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0 Summary 

The spatial and temporal distribution of seasonal snow plays a major role in a number of interacting 

and interdependent economic, social and environmental components of the Earth System. With 

regard to the Alpine Space these include, but are not limited to: the hydrological cycle (e.g. water 

supply, generation of electrical power), natural hazard risk assessment and mitigation (e.g. 

documenting and studying trigger processes and dynamics of (extreme) avalanches, decision support 

in natural hazard management), flora and fauna, as well as tourism. Accurate spatially and 

temporally explicit snow depth distribution data forms the basis of many practical and scientific 

applications in the Alpine Space. Current methods for estimating the highly heterogeneous snow 

depth distribution in mountainous areas are however mostly only valid on a regional scale (i.e. 

derived from punctual interpolation of weather station data), or require a trade-off between the 

data‘s availability, cost, spatial and temporal resolution (i.e. derived from classical space- or airborne 

platforms). Recent technological advances have given rise to the development of Remotely Piloted 

Aerial Systems (RPAS), which are able to bridge the gap between full-scale, manned aerial, and 

terrestrial observations in the field. Their primary advantages include the possibility for flexible, cost-

effective, on-demand mapping missions with multiple sensors at an unprecedented level of detail 

(ground resolution of few centimetres to millimetres). The last decade has seen a rapid increase in 

the development and variety of scientific research and commercial applications of RPAS. However, 

there is a general lack of studies investigating the application of RPAS to snow depth mapping in 

alpine environments, particularly with regard to its technical feasibility, accuracy / precision, as well 

as the merits, drawbacks and potential of employing different sensors and platforms. 

The pilot project RPAS4SNOW - Investigating the Potential of Low-Cost Remotely Piloted Aerial 

Systems for Monitoring the Alpine Snow Cover, evaluated the use of low-cost RPAS for cryosphere 

remote sensing, with particular reference to their potential for acquiring snow depth maps with high 

spatial and temporal resolution in high-alpine terrain. The project was carried out by an 

interdisciplinary team of researchers from Austria and Switzerland. 

The project encompassed: i) employing different low-cost RPAS platforms and sensors during several 

field campaigns in four study sites to collect aerial images in (high-)alpine terrain in Switzerland and 

Austria; particular attention was given to critically evaluating their operational merits and drawbacks 

for snow and avalanche monitoring in (high-)alpine terrain, against the backdrop of the current state-

of-the-art in the literature; ii) calculating multitemporal, very high-resolution Digital Surface Models 

(DSM) and Orthophotos (OP) from the RPAS imagery, using various state-of-the-art photogrammetry 

software packages; by calculating snow-free with snow-covered DSM, snow height maps were 

generated; we compared the different software with regard to its applicability and capabilities for 

processing RPAS imagery; iii) validating the RPAS results against data collected using a variety of well-

established remote sensing (i.e. terrestrial laser scanning (TLS), large frame aerial sensors (LFAS)), 

and in-situ measurement techniques, which were employed at the same time as the RPAS-flights in 

combined, large-scale field campaigns in Austria and Switzerland; comparing the performance of 

results from matched imagery, recorded at different wavelengths (i.e. visible and near-infrared part 

of the electromagnetic spectrum); quantifying the impact of vegetation on the accuracy of snow 
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depth maps; iii) disseminating, communicating and discussing the project results in the form of 

scientific and non-scientific publications. 

Generally, choice of the correct RPAS platform / sensor depends on the application (i.e. requirements 

for data – spectral / spatial resolution), size and accessibility or target area, technical specifications of 

the platform, and piloting skills. Results from RPAS4SNOW show, that the accuracy of the RPAS 

(validated against in-situ snow depth measurements, TLS and LFAS data) is in the range of 0.07 – 

0.3 m, depending on the type of RPAS platform and sensor used. The precision (i.e. repeatability) of 

the RPAS data lies at 0.045 – 0.21 m. These values are in the same range as results reported in recent 

studies, where snow depth was mapped from manned aircraft or RPAS. It was shown in this study, 

that the use of NIR-sensors for RPAS-based snow depth mapping improves the accuracy of the results 

considerably, thus confirming findings from previous studies with manned aircraft data. The 

presence of vegetation underneath the snow cover substantially influences the accuracy of the RPAS-

based snow depth maps. 

RPAS4SNOW strongly tied in with current and recently finalised research projects at the participating 

research facilities. It stimulated and strengthened the bilateral activities between the Austrian and 

Swiss project partners and could pave the way for a potential large-scale follow-up project. 
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1 Remote Sensing of Seasonal Snow 

Introduction 

The spatiotemporal distribution of seasonal snow plays a major role in a number of interacting and 

interdependent economic, social and environmental components of the Earth System, especially in 

the mountainous environments (Beniston, 1997; Dietz et al., 2012). This holds true in particular for i) 

the hydrological cycle, especially with regard to water supply for runoff and ground water recharge 

(Jain et al., 2008; Hay et al., 2006; Akyürek & Sorman, 2002; Xiao et al., 2002), as well as the 

generation of electrical power (Jonas et al., 2009; Marty, 2008; Vikhamar & Solberg, 2003); ii) natural 

hazard risk assessment, mitigation and decision support (Eckert et al., 2012; Cappabianca et al., 

2008), avalanche research and practice in general and documenting and studying trigger processes 

and dynamics of (extreme) avalanches in particular (Bavay et al., 2009; Schaffhauser et al., 2008; Luzi 

et al., 2009; Schweizer & Kronholm 2007), as well as flood prediction and mitigation (Schöber et al., 

2014; Sui & Koehler, 2001; Singh et al., 1997) iii) the growth and habitat pattern of alpine flora and 

fauna (Bilodeau et al., 2013; Peng et al., 2010; Wipf et al., 2009). Furthermore, knowledge on the 

distribution of snow is of great concern to the tourism industry, as it is often focused on snow-

dependent activities and is therefore particularly reliant on the availability of snow (Trawöger, 2014; 

Falk, 2013, 2010; Rixen et al., 2011; Varley & Medway, 2011). Therefore, accurate spatially and 

temporally explicit snow depth distribution data forms the basis of many practical and scientific 

applications in alpine terrain. 

However, the properties of mountain snowpacks (e.g. depth, density, temperature) are highly 

heterogeneous (Grünewald et al., 2010; Moreno Banos et al., 2009; Schweizer et al., 2008; Elder et 

al., 1995). This is mainly due to the influence of the complex alpine terrain on meteorological 

variables, such as precipitation and surface energy fluxes on the one hand and the redistribution of 

the original snowfall by wind transport, sloughing or avalanche activity on the other (Cline et al., 

1998; Elder et al., 1991). Current estimates of snow depths (HS) are typically derived from the 

interpolation of punctual measurements from either manual in-situ data collection or automatic 

weather stations and are combined with medium resolution satellite-based snow depth maps (Foppa 

et al., 2007). (HS is defined here as the vertical distance from the base to the surface of the snow 

pack (Fierz et al., 2009).) However, these methods are hindered by i) the fact, that gathering in-situ 

data of the snowpack may be labour-intensive, potentially hazardous or even impossible and ii) the 

lack of knowledge regarding the representativeness of snow depth measurements by automatic 

weather stations. The combination of these factors renders traditional snow depth approximations 

suitable mostly only for regional-scale applications, because they are not able to capture the present 

spatial variability, especially over small areas (Ginzler et al., 2013). A further issue in this context is 

the need for accurate and readily available information on the spatial extent and volume of released, 

entrained and deposited debris of avalanche events. This data serves as a vital basis of avalanche 

forecasting, warning and hazard mapping/mitigation measure planning (e.g. Bair, 2013; Chrustek et 

al., 2013; Bartelt et al., 2012; Buser et al., 1985; LaChapelle, 1980). This holds true not only for 

extreme avalanche periods (e.g. winter 1998/99), but also the regular documentation of smaller, 
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non-destructive avalanches. As this documentation has proven particularly difficult in the past, it 

should be addressed by current research. First attempts have been performed by Bühler et al. (2009) 

and Lato et al. (2012) with optical sensors and by Malnes et al. (2013) using Synthetic Aperture 

Radar. 

Traditional Approaches 

Remote sensing offers a versatile and powerful alternative to in-situ data collection, as it allows 

systematically gathering data on the physical properties of snow over large areas from a position, 

which is not endangered by avalanches (Nolin, 2010). Most techniques do not measure snow depth 

directly, but involve gathering surface height data at different points in time, e.g. in snow-free and in 

snow-covered conditions, and subtracting them. A wide range of remote sensing technologies 

relevant to cryosphere research have been developed (Kääb et al., 2005; Rees, 2006). They can be 

classified according where they are mounted: i) spaceborne, ii) airborne and iii) terrestrial: 

 Cryosphere remote sensing from spaceborne platforms has been performed for decades 

(Dietz et al., 2012) and a wide range of sensors are currently available (Malnes et al., 2015). 

Optical sensors operating in the visible and infra-red bands include: i) low- resolution sensors 

(e.g. NOAA/AVHRR, GOES or Envisat AATSR), which reach a very high temporal resolution of 

up to 3 h, at the cost of spatial resolution (typically 1000 m); ii) medium-resolution sensors 

(e.g. Terra & Aqua MODIS, Landsat MSS or Envisat MERIS) with data acquisition every 2-

3 days at 80-300 m spatial resolution; iii) high-resolution sensors (e.g. SPOT 1-5, Landsat 4-5 / 

TM, Landsat 7 / ETM+, Sentinel 2) with a spatial resolution of ≥10 m and revisiting times 

reaching 2-3 days with the progression of the sentinel missions (Drusch et al., 2012); iv) very 

high-resolution products (e.g. Pléiades, SPOT 6-7, IKONOS, WorldView, KOMPSAT, QuickBird 

– partially available in stereo-view), which can generate products at decimetre-resolution, 

some on a daily basis. Marti et al. (2016) recently demonstrated the potential of stereo-view 

very-high resolution imagery to produce HS maps for a small alpine catchment. However, 

while some of the above-mentioned products are available free of charge (e.g. Sentinel), 

especially the very-high-resolution data is very cost-intensive (Whitehead et al., 2013). 

Alternatively, microwave sensors are available: Passive microwave sensors (e.g. Scanning 

Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Image (SSM/I)) are 

mainly used for global monitoring due to their very low resolution, while active microwave 

sensors may reach spatial resolutions of up to 3 m (e.g. TerraSAR-X). However, the cost, 

temporal resolution and processing complexity of the latter data source present a significant 

drawback (Dietz et al., 2012). Light Detection and Ranging (LiDAR) utilises the same basic 

principles as the microwave radar and is viewed as the direct extension of these techniques. 

The main difference, however, is that it operates at much shorter wavelengths and is thus 

capable of delivering data with a more precise resolution and higher accuracy (Jelalian, 

1992). Potential space-borne LiDAR sensors for snow depth estimation are available (ICESat), 

but have to date not been deemed appropriate for this application (Enßle et al., 2015). 
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 Airborne sensors have the advantage of being closer to the observed objects than satellite 

sensors, resulting in the data being less affected by atmospheric influences (e.g. distortion, 

cloud coverage). Airborne Laser Scanning (ALS) has been applied to a wide range of snow 

topics (e.g. Grünewald et al., 2010). ALS is a well-established method to generate snow depth 

maps (e.g. Deems et al., 2013; Deems and Painter, 2006) with vertical accuracies of few 

decimetres to centimetres (Deems et al., 2013; Bollmann et al., 2011; Grünewald et al., 2010) 

over large areas. However, as Bühler et al. (2015a) point out, ALS data acquisition is general 

very costly. Digital photogrammetry, the generation of OPs and DSMs from high spatial 

resolution aerial imagery by automated point matching, is a valuable alternative. First 

investigations, demonstrating the potential of this method, reach back almost 50 years (e.g. 

Smith et al., 1967; Cline, 1993, 1994). However, the reported efficiency and the achieved 

accuracies of >1 m at the time, were not feasible to most applications. With the advent of 

digital photogrammetry, this changed fundamentally (Bühler et al., 2012; Hobi & Ginzler, 

2012; Eckardt et al., 2004). Recent investigations report accuracies in the range of 

centimetres to decimetres, which allow a detailed analysis of the spatial variability of the 

mountain snow cover over large areas (hundreds of square kilometres), without the need for 

ground control (Nolan et al., 2015; Bühler et al., 2015a; Lee et al., 2008), but still require a 

fully equipped manned aircraft and corresponding maintenance logistics. 

