average deviation of entry and exit times between 
detected and tagged stays. A value of 1.0 indicates that all time values are equal. A value of 
0.0 indicates that all times differ by the maximum value, which is the value of the parameter 
stay duration (i.e. 15 minutes). 

The degree of Temporal Correctness (QTC) reveals the proportion of detections which do 
not have corresponding time entries in the tagged places. A value of 1.0 indicates that all 
detections have corresponding time entries, while a value of 0.0 means that no detections 
have corresponding time entries.  

The confusion matrix reveals the number of matches between detected and tagged places. 
True positives are the tagged places which have been detected by the cookie-cutter approach. 
False negatives are the tagged places which have not been detected. False positives are 
detected places without a corresponding tagged place. The true negative value cannot be 
calculated because it refers to all locations without either tagged or detected places. The 
recall, proportion and f-measure values are derived from the confusion matrix. The recall 
value reveals the proportion of detected places which have been associated with tagged 
places; precision is the proportion of all tagged places which have been detected by a 
detected place; the f-measure gives an overall assessment of the place identification. 
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4 Results 

The cookie-cutter approach was implemented as a Java application. The tracking data of the 
four participants in the test was pre-processed and analysed (see section 3.2). The results 
were investigated following the quality parameters described in section 3.4 and various 
performance attributes. The runtime was measured without pre-processing in order to assess 
the cookie-cutter approach only. All quality parameters were determined for each participant, 
P1, P2, P3 and P4.  In order to determine the most suitable distance value to be used as the 
hexagon cell diameter and as the distance parameter value in the quality evaluation, several 
distance values were compared to each other (Table 2). The aim was to find the lowest 
distance value where QSA is more than 0.75 (standardized metres, see Section 0) and the 
average offset (between detected and tagged places) is less than 53 metres. This was derived 
by doubling the figure for the GPS error (William J. Hughes Technical Center, 2014) and 

adding the average diameter of the tagged places: 2 × 9 + 35 = 53. 

Table 2: Results of quality evaluation for P1 with various values for the distance parameter 

Distance parameter 50m 75m 100m 150m 200m 500m 

Number of tagged places 27 27 27 27 27 27 

Number of detected places 31 37 34 31 29 28 

Average offset (in metres) 1 26.3 34.4 38.7 46.0 67.4 149.8 

QSA: Spatial accuracy 0.45 0.69 0.77 0.84 0.78 0.81 

QSU: Spatial uniqueness 1.0 0.97 0.97 1.0 1.0 0.89 

True positives 19 (70%) 24 (89%) 24 (89%) 24 (89%) 19 (70%) 22 (81%) 

F-measure 0.67 0.80 0.80 0.81 0.86 0.80 
1 
average distance between the detected place and the nearest associated tagged place

 

In order to identify a suitable distance value, the results from Table 2 were analysed. All 
suggested distance values are around or above the minimum value of 53m. The distance 
value of 50m produces results which are significantly worse in comparison to the other 
distance values. For example, the spatial accuracy is only 0.45m, while all other values 
produce results over 0.69m. The number of true positives and the f-measure are also worse. 
The distance value 75m is slightly lower for QSA. 75m, 100m and 150m all have a good 
number of true positives and a good f-measure. The average distance between the detected 
places and the associated tagged places rises from 34m to 46m between these three values. 
The offset between detected and tagged places is considered too high for the greater distance 
values (200m and 500m), while the other attributes provide good results, apart from the 
QSU of 500m, which indicates that several detected places are associated with more than one 
tagged place within this distance. In summary, the distance values of 75m, 100m and 150m 
provide the best results. For the remainder of this study, the value of 100m is used as the 
distance parameter to define the raster cell diameter and distance threshold between detected 
and tagged places. 

Table 3 presents detailed results for all four test participants. The proportion of correctly 
identified places (true positives) is 80 % for P1 and P4, while the other two are at 66 % and 
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67 %. Comparing the numbers of tagged and detected places reveals that the results for P3 
yield the best match. The numbers of significant places are detected well. A closer look 
reveals that the significant places include all homes and workplaces. P1 has the best f-
measure value, which indicates a good matching performance. QSA is between 0.77 and 
0.53. QSU has a value of 0.97 or higher for all four test participants, which means that 
almost all detected places are related to one tagged place only. QTA yields values between 

0.71 and 0.82, which indicates many matches between entry and exit times. QTC indicates 
that between 65 % and 76 % of all detected places have corresponding time entries in 
the tagged places. 