 Terrestrial techniques for determining HS, include Terrestrial Laser Scanning (TLS) and 

Terrestrial Radar (TR). TLS is a ground-based, automatic procedure, allowing dense sampling 

of a surface or object by converting distance and angle measurements to 3D coordinates 

(e.g. Molina et al., 2013; Prokop, 2008; Pfeifer & Briese, 2007). The snow depth is not 

measured directly, but calculated by comparison of the current surface measurements with 

previously recorded snow-free terrain heights (Nolin, 2010). Since the advent of the use of 

TLS in snow science in 1999 (Moser et al., 2001), both the technical development of the 

hardware and software, as well as the amount of research and applications, have seen a 

staggering increase (Wiatr et al., 2013). On the upside, TLS may operate with high temporal 

and spatial resolution at vertical accuracies in the range of 0.1 m (Deems et al., 2013; 

Melvold & Skaugen, 2013); on the downside however, TLS may only record data within the 

line of sight, with resolution, accuracy and coverage depending on the distance to the object 

and the illumination angle (i.e. laser footprint size), while being highly susceptible to poor 

weather conditions (i.e. fog, rain, snow or high winds) (Molina et al., 2013; Sailer et al., 

2008). One of the most recently published applications, investigates the use of TLS to assist 

avalanche control and forecasting (Deems et al., 2015). While many applications of TR are 

described in the current literature, these are mainly aimed at determining qualitative snow 

cover properties (snow water equivalent, grain sizes or snow layering), rather than snow 

depth on a regional scale (e.g. Sundström et al., 2012; Previatia et al., 2011; Mitterer et al., 

2011; Heilig et al., 2008). 
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Despite the large range of available platforms and sensors, the choice of the ideal dataset for snow 

depth monitoring often requires a trade-off between the data’s temporal and spatial resolution, as 

well as its availability and cost. While for instance optical satellite data typically offers a sufficient 

spatial coverage, it can be compromised by unfavourable meteorological conditions (e.g. cloud 

coverage, haze) (Whitehead et al., 2013). 

Remotely Piloted Aerial Systems 

Advances in recent years in the fields of aircraft construction (light weight construction & engine 

development), navigation (GNSS – Global Navigation Satellite System & IMU – Inertial Measurement 

Unit) as well as mechatronics in general (mechanics, electrical engineering & informatics) and digital 

photogrammetric software design in particular, have given rise to the development of Remotely 

Piloted Aerial Systems (RPAS) (Briese et al., 2013). The term RPAS is used here according to the 

recommendation by the International Civil Aviation Organization (ICAO, 2014); other denominations 

include Unmanned Aerial Vehicle (UAV), Unmanned Aerial System (UAS) or drones. RPAS is the 

collective designation for i) a purpose-built, radio-controlled aircraft, ii) sensor payloads and iii) a 

ground control station operated by a human pilot (Van Blyenburgh, 2012; Vallet et al., 2012; Hardin 

& Jensen, 2011). According to the classification suggested by Watts et al. (2012), the type of aircraft 

may range from Micro or Nano Air Vehicles with a typical flight time of 5-30 minutes, operating at 

very low altitudes (<330 m), to High Altitude, Long Endurance platforms, operating at altitudes of 

20,000 m and more and with flight times of >30 h, used for both civil and military missions. In this 

context, the term RPAS refers to the scientific use of different types of Low Altitude, Short Endurance 

(LASE) aircraft with a typical weight of 2-5 kg, flight times of 10-30 minutes and a wing span of <3 m, 

optimised for easy field deployment / recovery and transport. The three main platforms available 

within this definition of RPAS include fixed-wing aircraft, helicopters and multicopters. All three 

RPAS-types were either operationally used or tested in the scope of RPAS4SNOW (Chapter 3.2). 

Due to their specific features, RPAS are able to bridge the gap between full-scale, manned aerial, and 

terrestrial, field-based observations (Briese et al., 2013; Rosnell & Honkavaara, 2012). The primary 

advantages of the LASE RPAS include the possibility for flexible, cost-effective, on-demand mapping 

missions with multiple sensors at an unprecedented level of detail (ground resolution of few 

centimetres to millimetres, depending on the type of sensor and the respective flight height) (Lucieer 

et al., 2014). Due to the fact, that RPAS are operated at lower altitudes, they are also less influenced 

by medium / high level clouds or haze. Due to their small size however, they can only be operated 

under favourable weather conditions (e.g. low wind speed, good visibility). From a scientific point-of-

view, RPAS offer the advantage of allowing a flexible matching of the required spatial resolution and 

sensor type to the specific application, i.e. research question at hand. Additionally, the currently 

available software packages have significantly reduced the requirements for the recorded data, 

making high-performance algorithms for 3D processing (e.g. structure from motion computer vision 

techniques (Turner et al., 2012)) more readily available to RPAS-users (Lucieer et al., 2014; 

Hugenholtz et al., 2013, 2012; D’Oleire-Oltmanns et al., 2012; Eisenbeiss & Sauerbier, 2011; Bláha, 

2011; Haala, 2011). 
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The growing popularity of RPAS is reflected in recent special issues on RPAS for remote sensing 

applications (IEEE TGRS: March 2009; GIScience and Remote sensing: March 2011; Geocarto 

International: March 2011; Remote Sensing: June 2012) in addition to dedicated conferences, such as 

UAV-g (Lucieer et al., 2014). 

Although the concept of unmanned aerial platforms is not a recent technological advancement – the 

first attempts predating human-piloted flights – the last decade has seen a rapid increase in the 

development and variety of civil applications of RPAS in scientific research and commercial 

applications - a detailed summary is supplied by UVS-INFO (2016). Applications dealing with mapping 

and monitoring studies in mountainous regions, include: Fernández et al. (2015) - extensive overview 

of recent surveys of landslides; Ryan et al. (2015) and Whitehead et al. (2013) - RPAS applications on 

glaciers; Danzi et al. (2013) - rockfall, Dall’Asta et al. (2015) - rock glaciers and Tampubolon and 

Reinhardt (2015) - volcano mapping. Enßle et al. (2015) successfully tested RPAS-data acquisition in 

elevations up to 4,200 m a.s.l., proving that RPAS are capable of operating even at very high 

altitudes. However, to this date, the number of studies dealing with RPAS-based photogrammetry to 

map snow cover and avalanche are very limited: First results have recently been published by De 

Michele et al. (2016), Eckerstorfer et al. (2016), Harder et al. (2016) and Vander Jagt et al. (2015) 

within the duration of RPAS4SNOW. In all three publications the authors conclude, that UAS-based 

snow depth mapping holds great potential, but that further studies are required especially with 

regard to multi-temporal mapping, implementing sensors capable of measuring at e.g. near-infrared, 

or mapping different snow cover conditions or topographic areas. Additionally, Basnet et al. (2016), 

Prokop et al. (2015) and Thibert et al. (2015) reported on using ground-based photogrammetry for 

HS and avalanche detection. Further scientific applications of RPAS include: soil erosion (e.g. 

D’Oleire-Oltmanns et al., 2012), debris flow monitoring (e.g. Adams et al., 2016; Sortier et al., 2013), 

archaeology (e.g. Verhoeven, 2011), vegetation monitoring (e.g. Lucieer et al., 2014), geomorphology 

(e.g. Hugenholz et al., 2013) and hydrology (e.g. Molina et al., 2013). 
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2 Project Structure - Overview 

The main aims of RPAS4SNOW, including the specific research questions that were addressed by the 

project, were: 

 Establishing a current state-of-the-art of RPAS snow remote sensing from the relevant 

literature as a basis for the presented investigations. 

 Performing several RPAS flights in study sites in Austria and Switzerland with different RPAS 

platforms and sensors, testing different data collection routines (flight paths, flight heights, 

overlap), sensor settings (aperture, exposure) and (low-pass) filters. In the course of these 

campaigns, an appropriate number of ground control points are distributed in the target 

areas and their position determined with terrestrial GNSS-instruments, for accurate 

georeferencing of the RPAS-data. 

 Calculating multitemporal, very high-resolution RPAS-generated DSMs and OPs with various 

state-of-the-art photogrammetry software packages using novel processing algorithms (i.e. 

structure from motion). Comparing such software with regard to their suitability for RPAS-

data processing. 

 Validating the RPAS-results against data collected using a variety of well-established remote 

sensing and in-situ measurement techniques (terrestrial laser scanning, manual snow depth 

measurements and large-frame aerial cameras). 

 Evaluating the merits and drawbacks of deploying low-cost RPAS platforms and sensors for 

snow depth mapping in mountainous regions; disseminating, communicating and discussing 

the project results in the form of (popular) scientific publications in journals and at 

conferences. 

The project was split into three main sections: data collection, data processing / analyses and results 

& reporting. Figure 1 gives on overview of processing steps within each section. The following 

Chapter 3 provides an overview of the instruments and methods used for RPAS and ancillary data 

collection; Chapter 4 presents the analysis and processing routines employed, as well as providing 

details on the comparison of the photogrammetry software; in Chapter 5 the results are highlighted, 

and discussed in Chapter 6. The Annex includes a list of publications resulting from the project, as 

well as the technical specifications of the employed instruments. 
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Figure 1: Overview of the RPAS4SNOW project structure. 
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3 Data Collection 

3.1 Study Sites & Campaigns 

During the project, the RPAS4SNOW-team conducted 20 measurement campaigns and 56 RPAS-

flights at four study sites in Austria and Switzerland: 10 campaigns (34 flights) at Lizum (Austria), 4 

campaigns (14 flights) in Tschuggen, 2 campaigns (3 flights) at Brämabühl and 4 campaigns (5 flights) 

at Wildi (all Switzerland). All sites represent different types of typical alpine terrain (valley bottom, 

slope, exposed ridge) and are characterised by very good access and a well-established 

infrastructure. Furthermore, data and experience from several previous projects were available for 

these sites. 

Lizum (Austria) 

The study site Lizum lies approximately 20 km south-east of Innsbruck, Tyrol (Austria). It is situated at 

the top of the Watten valley (Tuxer Alps), where the valley floor reaches an altitude of approximately 

2,020 m a.s.l. and is surrounded by peaks, the highest reaching 2,886 m a.s.l. This study site was 

chosen mainly because of its good accessibility by road and well-established infrastructure. Figure 2 

provides an overview of the study site and its location, as well as the areas of interest (AOI), where 

RPAS (11.8 ha) and TLS (8.6 ha) data were collected. The land cover in the study site is mainly 

characterised by alpine grass and shrub vegetation as well as some large boulders in the western and 

central part. Additionally, some gravel roads, which are partially cleared in winter, run along the 

northern and eastern section of the site. Figure 3 gives an impression of the site in winter, recorded 

from the eastern border of the study site looking westward. 

An automated weather station (AWS), run by the BFW, is located in close proximity to the RPAS-

target area (Figure 2). 



   

 

RPAS4SNOW Page 11 11.07.2016 

 
 

Figure 2: Overview of the study site Lizum and location of the AOIs for TLS & RPAS (source OP – TIRIS 2016); 

location of study site in Central Europe (inset); location of the automatic weather station (white asterisk). 
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Figure 3: Terrestrial photo of the Austrian study site. 

Figure 4 gives an overview of the data collection at the Lizum study site. Three RPAS- and one TLS-

campaign were launched at the end of 2014 and the beginning of 2015, respectively (two during 

snow-free and two during snow-covered conditions), to test and calibrate the equipment. The main 

data collection started on 11 Feb 2015, where RPAS, TLS and in-situ data were retrieved (orange, 

yellow and green dots, respectively). The final snow-free RPAS-flights, used to calculate the snow 

depths, were performed on 21 Aug 2015. In total 34 RPAS-flights were performed, of which 16 were 

used for further analyses. Details of all flights (i.e. flight, sensor and image properties as well as 

Ground Control Point (GCP) info are provided in the Annex (Table 8). 

 

Figure 4: Overview of RPAS, TLS and in-situ data collection campaigns at the Austrian study site (each dot 

represents one campaign day). 
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Tschuggen (Switzerland) 

(the reader is kindly referred to Bühler, et al. 2016 for details) 

Brämabühl (Switzerland) 

(the reader is kindly referred to Bühler, et al. 2016 for details) 

Wildi (Switzerland) 

The Wildi-Avalanche occurs nearly every year at the entrance of the Dischma valley (46°47’ N, 9° 51’ 

E) (Figure 5a). The release zone is located close to the ski run of the Brämabühl at approximately 

2,300 m a.s.l. (Figure 5b). The slope is exposed to the northeast and divided into several gullies by 

forested ridges. In the gullies the avalanches regularly destroy the forest, thus only small trees are 

located here. The deposition area is located at approximately 1,600 m a.s.l., about 300 m uphill from 

the main road through the Dischma valley (at 1,580 m a.s.l.). Large avalanche events in the Wildi 

catchment may therefore reach the road. During Easter 2015 it snowed more than 1 m within three 

days, which was the highest amount of new snow within such a short time during the winter 

2014/15. On 4 April2015 a dry snow avalanche released in the Wildi catchment. A snowboarder was 

posted as missing two days later. The police could localise his cell phone with an accuracy of about 

100 m within a 4 m deep side arm of the avalanche that flowed to the north into the forest. By this 

time, the deposition was frozen hard and probing was not possible. The victim was recovered only 

ten days after the accident, when probing was possible due to higher temperatures (Techel et al., 

2015). The exact course of events of this accident is unknown. 

The Wildi avalanche release and deposition zone were mapped on 7 April 2015, two days after the 

avalanche occurred, using a Falcon 8 Octocopter (Ascending Technologies). The UAS acquired 99 

images of the release zone and 76 images of the deposition zone (size: 0.4 km² and 0.15 km², 

respectively). It flew at an average elevation of 190 m (release zone) and 130 m (deposition zone) 

above ground level, with an image overlap of approximately 70% in x-and y-direction. To cover the 

whole area, we needed two starting locations for the release, as well as one for the deposition zone. 

This was necessary in order to comply with legal regulations for UAS, stating that they may only be 

operated within visual line of sight. The snow free images of the deposition and release zone were 

collected on 8 August 2015 and 21 September 2015, respectively. 
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Figure 5: Wildi avalanche near Davos; a) close-up of the deposition area; b) overview of the avalanche, 

showing release area, avalanche track and deposition area (Pixmap © 2015 swisstopo 5 704 000 000). 

3.2 RPAS 

Platforms 

The RPAS4SNOW-team had three different types of low-cost LASE RPAS platforms at their disposal 

for the project: i) a fixed-wing RPAS with an wing span 1.6 m and an average flight time of 30 minutes 

(Multiplex Mentor Elapor); ii) an AscTec Falcon 8 octocopter with 12-22 minutes flight time; iii) a 

helicopter RPAS with a blade length of 680 mm and an average flight time of 10 minutes (model: 

Mikado Logo 600 SE). The first two RPASs were already acquired prior to RPAS4SNOW, while the 

latter was bought and tested during the project runtime. The main advantages helicopters have over 

multicopters, are their resistance to strong / gusty winds, longer flight times through higher 

efficiency and the possibility for controlled landing even after total machine failure. This makes the 

helicopter (theoretically) substantially more suitable to high-alpine flight campaigns. All systems use 

electric, brushless motors, which are powered by lithium-polymer batteries. Technical specifications 

of all RPASs are included in the Annex (Table 9). 
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Figure 6: Different types of LASE RPAS platforms used in RPAS4SNOW, top – Multiplex Mentor fixed-wing; 

middle – AscTec Falcon 8 multicopter; bottom – Mikado Logo 600 SE helicopter. 
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RPAS data acquisition was supported or entirely incurred by autopilot systems. These systems can be 

divided into two main components: hardware and software. The RPAS are equipped with an IMU, 

composed of an acceleration sensor, an absolute position transducer and a magnetometer, as well as 

a GNSS (Aber et al., 2010; Böhm et al., 2010), to determine the absolute (X, Y & Z) and relative (roll, 

pitch & yaw) position of the RPAS in space. Controlling and timing of the RPAS hardware was 

performed by the autopilot software, which also allowed the pre-flight mission planning. In the 

course of mission planning the flight path, flight height and flight speed were defined, as well as the 

camera trigger points. The flight data from all instruments was stored on-board the RPAS and 

synchronised with the recorded images after completion of the mission (geotagging), e.g. to facilitate 

the image-processing. All flights were conducted by experienced pilots, who were able to intervene 

at any time and manually pilot the RPAS. Previous flights by the BFW had proven the difficulties of 

automatic flight in alpine terrain, sometimes making an entirely manually conducted flight necessary 

(Sortier et al., 2013; Sortier et al., 2012). Both custom-built BFW-RPAS were operated with the 3DR 

ArduPilotMega, including an on-board GNSS/IMU and the associated software. The Falcon 8 was 

operated with the software provided by the manufacturer. 

Due to the strongly increased utilisation of RPAS, national and transnational jurisdictions have been 

put into place, regulating their use (Watts et al., 2012). In the European Union the European 

Commission and the European Aviation Safety Agency are responsible for RPAS over a gross weight 

of 150 kg. RPAS falling below this threshold are regulated on a national level. In Austria, an 

amendment of the aviation law (Luftfahrtgesetz) regulates the use of RPAS (Austro Control, 2013). 

Briese et al. (2013) provide a detailed description of the legislative situation in Austria. In Switzerland 

RPAS legislation is provided by the Federal Office of Civil Aviation. Legislative regulations from both 

countries were adhered to during RPAS4SNOW. 

Sensors 

The RPAS were fitted with different cameras: Sony NEX5(R) (fixed-wing), Sony NEX7 (multicopter) 

and Sony Alpha7R (helicopter). The choice of these sensors was based on their suitability for 

integration into RPAS (e.g. volume, interface, remote shutter release), sensor resolution and 

availability of prime lenses, essential to stable photogrammetric analysis. The following prime lenses 

were employed: 16, 20, 35, 50 & 55 mm. Sensors in all three cameras where modified (i.e. the built-

in long-pass filter removed), increasing the effective sensitivity of the standard sensors to the near-

infrared (NIR) part of the spectrum (< 1,200 nm). Using changeable long- and shortpass filters, NIR-

images (λ > 770 nm and λ > 830 nm (Figure 7, left)) as well as images in the visible light spectrum 

(VIS) (Figure 7, right), could be acquired. The achieved better response for wavelengths above 

700 nm should be a significant advantage when measuring snow surface reflectance, mainly for 

transformed snow like firn, aged snow and ice (Figure 8). However, these images are not calibrated 

and therefore only give a rough impression of the reflectivity of the snow and vegetation in these 

wavelengths, as opposed to a fully-calibrated multispectral camera (Rabatel et al., 2014; Lebourgeois 

et al., 2008). It has been shown in the relevant literature, that NIR-sensitivity does however have 

advantages for snow (Bühler et al., 2015b) and vegetation (Tucker, 1979) analysis, as well as in 

diffuse light conditions (Bühler et al., 2016a). In RPAS4SNOW, we tested this for RPAS-data and 
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evaluated the impact on the quality of the results. The technical specifications of all cameras are 

listed in the Annex (Table 10). 

  

Figure 7: Spectral response of camera with NIR-filter (left) and VIS-filter (right). 

 

Figure 8: Reflectance of different surface types related to snow cover. The bandwidths of Landsat (TM), 

MODIS (M) and AVHRR are also integrated (Zeng et al., 1984, modified) (modified after Dietz et al., 2012). 

Terrestrial GNSS 

As the RPAS were not equipped with a high-quality (i.e. survey-grade) GNSS receivers to determine 

their location in space, or an adequately accurate IMU, indirect georeferencing with ground control 

had to be used (e.g. Nolan et al. 2015; Harwin et al. 2015). Prior to all RPAS-flights, GCPs consisting of 

0.4 x 0.4 m black and white checkered wooden boards or targets sprayed on the now surface (Figure 

9), were distributed at predefined, undisturbed locations within the AOI (Figure 10). 
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The location of the GCPs was recorded using different terrestrial GNSS instruments (Trimble 

GeoExplorer XT & XH), equipped with external antennas (Figure 10). Real-time correction was used in 

the field and differential correction from the scripps orbit and permanent array centres in the vicinity 

of the study sites applied in the office via the Trimble software Pathfinder Office (Trimble, 2015). The 

final x-, y- & z-coordinates of each GCP were averaged from >200 points we recorded at each GCP 

location. Path Finder Office software estimates the horizontal and vertical precision for each GCP 

within one standard deviation (σ) of the single measurements (Trimble, 2015). At the Austrian study 

site, we examined the accuracy of the Trimble-GNSS on 10 April 2015, by performing both GNSS and 

total station (Trimble M3) measurements of the GCPs with a prism. Due to its high accuracy (2 mm + 

2 ppm distance dependent error), this state-of-the-art total station could be used to validate the 

GNSS-accuracy. The deviation between the results from both instruments was calculated and the 

root mean square error (RMSE) computed. Despite the very promising results from this comparison 

(0.06 m, 0.12 m and 0.22 m RMSE in x-, y- and z-direction, respectively), the overall uncertainty using 

the GCP data from the GNSS proved too high and resulted in implausible HS maps. Alternatively, the 

heights of the GCPs used for referencing the snow-free RPAS-DSM, were extracted from the available 

ALS data (TIRIS, 2016). Natural GCPs were selected, which were snow-free during all winter flights 

(roof gables, flat stones, etc. – Figure 11) and their heights derived from the high-resolution snow-

free RPAS-DSM. Thus, the snow-covered data could be referenced using a stable set of GCPs, 

ensuring minimal systematic error introduced by the GCP-procedure. 

 

  

Figure 9: Ground Control Points used at the Austrian study site (left - classical photogrammetric plate; right – 

target sprayed onto snow surface with template). 



   

 

RPAS4SNOW Page 19 11.07.2016 

  

Figure 10: GNSS-measurements at the Austrian study site on 13 Feb 2015. 

 

 

 

Figure 11: GCPs used for georeferencing at the Austrian study site (Tie Point – TP1-8); distribution within the 

RPAS-AOI (left); detail of TP1 & TP7 location (right) - both against the snow-free RPAS OP. 
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3.3 TLS 

In the course of RPAS4SNOW, the BFW employed two long-range TLS instruments to collect 

validation data: the Riegl LPM-321 & LPM 98-2k. Figure 12 shows the scanners in operation during 

two measurement campaigns. The scanners’ technical specifications are included in the Annex (Table 

11). The more recent TLS-instrument (LPM-231), is capable of delivering point measurements in a 

distance of up to 6 km, reaching a sampling rate of up to 1,000 points per second at a typical 

accuracy of ± 0.025 m (1σ), plus a distance dependant error of ≤ 20 ppm, implying that in a range of 

1,000 m, 95.4% of the data can be recorded with an accuracy of ± 0.07 m (Prokop et al., 2013; 

Grünewald et al., 2010; Riegl, 2008). The scanner was controlled using the software RiPROFILE, 

provided by the manufacturer and operated at a wavelength of 905 nm. This scanner was used for an 

initial scan of the study site on 9 Jan and 11 Feb 2015. As the LPM-321 was not available for the 

whole winter, we subsequently installed the LPM 98-2k at the test site in a fixed, weatherproof 

transparent glass fibre enclosure. The LPM 98-2k measures at a lower scan rate, range and accuracy 

than the LPM-321 (≤ 4 Hz, range < 2,500 m; accuracy ± 0.05 m (1σ), plus a distance dependant error 

of ≤ 20 ppm (Adams, 2008; Prokop, 2008; Sailer et al., 2008)). However, it could be set up to 

automatically acquire scans from the study site at given intervals with a software developed at the 

BFW, while a remote connection allowed changing the properties of these scans from the office. This 

enabled the authors to reduce the manpower required for the fieldwork and to generate a large pool 

of TLS-data for validation (Figure 4). The LPM 98-2k acquired 32 scans between 13 Feb and 21 May 

2015. For a detailed description of the BFW’s automated TLS setup, the reader is referred to Adams 

et al. (2015, 2013) and Gigele et al. (2013). 