Table 3: Results of the quality evaluation for all four participants (distance parameter set at 100m) 

Quality evaluation P1 P2 P3 P4 

Number of days 39 40 41 38 

Number of track points 418,088 428,821 436,964 415,109 

Number of tagged places 27 35 43 26 

Number of detected places 34 (+ 26 
%) 

57 (+ 63 
%) 

44 (+ 
1%) 

47 (+ 
80%) 

Number of significant tagged places 4 2 5 4 

Number of significant detected 
places 

5 2 4 3 

QSA: Spatial accuracy 0.77 0.58 0.53 0.59 

QSU: Spatial uniqueness 0.97 0.98 1.0 1.0 

QTA: Temporal accuracy 0.71 0.73 0.79 0.82 

QTC: Temporal correctness 0.76 0.74 0.68 0.65 

False positives 9 26 13 24 

False negatives 3 8 14 5 

True positives 24 (80 %) 27 (66 %) 29 (67 %) 21 (80 %) 

Recall 0.88 0.77 0.67 0.81 

Precision 0.73 0.51 0.69 0.47 

F-measure 0.80 0.61 0.68 0.59 

Runtime (in seconds) 21 22 16 20 

The results map in Figure 3 shows detected and tagged places as well as the hexagonal raster. 
Raster cells are generated and drawn only where GPX tracks have occurred. In this example, 
all but two detected places have corresponding tagged places. 
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Figure 3: Map showing detected and tagged places; the circle diameter shows the distance 

parameter 

Conclusion and Outlook 
This study examined an Eulerian approach (the “cookie-cutter” approach) for extracting 
stays from GPS movement data. GPS trajectories were rasterized, which significantly 
reduced the data volume and created new trajectories consisting of just one track point per 
raster cell. Advantages of this approach include data reduction, fast processing time (e.g. 21 
seconds for GPX data covering 39 days for P1) and the transparent and obvious 
methodology. The raster-based track was used to identify stays at detected places, 
corresponding to the time a participant in the test spent within a raster cell or cell group. In 
order to measure the quality of the approach, the results were compared against a manually 
prepared GTD protocol created by the four participants when tracking their movements. 
The results presented in Table 3 indicate that the cookie-cutter approach provides valuable 
insights into a person’s movements. Up to 80 % of all tagged places can be detected. 
However, it has to be pointed out that the approach produces a higher level of inaccuracy in 
comparison to the GTD because it is based on raster cells and not the more accurate point 
data. The reduction in quality can be mitigated by choosing an appropriate value for the 
distance parameter. In order to produce good results, high-quality GPS tracks are required. 
This remains a challenge, however, as GPS sensors do not always work well because of bad 
reception, and they do not function while they are still initializing. Finally, and most 
significantly, humans spend a considerable amount of time in buildings where no GPS signal 
is available. 

To improve the quality of the results, a combination of the cookie-cutter approach with 
other movement analysis methodologies (e.g. Kang et al., 2004) could be investigated. Taking 
the stays created with the cookie-cutter approach as a starting point, predictions of 
individuals’ movements based on pattern recognition can be made. One field of application 
might be in mobility assistance services for people with cognitive impairment. In this 
context, it is important that algorithms for analysing movement data are not computationally 
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intensive so that they can run on mobile devices in real time. The cookie-cutter approach 
meets these requirements due to its light-weight design, which allows it to be used on 
everyday devices such as mobile phones and smart bands. 

Acknowledgements 

 This work was funded in part by the Austrian Ministry for Transportation, Innovation and 
Technology (bmvit). 

References 

Ashbrook, D., & Starner, T. (2003). Using GPS to learn significant locations and predict movement 
across multiple users. Personal and Ubiquitous Computing, 7(5), 275–286. 
http://doi.org/10.1007/s00779-003-0240-0 

Birch, C. P. D., Oom, S. P., & Beecham, J. a. (2007). Rectangular and hexagonal grids used for 
observation, experiment and simulation in ecology. Ecological Modelling, 206(3-4), 347–359. 
http://doi.org/10.1016/j.ecolmodel.2007.03.041 

Buss, A. H., & Sanchez, P. J. (2005). Simple Movement and Detection in Discrete Event Simulation. 
In Proceedings of the Winter Simulation Conference, 2005. (pp. 992–1000). IEEE. 
http://doi.org/10.1109/WSC.2005.1574350 

Handcock, R. N., Swain, D. L., Bishop-Hurley, G. J., Patison, K. P., Wark, T., Valencia, P., … 
O’Neill, C. J. (2009). Monitoring Animal Behaviour and Environmental Interactions Using 
Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing. Sensors (Basel, 
Switzerland), 9(5), 3586–603. http://doi.org/10.3390/s90503586 

Kang, J. H., Welbourne, W., Stewart, B., & Borriello, G. (2004). Extracting places from traces of 
locations. In Proceedings of the 2nd ACM international workshop on Wireless mobile applications 
and services on WLAN hotspots - WMASH ’04 (Vol. 9, p. 110). New York, New York, USA: 
ACM Press. http://doi.org/10.1145/1024733.1024748 

Le Faucheur, A., Abraham, P., Jaquinandi, V., Bouyé, P., Saumet, J. L., & Noury-Desvaux, B. (2008). 
Measurement of walking distance and speed in patients with peripheral arterial disease: a novel 
method using a global positioning system. Circulation, 117(7), 897–904. 
http://doi.org/10.1161/CIRCULATIONAHA.107.725994 

Long, J. A. (2011). Kinematic Path Interpolation and Extensions to Time Geography. Workshop 
Analysis of Movement Data, GIScience 2014. Vienna, Austria. 