  

Figure 12: Riegl LPM-321 (left) and LPM 98-2k (right) in operation for snow depth monitoring at the Austrian 

study site on 11 Feb 2015 and 13 Feb 2015, respectively. 
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The TLS instruments were located at an elevated position over the valley, set to scan the valley 

bottom in a single scan window (Figure 13). However, unfavourable geometry of the measurement 

setup and the inherent scanning routine of the instruments caused some occlusions, especially in the 

western section of the study site, and inhomogeneous point distances (e.g. 0.05-0.1 m in 10 m and 

0.3-0.4 m spacing in 300 m distance from the scanner). Of the total 34 TLS-scans, four were selected 

for validation of the RPAS-data, based on temporal proximity to RPAS-campaigns, quality and 

completeness of the scans. Details of these scans are summed up in Table 1. The number of 

measured TLS-points was reduced during post-processing (‘AOI’ column), to minimise this bias in the 

validation procedure (as described in Chapter 0). The columns ‘point distances’, provide descriptive 

statistics of the unfiltered point cloud, with mean values in the range of RPAS-OP ground sampling 

distance (GSD) (0.2 m). 

 

 

 

 

Figure 13: Greyscale intensity plots of the TLS-measurements used for validation – the darker the grey, the 

lower the amount of energy received at the TLS instrument (blue pixels = NoData); top to bottom – 11 

February 2015, 14 February 2015, 3 March 2015 & 11 March 2015. 

Table 1: Details on the TLS-scans of the valley floor used for validation in RPAS4SNOW. 

Date Instrument Resolution X Resolution Y Total AOI Filtered Mean Minimum Maximum Stand. Dev.

11.02.2015 LPM-321 0.063° 0.063° 828,576 271,511 171,983 0.13 0.001 5.46 0.10 0.07

14.02.2015 LPM 98-2K 0.054° 0.054° 446,276 268,155 183,064 0.16 0.001 8.77 0.12 0.11

03.03.2015 LPM 98-2K 0.107° 0.108° 114,790 63,077 56,766 0.29 0.001 9.68 0.21 0.07

11.03.2015 LPM 98-2K 0.107° 0.108° 114,789 69,371 57,298 0.26 0.001 20.64 0.22 0.11

Point Distances [m]Scanner Settings Number of Points Standard 

Deviation Residues
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The routine to georeference the TLS-data consisted of consecutively scanning five targets before and 

after each scan (Figure 14, left). These targets, consisting of 0.3 – 1 m rectangular aluminium plates, 

coated with highly reflective material, were installed in the target area prior to the measurement 

campaigns (Figure 14, right). Their position was determined with a total station (Trimble M3). 

  

Figure 14: Reflective target showing up in TLS intensity plot as white spots (red circles) (left); installing a TLS-

target at the Austria study site (right). 

3.4 Large Frame Aerial Sensors (LFAS) 

The airborne digital pushbroom scanner ADS80 (Leica Geosystems) is able to acquire high spatial 

resolution imagery with a dynamic range of 12 bits in five spectral bands. It has been used in previous 

campaigns by the WSL/SLF (e.g. Bühler et al., 2009; Ginzler et al., 2013) and allows a direct 

comparison of low-cost RPAS and manned high-cost aerial imagery data collection. The accuracy of 

this technique was assessed by Ginzler et al. (2013) and showed a high correlation coefficient (R = 

0.95) with in-situ measurements performed on the same day as the airborne campaign. For details 

the reader is kindly referred to Boesch et al. (2015). 

3.5 Manual probing / in-situ measurements 

In-situ measurements of the snow depth were performed in the Swiss and Austrian study sites 

(Figure 4). The measurements were conducted by manually sounding the snow cover with an 

avalanche probe at defined intervals along several transects (Figure 15). At each stop, five 

measurements were performed, by probing all four corners and the centre of a square (2 m x 2 m). 

The snow depth was recorded to the nearest centimetre. Additionally, a GNSS was used to record the 

coordinates of the central snow depth sounding location (Garmin GPSMap 64s). Examples for the 

distribution of manual measurement locations within two study sites are provided in Figure 16. 
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Figure 15: In-situ snow depth measurements at the Austrian study site on 11 Feb 2015. 

  

Figure 16: Position of manual snow depth validation measurements (red dots) at study sites Lizum on 11 

March 2015 (left) and Tschuggen on 24 April 2015 (right); in the background the respective UAS-OP. 
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The AWS close to the RPAS target area provides hourly measurements of HS (ultrasonic sensor), 

temperature (air and snow surface), wind (average and peak speed / direction), solar radiation, as 

well as air pressure and moisture (Table 2). This data was mainly used to estimate how 

representative the AWS-location is for HS measurement at the study site. In further leading studies 

the AWS could also provide input for a sensitivity analysis to check whether the accuracy of the RPAS 

is linked to any of the meteorological parameters. 

Table 2: Example of meteorological data recorded by the Lizum AWS (11 February 2015). 
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4 Data Processing and Analyses 

4.1 Photogrammetry 

All UAS-images were processed with Agisoft’s PhotoScan Pro (PSP) (version 1.2.3) (Agisoft LLC, 2016), 

a commercially available photogrammetric software suite, that is widely spread in the UAS-

community (Tonkin et al., 2014). PSP is credited to be among the most reliable (Sona et al., 2014), 

accurate (Gini et al., 2013), effective (Mancini et al., 2013) and up-to-date (Colomina & Molina, 2014) 

software packages available for this task. It is based on a structure-from-motion algorithm 

(Verhoeven, 2011; Koenderink & van Doorn, 1991) and provides a complete, photogrammetric 

workflow, with particular emphasis on multi-view stereopsis (Harwin et al., 2015). This workflow 

consists of the following steps: i) tie point matching; ii) bundle adjustment (here constrained by 

assigning high weights to the GCP coordinates – known as indirect georeferencing or conventional 

aerotriangulation (Vander Jagt et al., 2015)); iii) linear seven-parameter conversion; removal of non-

linear deformations; iv) dense point cloud (DPC) generation with multiview stereo reconstruction; v) 

export of georeferenced OPs and DSMs. DSMs were recorded both in snow-free and snow covered 

conditions. The calculate the snow depth for each pixel, the snow-free DSM was subtracted from the 

snow-covered DSM. We referenced all data to the respective standard national coordinate systems 

(EPSG-Code 31254, Gebrauchshöhen Adria). 

Scripting 

Description and motivation of scripting in PSP 

A script language is written for a special run-time environment and can be executed automatically or 

by a human operator. In the most cases, it is an interpreter language rather than a compiled code. 

Primitives are usually the elementary tasks or Application Programming Interface (API) calls, and the 

language allows them to be combined into more complex programs. 

Scripting ensures that exactly the same procedures are applied to different data sets. Interaction by a 

user on the other hand may introduce errors or uncertainties, while executing repeated routines. 

Dozens of such calls are required for photogrammetric data processing, and several of these 

procedures run for hours. Scripting avoids time loss caused by waiting for data entry by the user. 

Minimising run-time for data processing and ensuring consistent data processing are thus the main 

advantages for scripting in this context. Most of the RPAS data acquisitions in Austria were executed 

with a fixed-wing RPAS. The photos were taken in a constant interval (about 0.8 seconds). During a 

flight over 20 to 30 minutes, on average 1,600 images were recorded. Thus, the automated routine 

allowed efficient processing of the approximately 42,000 images within a reasonable timespan. 

Basics of scripting in PSP 

PSP allows scripting by using the Python environment. The user can start only a routine inside PSP. 

This limits the development of more sophisticated algorithms or requires investing additional time to 

create work-arounds. 
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The following PSP functionalities can be accessed from Python scripts (Agisoft LLC, 2016): 

• Open/save/create PSP projects 

• Add/remove chunks, cameras, markers 

• Add/modify camera calibrations, ground control data, assign geographic projections and 

coordinates 

• Perform processing steps (align photos, build dense cloud, build mesh, texture, decimate 

model, etc.) 

• Export processing results (models, point clouds, textures, OPs, DSMs) 

• Access data of generated models, point clouds, images 

The below example from PSP illustrates the main processing steps on an already existing PSP project 

(Figure 17). The script first loads the PSP library; a document is then created and the project loaded 

into the document; thereafter the chunk of the document is used for several procedures. These 

procedures represent the main steps of the workflow in the PSP software. At the end of the script, 

the results are saved back into the file. 

>>> import PhotoScan 

>>> doc = PhotoScan.app.document 

>>> doc.open("project.psz") 

>>> chunk = doc.chunk 

>>> chunk.matchPhotos(accuracy=PhotoScan.HighAccuracy, preselection=PhotoScan.GenericPreselection) 

>>> chunk.alignCameras() 

>>> chunk.buildDenseCloud(quality=PhotoScan.MediumQuality) 

>>> chunk.buildModel(surface=PhotoScan.Arbitrary, interpolation=PhotoScan.EnabledInterpolation) 

>>> chunk.buildUV(mapping=PhotoScan.GenericMapping) 

>>> chunk.buildTexture(blending=PhotoScan.MosaicBlending, size=4096) 

>>> doc.save() 

Figure 17: Example for a simple script in PSP (Agisoft LLC, 2016). 

Tasks for our applications 

Pre-processing of the RPAS-images includes erasing irrelevant imagery (captured during start / 

landing phase) or poor quality images (e.g. blurry, overexposed). While the user is easily able to 

manually delete irrelevant images, the identification of poor quality images of snow surfaces without 

any structure is more challenging. In RPAS4SNOW we therefore tried to find an independent index or 

feature, in order to classify the image quality, but without success. However, we found that the 

image quality index (QI) – available within PSP – is an acceptable identifier for our purpose. 

Therefore, a pre-processing script was developed, which calculates the QI for each photo and 

displays the frequency distribution of the photo series (Figure 18). Firstly, the overall quality of the 

acquisition can be estimated; secondly, the histogram helps to determine a threshold for the QI, 

which allows differentiating between acceptable and unacceptable images. 
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from to

1 0 0.55 0

2 0.55 0.58 2

3 0.58 0.61 6

4 0.61 0.64 40

5 0.64 0.67 47

6 0.67 0.7 75

7 0.7 0.73 136

8 0.73 0.76 212

9 0.76 0.79 336

10 0.79 0.82 157

11 0.82 0.85 27

12 0.85 0.88 2

13 0.88 0.91 0

ID Frequency
Range

  

Figure 18: Example of a histogram for the QI of images collected on 13 Feb 2015 (flight 1). 

In the first step of the photogrammetric workflow, a script loads photos from a single flight and 

creates a chunk. Photos with a QI below a threshold defined by the user (based on the above 

histogram results) are deleted. PSP identifies unique structures in the chunk. Using this information, 

the photos are aligned and matched. The sparse point cloud is generated, which contains the 

location of these structures. An optimisation is executed, which reduces the number of points in the 

sparse point cloud. Step 1 is completed by saving the project the PSP-project. 

Now, user interaction is required. The position of the GCPs must be set in the photos and the 

corresponding coordinates acquired by GNSS entered into PSP. After placing a certain GCP, PSP 

displays only those photos, where that GCP is also located, according to the triangulation results 

from the previous step. The location of each GCP in the respective images must be checked before 

continuing. 

The second step a script calculates the DPC and mesh; the surface texture is built and tiled; finally, 

DSM and OP are calculated and exported. The second step is completed by again saving the PSP-

project. 

A further issue during the photogrammetric workflow is how to deal with outliers in the sparse and 

DPCs. Outliers may be generated by PSP, in case of misaligned or blurry source images. To exclude 

extreme outliers in the sparse point cloud, a bounding box may be defined, limiting the points 

available to subsequent procedures. However, the points inside this box (i.e. points closer to the 

correctly matched points) may be difficult to identify. The problem arises in the first step, where the 

geometry is not yet scaled. Therefore, the approach to remove points with atypical distances to 

neighbouring points (especially in vertical direction) is not possible by defining a distance threshold. 

In addition, the run-time for the calculation of the minimal distances between all points is very long. 

Our solution in RPAS4SNOW was to manually remove major outliers, by viewing the sparse point 

cloud from various perspectives. Outliers in the DPC were only filtered automatically in PSP by 

choosing the setting ‘moderate’ for ‘depth filtering’ during the DPC generation. 
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Comparison of photogrammetric software packages 

To evaluate PSP’s matching performance and result accuracy, we compared it to the following 

alternative commercial photogrammetric software packages: 

Company Link Product Version

Trimble www.trimble.com Inpho Match-T 7.0

nFrames nframes.com SURE 1.2  

For this assessment, data from two flights performed on 13 February 2015 (flight 1 & 3; VIS and NIR 

imagery, respectively) were used. For photogrammetric orientation, seven GCPs were used (as 

described in Chapter 3.2). PSP was employed for external orientation and bundle adjustment for 

both flights. The orientation errors for both flights are as follows: 

XY [cm] Z [cm] Total [cm] Projections

VIS 8.6 4 9.5 49

NIR 3.9 1.3 4.2 50  

PSP can export the orientation results as Inpho-project, which is required as input for the Match-T 

and SURE processing workflows. Using an identical orientation is required to evaluate the matching 

performance of different software packages. 

Algorithms for the retrieval of 3D-information can be separated into two general categories, which 

are actually influenced by development history. The first and older category covers the retrieval of 

image orientations using manually or automatically determined distinct features in the images, 

followed by a bundle adjustment. The newer category, mainly based on computer vision paradigms, 

represents surface reconstruction methods, where dense image matching algorithms exploit the 

previously derived orientation of the images to reconstruct complete surfaces. PSP and SURE have 

implemented the newer processing approach, in contrast to Match-T, which has its roots in the 

traditional photogrammetry processing chain. Because all packages are commercial, comparable 

details or detailed explanations about the implemented algorithms are not known or only to a very 

limited extent. Therefore, details of the dense matching process cannot be investigated and the 

workflow is defined as black box operation with different application-specific parameters. The 

following overview illustrates the completely different parameter spaces for each package: 

nFrames SURE Professional 1.2.0.779 

The parameter set of SURE is very comprehensive, overall 271 parameters can be defined within the 

following control files during processing: 

controlBootstrap.txt 

controlDsm.txt 

controlDsmMesh.txt 

controlFusion.txt 

controlInit.txt 

controlInvalidate.txt 

controlRect.txt 

controlSgm.txt 

controlTriang.txt 

controlTrueOrtho.txt 
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Agisoft PhotoScan Professional 1.2.3 

PSP was used with different quality parameters for building the DPC. 

Quality: Low, Medium, High 

Filter: Aggressive, Moderate 

SurfaceType: HeightField 

Interpolation: Disabled 

FaceCount: High 

Trimble Inpho Match-T DSM 7.0.0.49397 

Optimization type: UAS 

Generate point cloud output: on 

Create tile manager files: off 

Finite element filtering (AUTOMATIC): off 

3D filtering (AUTOMATIC): off 

2.5D filtering (AUTOMATIC): on 

XY spacing for 2.5D filtering: 3 [pixels] 

Use morphological data: off 

Number of DEM levels: 7 

Refraction correction: on 

Earth curvature correction: on 

Epipolar line distance: 3 [pixels] 

Parallax bound: 14.000000 [pixel] 

Threshold for correlation coefficient: 0.800000 

Window size for correlation coefficient: 5 x 5 [pixels] 

Resampling: on 

Adaptive matching: on 

FBM refinement for interest points: on 

LSM refinement for interest points: on 

Maximum number of iterations: 4 / 6 

Smoothing/robustness (3D points): 1.000 / 0.300 

Smoothing/robustness (X curvature): 1.000 / 0.400 

Smoothing/robustness (Y curvature): 1.000 / 0.400 

Smoothing/robustness (torsion): 1.000 / 0.400 

Theoretical height accuracy (3D point): 0.215946 [m] 

Terrain type: Undulating 

DEM generation type: Surface 

 

The following comparison was conducted with the final DPCs [million points]. PSP was evaluated with 

the DPC quality parameters "low" and "high". 

MatchT PSP low PSP high SURE

VIS 73.4 18.1 73 6129.4

NIR 68.9 17.6 70.6 4417.6  
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Evaluation 

The height evaluation of DSMs is normally conducted with reference measurements on the ground, 

typically with a vertical accuracy of 0.1 m or better, which can be achieved with currently available 

differential GNSS equipment and related post-processing. Due to technical malfunction of the GNSS 

device, the acquired manual reference values could not be used and the seven GCPs (Figure 19) had 

already been used in the external orientation of the photogrammetric projects. Therefore, another 

comparison approach had to be applied, which was not a true replacement, but allowed estimating 

the relative performance of the different software packages. 

  

Figure 19: Study site Lizum, with GCP-locations (magenta circles) and evaluation-spots (yellow circles); 

overview (left) and detail (right). 

A smooth and preferably horizontal area with a circle of radius 1 m was visually selected. All DSM 

points within this circle were used to estimate the representative height value of the circle centre. 

The median height value of the circle area was robust enough, so bias caused by ripples or tracks 

were filtered out. 14 evaluation spots were selected within the relatively smooth regions of the 

valley floor at the Lizum study site. 

The enlarged evaluation spot (Figure 20) reveals, that the DPC distribution (green dots) of PSP shows 

an expected irregular distribution (left), in contrast to Match-T (right), where the point cloud seems 

to be sampled from a raster data structure. 
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Figure 20: Point density within evaluation spot no. 5 (PSP, left; Match-T, right). 

Dense cloud interpolation 

In contrast to other point cloud filtering options, one of the parameters in PSP controls an 

interpolation mechanism during dense cloud calculation. To investigate the influence of this early 

interpolation, a further comparison between interpolated and non-interpolated VIS point clouds was 

conducted. The evaluation of the 14 spot heights revealed no significant difference and the direct 

comparison of the point clouds shows, that the interpolation has very little effect on the point cloud 

size itself (Table 3). 

Table 3: Dense cloud sizes for PSP with VIS data. 

Quality Filter Interpolation ON Interpolation OFF

Low aggressive 18147014 18146816 198 << 1%

Low moderate 18219295 18146816 2479 << 1%

Medium aggressive 70036290 70022235 14055 << 1%

Medium moderate 70635519 70635349 170 << 1%

High moderate 283332113 283327599 4514 << 1%

Difference

 

For more details on this section, the reader is kindly referred to Boesch et al. (2016). 
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4.2 Validation Data 

TLS 

Point clouds from both TLS-instruments were georeferenced within the Riegl software RiPROFILE 

(version 1.5.7, Riegl 2016) to the respective standard national coordinate systems (EPSG-Code 31254, 

Gebrauchshöhen Adria). After reading in the location of the targets in the global coordinate system, 

the software tried to link these locations to the values of the target locations in the scanner own 

coordinate system. The best solution of this procedure was found by minimising the standard 

deviation of the residues (as reported in Table 1). The georeferenced point clouds were exported as 

TXT-files and loaded into the geographic Information System GIS) Quantum GIS (QGIS) for validation. 

To avoid overrepresentation of TLS points recorded close to the scanner, resulting from distant-

dependant point density, mean z-values were calculated within a 0.2 m raster (corresponding to 

RPAS-DSM resolution) and the raster centre location plotted for validation. The direct comparison of 

TLS and RPAS data was performed between the DSMs, not the calculated HS. 

LFAS 

(the reader is kindly referred to Boesch et al., 2016 for details) 

In-situ measurements 

To validate the RPAS-HS accurately, the centre-location of the in-situ data was corrected by plotting 

them on the resulting OP and manually adjusting their position accordingly. In order to minimise the 

effect of the micro-topography below the snowpack on the results, the mean values from all five 

measurements were calculated. For the validation procedure, the mean RPAS-DSM values of all 

pixels within a 1 m radius were averaged. 
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5 Results 

5.1 Snow Depth Mapping 

5.1.1 Lizum 

At the Austrian study site, OPs with 0.05 m and DSMs with 0.2 m GSD were calculated from 

approximately 16,000 images. Below, a selection of the most interesting results is presented (a 

complete compilation is provided in the Annex - Figure 40 through Figure 56). Figure 21 gives an 

overview of the main processing outputs in a subsection of the target area. HS-values range from 

>1.5 m in the N and W areas to 0 m along the cleared roads. Some negative values are visible, where 

temporary objects were moved (close to hut in the NW) or where vegetation is present (SW). 

  

  

Figure 21: Main outputs from RPAS-data processing, exemplified with results from 10 April 2015, VIS-flight 1 

– OP (top left); shaded DSM (top right); HS map (bottom left), calculated with snow-free DSM (hillshade, 

bottom right). 
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Snow depth differences between campaigns and AWS / RPAS 

A further output from the RPAS-campaigns were relative HS maps, which show the difference in HS 

from one campaign date to the next, as exemplified in Figure 22 (blue – positive, green – negative 

changes). For example, linear HS changes indicate where roads, rivers and ski tracks, still visible on 

the 13 February, were filled up with snow during the course of the winter. 

   

Figure 22: Relative HS changes between 13 February 2015 (flight 3) and i) 3 March 2015 (flight 2) (left); ii) 13 

March 2015 (flight 1) (centre); iii) 10 April 2015 (flight 3) (right). 

To evaluate the representativeness of the AWS location, a comparison of AWS and RPAS HS values, 

averaged over the entire AOI, was performed (Table 4). While the first two dates (13 February & 3 

March) show relatively good agreement between AWS & RPAS (0.1 m), the deviation rises to an 

average 0.3 m on the last two campaign dates. 

Table 4: Absolute HS values measured by AWS and RPAS. 

Date HS AWS [m] HS RPAS [m] Difference [m]

13 February 0.72 0.61 0.11

3 March 0.98 0.89 0.09

13 March 0.92 0.64 0.28

10 April 1.12 0.8 0.32  

To explore the relation between AWS and RPAS HS measurement further, the HS changes between 

the dates detailed in Figure 22 above were calculated and compared. Again, the agreement between 

AWS and RPAS is good for 3 March (+0.01 m), it is poorer for the last two dates (-0.17 m) (‘gain/loss’). 

However, when only summing up the positive HS changes between these dates (‘gain only’), the 

overall deviations can be reduced markedly (+0.1 - +0.7 m). 

Table 5: Comparison of HS changes, relative to 13 February 2015, as measured by AWS and RPAS (average 

over whole AOI) on three campaign dates. 

gain/loss gain only

3 March +0.26 +0.28 +0.34 +0.01 / +0.07

13 March +0.2 +0.03 +0.22 -0.17 / +0.02

10 April +0.4 +0.2 +0.27 -0.17 / +0.1

Date HS AWS [m]
HS RPAS [m]

Difference [m]
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NIR data 

As reported above, both VIS and NIR data was collected at the Austrian study site. Figure 23 gives an 

impression of the results of two RPAS-flights, where the sensor was fitted with a NIR830 filter, 

performed on 10 April 2015 (flights 2 and 4, top and bottom, respectively). On both flights HS values 

reach 1.5 m in the N and centre of the AOI, while slightly positive values (0.3 m) can be observed on 

the cleared roads in both HS maps. 

  

  

Figure 23: Results from NIR830 data collection (OP, left; HS map, right). 

5.1.2 Tschuggen 

(the reader is kindly referred to Bühler, et al. 2016 for details) 

5.1.3 Brämabühl 

(the reader is kindly referred to Bühler, et al. 2016 for details) 
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5.2 Avalanche Mapping (Wildi) 

The results from mapping the avalanche at Wildi showed that around 20,000 m³ of mainly dry snow 

released (average release depth 0.8 m) and flowed approximately 1,000 m horizonal and 700 m 

vertical distance into the Dischma valley. Figure 24 gives an impression of the OP (left) and HS map 

(right) in the release area; take off points, reference points and derived release zones of the 

avalanche are indicated in the OP. 

 

Figure 24: OP of the release zone (left) and calculated snow depth (HS) values (right). 

Along the track, the avalanche eroded moist snow, depositing approximately 40,000 m³ of very 

dense, wet snow in the runout zone (Figure 25). 
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Figure 25: OP of the deposition zone (left) and calculated snow depth (HS) values (right). The HS profile 

illustrates the scattering of the deposition into different flow arms with very variable deposition depth. 

5.3 Validation 

5.3.1 Lizum 

TLS 

For TLS-validation, the height values of the RPAS-DSMs were directly compared to the TLS-point 

measurements (not the derived HS values). The scanning routine of the TLS provided a very dense 

sampling of the RPAS data with up to 183,000 points measured over approximately 70% of the AOI. 

Figure 26 provides four examples of validation results. A majority of the TLS-points acquired to 

validate the two flights conducted in March (Figure 27, top row) show good agreement with the 

RPAS-DSMs (± 0.2 m). Of those two, slightly poorer results were achieved on 13 March (flight 1), as 

deviations of 0.2 – 1 m were detected in the S sector of the AOI. 
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Figure 26: Four examples of TLS-validation results – each point represents a TLS-measurement, colour-coded 

by degree of positive (reds) and negative (blues) deviation of the RPAS from the TLS DSM [m]; 3 March 2015, 

flight 2 (top left); 13 March 2015, flight 1 (top right); 11 February 2015, flight 1 (bottom left); 11 February 

2015, flight 2 (bottom right). 
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The bottom row of Figure 27 shows two examples from poor RPAS-DSM results collected on 11 

February 2015, especially for flight 1, where deviations of > 1 m were identified in the E and W of the 

AOI. Flight 2 shows better agreement with the TLS results, but features substantial positive bias of 

the RPAS-DSM in the N section of the AOI (< 1 m). The rest of the TLS-validation results are included 

in the Annex (Figure 57 and Figure 58). A summary of the TLS-validation is provided in Figure 27. 

Highest accuracy (i.e. with the lowest spread and a median close to the TLS data (‘0’ on y-axis)) was 

achieved for results of flights 3 & 4 (13 February 2015) and both flights performed on 3 March 2015 

(median within 0.1 m and spread of no more than 0.3 m from TLS data). The poorest accuracy is 

reached by RPAS-DSMs recorded on 11 February (flight 1) and 13 February (flight 5), where the data 

is spread up to 1.5 m around the TLS-validation value (at one standard deviation). Additionally, the 

root mean square error (RMSE) was calculated and is reported in Table 6. Overall, the RMSE reflects 

the same results as the boxplots, with accuracies ranging from 0.18 m (flights 3 & 4, 13 February 

2015) to > 0.7 m (13 February, flight 5 & 13 March, flight 3). 

Table 6: RMSE of TLS-validation of RPAS-DSMs. 

Date

FlightNo. F1 F2 F3 F1 F3 F4 F5 F1 F2 F1 F2 F3

RMSE 0.42 0.28 0.22 0.23 0.18 0.18 0.77 0.22 0.22 0.27 0.35 0.70

11 February 2015 13 February 2015 3 March 2015 13 March 2015

 

 

Figure 27: Results of the TLS-validation; on the y-axis the deviation of RPAS-DSM from TLS-DSM [m] is 

marked; flight ID (MM_DD_flightnumber) is plotted on x-axis - each boxplot corresponds to one UAS-flight; 

whiskers in boxplot correspond to one standard deviation, outliers not included; the boxplots are based on 

50,000 randomly selected samples from the TLS-point clouds. 
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In-situ 

The HS-values were also directly validated by performing in-situ measurements as described above. 

An overview of results of the February in-situ campaign are presented in Figure 28. The in-situ results 

generally show a negative bias, with all medians and most upper quartiles lying below the measured 

in-situ values (‘0’ on the y-axis). Furthermore, compared to the TLS-validation, the spread of the in-

situ data is considerably smaller. However, the in-situ data reflects the same trends observed in the 

TLS-validation above: The highest accuracy (median < 0.2 m and spread < 0.5 m from reference data) 

is again achieved by flights 3 and 4 (13 February 2015), while the poorest agreement is reached on 11 

February (flight 1) and 13 February (flight 5) (median 0.3 m and spread up to 1 m from reference 

data). Additional results from the March 2015 campaign are included in the Annex (Figure 59). 

Here too, the RMSE was calculated (Table 7). Most results feature a uniformly low RMSE (< 0.3 m), 

with only three datasets (11 February, flight 1; 13 February, flight 5; 13 March, flight 3) reaching 

decidedly higher values (0.52, 0.48 & 0.97 m, respectively). 

 

 

Figure 28: Results from the in-situ validation of RPAS-HS maps in February 2015; on the y-axis the deviation 

of RPAS-HS values from in-situ-HS values [m] is marked; flight ID (MM_DD_flightnumber) is plotted on x-axis 

- each boxplot corresponds to one UAS-flight; whiskers in boxplot correspond to one standard deviation, 

outliers not included. 
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Table 7: RMSE of RPAS-HS maps’ in-situ-validation (n = 150 on 11 and 13 February; n = 37 on 13 March). 

Date

FlightNo. F1 F2 F3 F1 F3 F4 F5 F1 F2 F3

RMSE 0.52 0.30 0.25 0.32 0.28 0.29 0.48 0.23 0.27 0.97

11 February 2015 13 February 2015 13 March 2015

 

Precision 

The above-mentioned validation procedure evaluated the accuracy of the RPAS data, i.e. its deviation 

from the ‘true’ value – represented here by TLS and in-situ data. The precision of the RPAS results 

(i.e. repeatability / reproducibility) was estimated by comparing DSM values on selected areas for 

several flights. These areas are surfaces, which were not expected to change in the course of the 

measurement campaigns, i.e. remain snow-free. Unfortunately, the AOI includes very few such areas 

(one roof and one terrace), as the roads were (partially) cleared only during one campaign and all 

others surfaces are snow-covered. For these surfaces the mean deviation between snow-covered 

and snow-free DSM was calculated and the RMSE reported. 

The results indicate that the RPAS-measurements have a precision of 0.21 m, averaged over all 16 

RPAS-campaigns and both validation areas (terrace: 0.24 m; roof: 0.17 m). 

5.3.2 Tschuggen 

(the reader is kindly referred to Bühler, et al. 2016 for details) 

5.3.3 Brämabühl 

(the reader is kindly referred to Bühler, et al. 2016 for details) 

5.4 Software Comparison 

The varying point density for PSP is caused by the processing with different parameters. SURE 

calculates a very high point density in the default configuration, which leads to an unnecessarily high 

point density. The artificially narrow point density of Match-T is mainly caused by the regular point 

pattern, but also due to partial matching errors. 

The value of Z-range (Figure 29) is equal to the interquartile range (IQR) of all Z-values from the 

evaluated spot heights. The Z-range of 0.03 m for most PSP spots (VIS and NIR) confirms, that PSP 

height measurements are very consistent for all spots and also independent of the spectral range. 

The Z-range of Match-T evaluation spots reveals 0.23 m for the VIS dataset, a slightly better value of 

0.15 m can be observed for the NIR dataset. The unexpectedly high variation of 0.25 m for SURE can 

be explained (to a certain extent) with the very high point cloud density (> 20,000 pts/m2, Figure 30). 

Only a few outlier values in the unfiltered point cloud are responsible for triggering the height 

variation. 
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Figure 29: Variation of all evaluated spot heights. 

 

Figure 30: Point density within the evaluation spots 1-14. 
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Figure 31: Variation of single evaluated spot heights. 
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The median values (Figure 31) for each spot show, that only PSP measures the height in the spot area 

with small variance and independent of the spectral range. Match-T shows a distinct variation and 

underestimates the height significantly compared with PSP and SURE (e.g. points. 7, 9 & 10). Because 

all three software packages do not share software implementations, the resulting height values are 

calculated independently and the coincident height measurements of most PSP and SURE evaluation 

points are therefore highly probable. The visual inspection of two sample areas for all three software 

packages (Figure 32) confirms the results of the spot evaluations. PSP and SURE show details more 

correctly, e.g. snow traces, roof area or shape of rocks in the lower sample. The matching algorithm 

of Match-T produces many artefacts, especially linear structures seem to get exaggerated. The noisy 

appearance of the SURE DSM is mainly caused by the very high point density, where the PSP DSM has 

been slightly smoothed by filtering. 

 
 

 

Figure 32: Visual inspection of shaded DSM. 
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6 Discussion 

Applying RPAS in high-alpine terrain 

High-alpine terrain in winter is a very harsh environment for RPAS campaigns: Low temperatures 

(down to -30°C), high wind speeds / gusts (often more than 10 m s-1), high altitude (>2,000 m a.s.l.), 

high solar radiation, rapidly changing illumination and weather conditions, as well as the threat of 

avalanches are typical for these regions. Successful RPAS application therefore greatly depends on 

the ability of the platform and sensor, as well as the personnel to handle such conditions. All three 

types of RPAS (fixed-wing, helicopter and multicopter) were tested in high-alpine terrain in the frame 

of RPAS4SNOW; a comparison of their operational capabilities according to our experiences is 

provided in Figure 33. 

 

Figure 33: Comparison of different RPAS-platforms with regard to their suitability for application in wintry 

high-alpine terrain in RPAS4SNOW; each category was rated from 1 (very poor) to 5 (very good). 

While the fixed-wing platform used in RPAS4SNOW is able to map comparably large areas 

(<50 hectare), due to its long flight time (<45 minutes) and good visibility (maximum range of 

1,500 m), it is less flexible with regard to the required landing space (flat, open area), payload 

capacity (limited by fuselage volume) and portability (fragile wing / tail unit). The multicopter was 

substantially limited by short flight time (6-10 minutes with one battery charge) and poor visibility 

(orientation generally difficult to recognise due to uniform structure). Additionally, the multicopter 

used in RPAS4SNOW had a relatively high cost of purchase, compared to the other RPAS used in the 

project. However, it could be started and landed on the spot, giving it a strong advantage in rugged, 

steep terrain, showed good wind resistance (even under foehn conditions, where wind speeds 

reached 20 m s-1) and easy portability (transport in a standard daypack while travelling on skies). 

Multicopter payload limits for volume and weight are less restrictive, than for fixed-wing RPAS and 

provided compatibility with the gimbal unit, a wide range of sensors may be used on this platform 
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(Colomina & Molina, 2014). The performance of the helicopter is similar to the multicopter, in fact it 

outperforms the latter with regard to wind resistance, flight time and payload capacity. The main 

drawback of the helicopter however, is its very complex handling (substantial piloting skills required 

for calibration and navigation) and its sophisticated and thus error-prone, fragile mechanical layout. 

It is therefore less easily portable and needs to be recalibrated where necessary, strongly limiting 

operational use. 

While some of the above-mentioned criteria are rather specific to the models used in RPAS4SNOW 

(e.g. affordability, portability), the comparison does generally reflect some intrinsic characteristics of 

the different platforms (e.g. payload capacity, visibility). No weighting of the criteria was considered 

in this comparison; on the one hand the limited copter range might be a substantially limiting factor, 

when mapping avalanche terrain, as the pilot has to be in close proximity to the AOI (legal 

regulations in most countries require RPAS-flights to be conducted within visual line of sight); the 

easy handling (i.e. required piloting skills) of the multicopter on the hand is probably one of the main 

reasons for its wide-spread use and might therefore outweigh the short flight time. 

Photogrammetric snow depth mapping with RPAS 

Until very recently, photogrammetric HS mapping was deemed unfeasible (e.g. Bühler et al., 2016b). 

With the advent of large-frame digital sensors and digital photogrammetric processing technology, 

substantial progress was made in this field during the last years (Bühler, et al.; 2015, Nolan et al.; 

2015; Lee et al., 2008). While digital sensors feature a much higher dynamic range than analogue film 

and are thus less hampered by difficulties arising from changing exposures, the issue remains, that 

snow surfaces are generally characterised by very low contrast. Although the identification of 

meaningful matching points does not depend on the manual skill of the photogrammetrist anymore, 

smooth snow surfaces and different illumination conditions still pose challenges for 

photogrammetric software (Nolan et al., 2015), as demonstrated in the following example. 

As the Austrian study site is located in a valley, framed by high peaks, the late afternoon sun would 

drop behind the ridge in the west, casting a shadow over the valley floor. Four RPAS-flights were 

conducted on 13 February 2015: two while the target area was either partially (flight 4) or fully (flight 

5) shadowed (Figure 34 and Figure 35, bottom row); two while the AOI was direct sunlight (Figure 34 

and Figure 35, top row). Within each illumination scenario, VIS- (Figure 34) and NIR-flights (Figure 35, 

NIR830 filter, top; NIR700 filter, bottom) were performed. This makes for interesting results, as a 

direct comparison of the performance of the software with data acquired in different wavelengths 

and different illumination conditions is possible. The VIS shadow data shows a generally very noisy 

surface with large areas of implausible negative HS values in the centre and E, as well as very shallow 

HS results in the SE, especially in comparison to the VIS data recorded in direct sunlight. The NIR 

results on the other hand seem to suffer less from the lack of contrast, featuring only small noisy 

areas in the E, close to the light-shadow boarder. These results support the conclusion of Bühler et al. 

(2015b) that NIR-bands provide a valuable addition when mapping HS, especially under suboptimal 

lighting conditions and very homogeneous snow cover. These results were confirmed by further 

studies, detailed in Bühler et al. (2016b). 
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Figure 34: VIS data recorded with RPAS, while AOI was in direct sunlight (top row) and shadowed (bottom 

row) on 13 February 2015 (flight 1 & 5, respectively); OP (left), shaded DSM (centre) and HS maps (right). 

   

   

Figure 35: NIR data recorded with RPAS, while AOI was in direct sunlight (top row, NIR830) and mostly 

shadowed (bottom row, NIR700) on 13 February 2015 (flight 3 & 4, respectively); OP (left), shaded DSM 

(centre) and HS maps (right). 
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Issues arising from blurry images 

The choice of the correct camera settings prior to an RPAS-campaign generally requires a trade-off 

between shutter speed, ISO and aperture, as highlighted by O’Connor et al. (2016) (Figure 36). 

 

Figure 36: Exposure Triangle, showing the dependency of shutter speed, aperture and ISO (after O’Connor et 

al., 2016). 

One of the main reasons for corrupt RPAS-imagery is motion blur, which may result from too slow 

shutter speeds in relation to the movement of the RPAS platform. This applies in particular to motion 

in direction of the platform’s roll-axis, resulting from cross-winds and increases with the length of the 

camera lens. As the sensor on-board our fixed-wing RPAS was not stabilised by a gimbal and the 

platform was, compared to the copters, more affected by wind, up to 15% of the imagery was 

corrupted by motion blur. An example of the impact of blurry imagery on the quality of the HS maps 

is provided in Figure 37. As described in Chapter 4.1, the Agisoft QI was identified as a meaningful 

indicator for overall RPAS-imagery quality. While illumination, camera settings and image properties 

of both flights presented in Figure 37 are comparable (Table 3), the images collected on 13 February 

2015, (flight 3, top) had a reasonably high QI (0.72), while the data from 11 February 2015 (flight 1, 

bottom) were generally very blurry (no QI could be calculated). Although data acquisition was only 

two days apart, distinct difference can be seen in the respective HS maps: While flight 3 shows 

plausible HS values (snow free areas close to 0 m HS), flight 1 is generally characterised by high noise 

(high roughness of snow surface) and implausible negative HS values in the centre and NE sector of 

the figure. This is due to the fact that blurry images provide less potential matching points for the 

photogrammetric software to use for triangulation and point cloud densification. Therefore, the QI-

check was routinely implemented in the RPAS4SNOW processing routine. 
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Figure 37: OP & HS of two NIR830 flights (top: 13 February 2015, flight 3; bottom: 11 February 2015, flight 1). 

Influence of vegetation on snow depth mapping 

Figure 38 shows a section in the W of the Austrian study site, with some dark-green patches of 

medium-rise vegetation (pinus mugo) (top left – overview; top right – detail), which can reach several 

meters in height. The winter-OP (bottom left) from an RPAS-campaign conducted on 10 April 2016 

shows, that they are mostly covered with snow. The corresponding HS map (bottom right) however, 

reports very shallow or negative HS values, while the areas surrounding the pinus mugo reach >1.5 m 

HS. Similar implausible values are mapped for trees (mostly pinus cembra) at the study site. These 

irregularities are caused by the vegetation being compressed by the snow cover during the course of 

the winter. When comparing the snow-covered to the snow-free DSM, the net value might still be 

negative (i.e. the snow cover is lower than the vegetation in summer), depending on the HS. 

However, as the Lizum area is used as alpine pasture and lies close to the treeline, only very small 

areas of medium or high-rise vegetation are present and thus affected by these discrepancies. 



   

 

RPAS4SNOW Page 50 11.07.2016 

  

  

Figure 38: Area with medium-rise vegetation in summer (OP – top left; aerial photograph – top right) and 

winter (OP – bottom left; HS map – bottom right). 

Validation issues 

In RPAS4SNOW we employed various state-of-the-art methods to collect reference data, in order to 

evaluate the accuracy of the RPAS-based HS maps. The error-margin of these methods is well-known, 

as they have been evaluated and reported in detail in previous publications (Chapter 1). However, 

some issues were experienced in RPAS4SNOW with regard to the validation methods, which should 

be kept in mind, when interpreting the accuracy and precision evaluation of RPAS-data presented 

here: 

1. Manual measurements: As described in Chapter 5.3.1, the results from the in-situ HS 

measurements show a negative bias (on average 0.18 m). This can most likely be attributed 

to the fact, that the photogrammetrically calculated snow-free DSM reports the surface 

height of vegetation (e.g. surface of grass cover), rather than the height of the ground below 
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(as would be the case for example with LiDAR-data). When sounding the depth of the snow 

cover, the probe will penetrate the vegetation cover and most likely also part of the top soil, 

resulting in a general overestimation of HS values. Furthermore, the representativeness of 

the in-situ data has to be seen in relation to the number of recorded measurements (n = 37 – 

150), especially in comparison to TLS-data (n ≤ 183,000). The in-situ data were generally 

collected after the RPAS-flights had been finalised. However, on 13 February, the tracks from 

the previous campaign were still visible, neither precipitation nor snow drift had occurred 

during this time (0.04 m, as observed by the AWS). The disturbance of the snow cover by the 

skies of the field crew, where the manual measurements were taken, created detectable 

matching points for the photogrammetry software on an otherwise homogeneous snow 

cover. Figure 39 shows the OP of a section in the SE of the AOI on 13 February (flight 1) on 

the left, and a HS map from later that day (flight 5) on the right. In this comparison, the 

positive influence of the ski tracks on the calculated HS values can be observed. The in-situ 

data will therefore probably generally overestimate the accuracy of the RPAS-HS maps, 

compared to the remote sensing techniques used for validation. 

  

Figure 39: Example for the relationship between ski tracks (OP, left) and quality of HS maps (right; violet = 

negative, implausible HS values). 

2. TLS-measurements: The overall accuracy of the TLS-measurements is well known and the 

large number of point measurements (n ≤ 183,000) and large coverage of the AOI (70%) gives 

a very good impression of the accuracy. However, the measurement principle of the TLS 

results in a generally decreasing point density with distance from the instrument, resulting in 

an overrepresentation of validation point in the foreground of the TLS, i.e. in the E of the 

AOI. Additionally, the unfavourable geometry of the measurement setup (high number of 

acute angles, especially in the W of the AOI) has a negative influence on the validity of the 

results. 

3. LFAS-measurements: (the reader is kindly referred to Boesch et al., 2016) 

4. Evaluation of precision: The precision of the RPAS-data at the Austrian study site has a very 

limited informative values, as it is based on the comparison of very small areas. 
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Software comparison 

PSP and SURE calculate correct DSM for two differently acquired datasets over fresh snow coverage. 

The height variation of Match-T is not sufficient in relation to the available high GSD of 0.036 m. It 

has to be shown, if the parameter selection for Match-T was completely inappropriate. The 

processing time for SURE (144 h) was roughly 10x compared with PSP and Match-T. SURE 

unfortunately selects the highest precision and product options, therefore at least a significant 

performance improvement can be expected by deselecting processing options. 
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7 Conclusions and Outlook 

In this report we described the feasibility of applying remotely piloted aerial systems to map snow 

depth at very high spatial resolutions under the harsh environment of wintry (high-) alpine terrain. In 

the presented pilot study RPAS4SNOW, we used three different types of small RPAS platforms (fixed-

wing, multicopter & helicopter) to acquire aerial photographs over snow-covered mountainous 

terrain. These RPAS had a typical weight of 2-5 kg, flight times of 12-40 minutes, a wing span of 

<1.6 m, and were optimised for easy field deployment / recovery and transport. They were fitted 

with different commercial off-the-shelf sensors, which allowed recording data in the visible and near-

infrared part of the electromagnetic spectrum. The appropriate choice of platform / sensor depends 

on the application (i.e. requirements for data – spectral / spatial resolution), size and accessibility or 

target area, technical specifications of the platform, and piloting skills. Using different structure-

from-motion photogrammetry software and indirect georeferencing, we successfully calculated OPs, 

DSMs and by comparison with snow-free DSM, snow depth maps from the RPAS-imagery. 

The accuracy of the RPAS results was validated with in-situ snow depth measurements, TLS and LFAS 

data and is in the range of 0.07 – 0.3 m, depending on the type of RPAS platform and sensor used. 

The precision (i.e. repeatability) of the RPAS data was assessed by comparing results from multiple 

flights over the same area and lies at 0.045 – 0.21 m. These values are in the same range as results 

reported in recent studies, where snow depth was mapped from manned aircraft (Nolan et al., 2015) 

or RPAS (Harder et al., 2016; de Michele et al., 2016 and Vander Jagt et al., 2015). It was shown in 

this study, that the use of low-cost NIR-sensors (modified commercial off-the-shelf cameras) for 

RPAS-based snow depth mapping, improves the accuracy of the results considerably, thus confirming 

findings from previous studies with manned aircraft data (e.g. Bühler et al., 2015b). More elaborate 

and costly multispectral cameras are now available, which are small and light enough for application 

in RPAS (e.g. MicaSense RedEdge, TetraCam Micro MCA, Camer Link Condor 5). In contrast to the 

cameras used in RPAS4SNOW these multispectral cameras consist of several sensors, combined into 

a multi-camera array, allowing calibrated data collection at narrow, designated wavelength windows. 

All operate with different kind of band-pass filters. The subsequent processing allows combinations 

of different channels to calculate indices with specific characteristics (e.g. NVDI). At the end of 

RPAS4SNOW, the consortium conducted first tests with a MicaSense RedEdge, however to results 

were generated during project lifetime. The presence of vegetation underneath the snow cover 

substantially influences the accuracy of the RPAS-based snow depth maps and should be taken into 

consideration during campaign planning and data analyses. 

While RPAS-based snow depth mapping is limited to relatively small areas (less than 50 hectares per 

sortie with a fixed-wing platform), it may provide reliable snow depth information on-demand at an 

unprecedented level of detail (centimetres to millimetres), which are easily and cost-efficiently 

repeatable. A considerable drawback of the indirect georeferencing technique used here, was the 

requirement to distribute GCPs in the target area and determine their position with GNSS. Besides 

being a very time-consuming and potentially dangerous task, it reduces the benefits of a close-range 

sensing technique considerably. New light-weight electronic components are in development and 

their interaction with the corresponding software tools is being continuously improved. RTK-GNSS 
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(real time kinematic global navigation satellite system) are now available on the market for a low 

budget. RTK-GNSS aims to use the phase shift from the carrier wave of the satellite signal between a 

fixed receiver and a receiver in motion. This should allow on the fly processing and improve the 

accuracy of the determined position remarkably. RTK-GNSS were not used in RPAS4SNOW, but we 

already started with first tests. The assignment of GCPs is established in PSP by a user interaction. 

PSP already supports the detection of individual symbols as GCPs in order to skip this step. This helps 

to realise a photogrammetric work flow without user interaction. Unfortunately, the size of these 

symbols must be around one square meter caused by the height of the RPAS above ground and the 

camera specifications. Boards with such large GCP symbols are uncomfortable to be used in the field. 

Therefore, they were not applied in RPAS4SNOW. 
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Annex 

Table 8: Details on all RPAS-flights performed at the Austrian study site; RPAS - MM (fixed-wing); ML (helicopter); Camera: N5 (Sony NEX 5A/R); A7 (Sony Alpha 7R). 

Date No. RPAS Height Camera Focal LeVISth Aperture Exposure Filter Brightn. Comp. ISO No. Photos (filt.) Format QI Overlap MarkerError ReprojError

18.10.2014 1 MM 400 N5 50mm F/5-13 1/320 VIS -1 400 1073 JPEG - - - -

2 MM 150 N5 16mm F/5.6-14 1/320 VIS -1 400 951 JPEG - - - -

19.10.2014 1 MM 400 N5 50mm n/a n/a VIS n/a n/a 0 n/a - - - -

2 MM 150 N5 16mm F/6.5-13 1/320 VIS -1 400 1135 JPEG - - - -

31.10.2014 1 MM 400 N5 50mm f/10-16 1/400 VIS -1 400 1357 JPEG - - - -

2 MM 150 N5 16mm f/4-14 1/400 700 -1 400 1088 RAW - - - -

11.02.2015 1 MM 400 N5 50mm f/4.5-8 1/320 830 0 100 1060 JPEG 0.00 10 0.14 0.2 / 4.3

2 MM 400 N5 50mm f/10-18 1/320 VIS 0 100 536 JPEG 0.62 9 0.09 0.3 / 1.7

3 MM 400 N5 50mm f/8-18 1/400 VIS 0 100 894 JPEG 0.52 11 0.08 0.3 / 1.4

13.02.2015 1 MM 400 N5 50mm f/7.1-14 1/500 VIS 0 100 884 JPEG 0.57 16 0.08 0.3 / 1.4

2 MM 400 N5 50mm n/a 1/500 830 0 100 0 JPEG - - - -

3 MM 400 N5 50mm f/4-9 1/320 830 0 100 973 JPEG 0.72 6 0.22 0.9 / 3.7

4 MM 400 N5 50mm f/4-16 1/400 700 0 100 893 JPEG 0.66 10 0.1 0.3 / 4.2

5 MM 400 N5 50mm f/5-18 1/320 VIS 0 100 680 JPEG 0.65 4 0.03 0.3 / 1.4

03.03.2015 1 MM 400 N5 50mm f/8-18 1/500 VIS 0 100 652 JPEG 0.71 7 0.16 0.3 / 1.7

2 MM 400 N5 50mm f/4-7.1 1/500 830 0 100 965 JPEG 0.40 7 0.19 0.3 / 1.6

3 MM 400 N5 50mm f/5.6-14 1/500 700 0 100 0 JPEG 0.82 14 0.13 0.4 / 2.2

13.03.2015 1 MM 400 N5 50mm f/7.1-13 1/500 VIS 0 100 920 JPEG 0.81 11 0.11 0.4 / 4.6

2 MM 400 N5 50mm f/4-11 1/800 VIS 0.7 100 500 JPEG 0.00 7 0.2 0.3 / 1.2

3 MM 400 N5 50mm f/2.5-14 1/400 830 0 400 544 JPEG 0.88 9 0.12 0.5 / 1.9

10.04.2015 1 MM 400 N5 50mm f/8-13 1/1000 VIS 0 100 1046 JPEG 0.71 7 0.9 0.3 / 1

2 MM 400 N5 50mm f/10-14 1/500 830 0 400 771 JPEG 0.84 9 0.15 0.3 / 5.7

3 MM 150 N5 16mm f/10-16 1/800 VIS 0 100 1449 JPEG 0.78 6 0.14 0.3 / 2.9

4 MM 150 N5 16mm f/8-13 1/800 830 0 400 1454 JPEG - - - -

22.04.2015 1 MM 400 N5 50mm - 1/1000 VIS 0 100 0 JPEG - - - -

2 MM 400 N5 50mm f/5.6-13 1/640 830 0 400 - JPEG - - - -

3 ML 50 A7 35mm - 1/1250 VIS -0.3 100 - JPEG - - - -

4 ML 50 A7 35mm - 1/3200 VIS 0 400 - JPEG - - - -

5 ML 50 A7 35mm - 1/640 830 0 400 - JPEG - - - -

6 MM 400 N5 50mm f/5.6-20 1/1000 700 0 400 - JPEG - - - -

21.08.2015 1 MM 400 N5 50mm f/3.5-10 1/1000 VIS -1 400 810 JPEG - - - -

2 MM 400 N5 50mm f/4-10 1/1000 VIS -1 400 904 JPEG - - - -

3 MM 400 N5 50mm f/7.1 1/320 - 1/2000 VIS -1 400 1371 JPEG 0.81 36 0.4 0.4 / 2.8

4 MM 400 N5 50mm f/5.6 1/500 - 1/4000 VIS -1 400 - JPEG - - - -

Sensor Properties Image PropertiesFlight Properties Processing
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Technical specifications of instruments 

RPAS 

Table 9: Technical specifications of RPAS (top - Multiplex Mentor Elapor; middle - AscTec Falcon 8; bottom - 

Mikado Logo 600SE). 

UAV type Fixed-wing (custom-built) 

Dimensions 
1.63 m (wing span) 

1.17 m (fuselage) 

Engine 1 electrical, brushless motor 

Flight time 30-40 minutes 

Max. range <1500 m 

Empty weight 2.25 kg 

Max. take off weight 2,755 kg 

Max. payload weight 0.505 kg 

Navigation 
3DR APM 2.6 (IMU, barometer) 

3DR uBlox GNSS with Compass Kit uBlox LEA-6H module 

Wireless 

communication 

Graupner MX-20 HOTT 2,4 GHz (sender) 

Frequency 2400 ... 2484,5 MHz 

Graupner GR-16 HOTT 2,4 GHz (receiver) 

LiPo battery 
LiPolice GreenLine Light Edition 5s 

4900 mAh (591.5 g) 

 

UAV type V-Form Octocopter 

Dimensions 0.770 x 0.820 x 0.125 m 

Engines 8 electrical, brushless (sensor less) motors 

Number of rotors 8 

Flight time 12–22 minutes 

Max. range 1000 m 

Empty weight 1.1 kg 

Max. take-off weight 2.3 kg 

Max. payload weight 0.8 kg 

Tolerable wind speed 12 m s
-1

 -15 m s
-1

 

Navigation sensors 
AscTec Trinity (IMU, barometer & compass) 

AscTec High-Performance GPS (GNSS) 

Max. airspeed 

Manual mode 15 m s
-1

 

Height mode 15 m s
-1

 

GPS mode 4.5–10 m s
-1

 

Wireless 

communication 

2 independent (diversity) control/data links 

2.4 GHz FHSS link (10 to 63 mW) 

1 analogue diversity video receiver 

5.8 GHz (25 or 100 mW) 

LiPo battery PP 6250, 3 Cells 6250 mAh (426 g) 
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UAV type Helicopter (custom-built) 

Dimensions 
1.57 m (rotor diameter) 

1.35 x 0.21 x 0.47 m 

Engine 1 electrical, brushless motor 

Flight time 15-25 minutes 

Max. range <500 m 

Empty weight 3,185 kg 

Max. take-off weight 5 kg 

Max. payload weight 1,815 kg 

Navigation 
3DR Pixhawk (IMU, barometer) 

3DR uBlox GNSS with Compass Kit uBlox LEA-6H module 

Wireless 

communication 

Graupner MX-20 HOTT 2,4 GHz (sender) 

Frequency 2400 ... 2483,5 MHz 

Graupner GR-16 HOTT 2,4 GHz (receiver) 

LiPo batteries 

LiPolice GreenLine Light Edition 5s 

4900 mAh (591.5 g) 

SLS XTRON 6s 5000 mAh (747 g) 

Optical sensors 

Table 10: Technical specifications of RPAS sensors (source: Sony, 2016). 

Camera type Sony NEX-5 Sony NEX-5R Sony NEX-7 Sony α ILCE-7 

Sensor type CMOS APS-C CMOS APS-C CMOS APS-C CMOS full frame 

Sensor size [mm] 23.5 x 15.6 23.5 x 15.6 23.5 x 15.6 35.8 x 23.9 

Sensor resolution [MP] 16 16 24.3 36 

ISO range 100 – 25,600 100 – 25,600 100 – 16,000 100 – 25,600 

Weight [g] 380 380 560 594 

Object lens [mm] 16 & 50 (prime 

lenses) 

16 & 50 (prime 

lenses) 

16 & 50 (prime 

lenses) 

35 & 55 (prime 

lenses) 

Additional features n/a adapted sensor and different changeable long- and band-pass 

filters 

GNSS 

To measure the GCP-positions, a Trimble GEOXT 2008 with external antenna (modell: hurricane) was 

used in the Austrian test site and a Trimble GEOXH at the Swiss study sites. The instruments are 

capable of receiving 1 Hz GNSS-data (GEOXT – GPS; GEOXH – GPS & GLONASS) von 14 channels (12 

channels L1/L2 code und carrier phases; 2 channels Satellite Based Augmentation System to increase 

reliability, accuracy and availability of positioning - European Geostationary Navigation Overlay 

Service in Europe). The GNSS-data was real-time corrected in the field with the Bundesamt für Eich- 

und Vermessungswesen service APOS (Austrian Positioning Service) and swipos from the Federal 

Office of Topography swisstopo in Switzerland. In post-processing, differential correction was applied 

with Scripps Orbit and Permanent Array Centres (SOPAC) close to the study areas (Trimble, 2015). 

The expected accuracy of the GEOXT is 0.5 m, for the GEOXH, 0.1 m. 
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TLS 

Table 11: Technical specifications of LPM-321 (left) and LPM 98-2k (right). 

Laser wavelength λ 905 nm (near IR)

Max. range ρ≥0.8 < 6000 m (at 10Hz)

Max. range ρ≥0.1 ≥ 1500 m (at 10Hz)

Accuracy
25 mm (plus distance 

depending error ≤ ±20 ppm)

Repeatability 15 mm

Measuring time 0.25 - 1 sec.

Beam divergence typ. 0.8 mrad

Position accuracy ± 0.02 gon

Angle readout accuracy ± 0.02 gon

System measurement 

rate
10 to 1000 points/sec.

Scanning range
horizontally: 360° 

vertically: -20°/+130°
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RPAS-results (Lizum) 

 

Figure 40: Results from 11 February 2015, flight 1, NIR830-filter; HS map, OP, shaded DSM (left to right) 

 

 

Figure 41: Results from 11 February 2015, flight 2, VIS; HS map, OP, shaded DSM (left to right) 
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Figure 42: Results from 11 February 2015, flight 3, VIS; HS map, OP, shaded DSM (left to right) 

 

 

Figure 43: Results from 13 February 2015, flight 1, VIS; HS map, OP, shaded DSM (left to right) 
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Figure 44: Results from 13 February 2015, flight 3, NIR830-filter; HS map, OP, shaded DSM (left to right) 

 

 

Figure 45: Results from 13 February 2015, flight 4, NIR700-filter; HS map, OP, shaded DSM (left to right) 
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Figure 46: Results from 13 February 2015, flight 5, VIS; HS map, OP, shaded DSM (left to right) 

 

 

Figure 47: Results from 3 March 2015, flight 1, VIS; HS map, OP, shaded DSM (left to right) 
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Figure 48: Results from 3 March 2015, flight 2, NIR830-filter; HS map, OP, shaded DSM (left to right) 

 

 

Figure 49: Results from 13 March 2015, flight 1, VIS; HS map, OP, shaded DSM (left to right) 
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Figure 50: Results from 13 March 2015, flight 2, VIS; HS map, OP, shaded DSM (left to right) 

 

 

Figure 51: Results from 13 March 2015, flight 3, NIR830-filter; HS map, OP, shaded DSM (left to right) 
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Figure 52: Results from 4 April 2015, flight 1, VIS; HS map, OP, shaded DSM (left to right) 

 

 

Figure 53: Results from 4 April 2015, flight 1, NIR830-filter; HS map, OP, shaded DSM (left to right) 
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Figure 54: Results from 4 April 2015, flight 3, VIS; HS map, OP, shaded DSM (left to right) 

 

 

Figure 55: Results from 4 April 2015, flight 4, NIR830-filter; HS map, OP, shaded DSM (left to right) 
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Figure 56: Results from 21 August 2015 (snow-free data acquisition), flight 3, VIS; OP, shaded DSM (left to right) 
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Additional results from TLS-validation 

  

  

Figure 57: Each point represents a TLS-measurement, colour-coded by degree of positive (reds) and negative (blues) deviation 

of the RPAS from the TLS DSM [m]; 11 February 2015, flight 3 (top left); 13 February 2015, flight 1 (top right); 14 February 

2015, flight 3 (bottom left); 14 February 2015, flight 4 (bottom right). 
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Figure 58: Each point represents a TLS-measurement, colour-coded by degree of positive (reds) and negative (blues) deviation 

of the RPAS from the TLS DSM [m]; 14 February 2015, flight 5 (top left); 3 March 2015, flight 1 (top right); 13 March 2015, 

flight 2 (bottom left); 13 March 2015, flight 3 (bottom right). 
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Figure 59: Results from the in-situ validation of RPAS-HS maps in March 2015; on the y-axis the deviation of RPAS-HS values 

from in-situ-HS values [m] is marked; flight ID (MM_DD_flightnumber) is plotted on x-axis - each boxplot corresponds to one 

UAS-flight; whiskers in boxplot correspond to one standard deviation, outliers not included. 
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