Merki, M., & Laube, P. (2012). Detecting reaction movement patterns in trajectory data. 
Multidisciplinary Research on Geographical Information in Europe and Beyond Proceedings of 
the AGILE’2012 International Conference on Geographic Information Science, 24–27. 

Patterson, T., Thomas, L., Wilcox, C., Ovaskainen, O., & Matthiopoulos, J. (2008). State–space 
models of individual animal movement. Trends in Ecology & Evolution, 23(2), 87–94. 
http://doi.org/10.1016/j.tree.2007.10.009 

Pentland, A., & Liu, A. (1999). Modeling and Prediction of Human Behavior. Neural Computation, 
11(1), 229–242. http://doi.org/10.1162/089976699300016890 

Preisler, H. K., Ager, A. A., Johnson, B. K., & Kie, J. G. (2004). Modeling animal movements using 
stochastic differential equations. Environmetrics, 15(7), 643–657. http://doi.org/10.1002/env.636 



Gröchenig & Schneider 

64 

 

Sauer, J. R., Link, W. a., Fallon, J. E., Pardieck, K. L., & Ziolkowski, D. J. (2013). The North 
American Breeding Bird Survey 1966–2011: Summary Analysis and Species Accounts. North 
American Fauna, 79(79), 1–32. http://doi.org/10.3996/nafa.79.0001 

Schönfelder, S., Axhausen, K. W., Antille, N., & Bierlaire, M. (2002). Exploring the potentials of 
automatically collected GPS data for travel behaviour analysis. Zürich. 

Schuessler, N., & Axhausen, K. W. (2009). Processing Raw Data from Global Positioning Systems 
Without Additional Information. Transportation Research Record: Journal of the Transportation 
Research Board, 2105(-1), 28–36. http://doi.org/10.3141/2105-04 

Smouse, P. E., Focardi, S., Moorcroft, P. R., Kie, J. G., Forester, J. D., & Morales, J. M. (2010). 
Stochastic modelling of animal movement. Philosophical Transactions of the Royal Society of 
London B: Biological Sciences, 365(1550), 2201–2211. Retrieved from 
http://rstb.royalsocietypublishing.org/content/365/1550/2201.abstract 

Sommer, P., Kusy, B., Valencia, P., Dungavell, R., & Jurdak, R. (2015). Delay-Tolerant Networking 
for Long-Term Animal Tracking. CoRR, abs/1506.0. Retrieved from 
http://arxiv.org/abs/1506.01792 

Stopher, P., FitzGerald, C., & Xu, M. (2007). Assessing the accuracy of the Sydney Household Travel 
Survey with GPS. Transportation, 34(6), 723–741. http://doi.org/10.1007/s11116-007-9126-8 

Turchin, P. (1998). Quantitative Analysis of Movement: Measuring and Modeling Population 
Redistribution in Animals and Plants. Beresta Books. 

Ungar, E. D., Henkin, Z., Gutman, M., Dolev, A., Genizi, A., & Ganskopp, D. (2005). Inference of 
Animal Activity From GPS Collar Data on Free-Ranging Cattle. Rangeland Ecology & 
Management, 58(3), 256–266. http://doi.org/10.2111/1551-5028(2005)58[256:IOAAFG]2.0.CO;2 

van Bemmelen, J., Quak, W., van Hekken, M., & van Oosterom, P. (1993). Vector vs . Raster-based 
Algorithms for Cross Country Movement Planning. Auto Carto 11, pages 304–317. Retrieved 
from http://www.gdmc.nl/oosterom/autoca11.pdf 

Wettstein, M., Wahl, H.-W., Shoval, N., Oswald, F., Voss, E., Seidl, U., … Landau, R. (2012). Out-of-
Home Behavior and Cognitive Impairment in Older Adults: Findings of the SenTra Project. 
Journal of Applied Gerontology. http://doi.org/10.1177/0733464812459373 

William J. Hughes Technical Center. (2014). Global Positioning System (GPS) Standard Positioning 
Service (SPS) Performance Analysis Report. 

 


