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Abstract 

The paper presents population disaggregation based on satellite imagery and ancillary 

data. The ancillary data is added stepwise in order to highlight the differences between 

the respective results. The methodology is applied to Landsat 8 data, and results are 

compared with the ones achieved by use of Sentinel-2A imagery. Part of the city of 

Mendoza, Argentina, was chosen as the study area. The introduction of input parameters 

such as land use and building heights was considered and their practical use is discussed. 

The paper reveals a constant improvement of the results for both Sentinel-2A and Landsat 

8 data, and the advantages of Sentinel-2A, with its higher geometric resolution, over 

Landsat 8. These advantages include its higher spatial resolution and the resulting higher 

accuracy for the estimation of population. The practical usability of the proposed 

methodology for planning authorities and its supportive function for statistical institutes for 

future censuses are demonstrated.  
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1 Introduction 

Urbanization and urban growth have become global phenomena in recent decades. In South 
America, especially Argentina, the rate of urbanization is as high as 92% (EU: 73%). 
Knowledge of how many people reside within an urban area and how they are spatially 
distributed is crucial when it comes to urban planning and discussions about public 
investments. Demographic data is usually derived from censuses and represented in 
administrative units, such as districts, municipalities or census blocks, which often vary in 
size. Census blocks often include areas that do not contain residential buildings or any 
constructions at all. Spatial analysis at a finer level is not possible due to this or other 
restrictions (e.g. data protection). Introducing remote sensing can partially overcome such 
problems by indicating where people actually live within the administrative units, and remote 
sensing techniques have already become a standard approach for monitoring the physical 
growth of urban areas (Steinnocher et al., 2011). 
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Sentinel-2A data offer new perspectives for monitoring urban growth (Lefebvre et al., 2016) 
and the spatial distribution of population, since spatial (10 m) and temporal resolution are 
high. In combination with OSM data, potential residential areas can be identified more easily. 
This approach allows increased precision without additional costs for very high resolution 
(image) data (Gisbert, 2016) or up-to-date cadastres. Various studies confirm the usefulness 
of remote sensing data for disaggregation of real census data (Chen, 2002; Liverman et al., 
1998). The method of spatial disaggregation has been presented for vulnerability assessment 
in flood-prone areas (Wurm et al., 2009) or for generating population data independently 
from administrative areas (Steinnocher et al., 2011). The integrated use of remote sensing 
and GIS data in combination with spatial disaggregation allows for the creation of refined, 
functional, 3D city models. The comparison between extrapolation and spatial disaggregation 
methods shows the difference between the use of generalized population information and 
punctual population data (Taubenböck et al., 2007). Spatial disaggregation based on remote 
sensing may also support conventional census data in the future (Wurm et al., 2011). The 
present study discusses the spatial disaggregation of population based on Sentinel-2A 
imagery and ancillary data. Previous studies (Dong et al., 2010; Iisaka & Hegedus, 1982; Wu 
& Murray, 2007) dealing with the estimation of population by means of remote sensing and 
ancillary data have demonstrated the usability of Landsat data for dasymetric mapping. In 
this study, we test the hypothesis that information added step-wise leads to continuous 
improvement of results. Moreover, we demonstrate that the satellite imagery with higher 
spatial resolution (Sentinel-2A) actually does lead to better results when compared to satellite 
imagery with coarser spatial resolution (Landsat 8).  

2 Study area and data basis 

Study Area 

The city of Mendoza is located in western Argentina, South America (Figure 1). The climate 
is arid, and precipitation is about 200 mm p.a. Agricultural fields and urban green areas are 
irrigated. The central district of the city of Mendoza was chosen as the study area.  
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Figure 1: Location of the study area 

This district is representative of other cities in South America since it contains typical urban 
structures like residential and industrial buildings of different sizes and heights, parks, 
informal settlements, apartment complexes, suburban areas, development areas and a dense 
city centre. 

Data 

For the study area of Mendoza, a geodatabase was set up consisting of Sentinel-2A (Level-
1C), Landsat 8 (LT1) and ancillary data. Table 1 provides an overview of all input data used. 
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Because all input data was originally in digital format but not necessarily geocoded, the 
format of particular input data had to be modified or vectorized. Challenges arose because 
the land use plan, the sub-districts layer and the census blocks layer, for example, do not 
share the same administrative limits. Since the census blocks provided the most exact spatial 
data for spatial reference, the sub-districts map and the land use plan were adjusted 
accordingly. Both Sentinel-2A and Landsat 8 data were acquired around the same time of 
year and at about the same time of day. The Landsat 8 data used for this study is a corrected 
Level 1 Terrain – a precise ortho-corrected product (LT1). The spatial resolution of Landsat 
8 is 30 metres (bands: visible spectrum: 2, 3, 4; NIR: 5; SWIR). In this study, bands 2, 3, 4 
and 5 were used. The spatial resolution of Sentinel-2A is 10 metres. All data used for this 
study is freely available.  

Table 1: Overview of Input Data 

Input Data 

Data Type 
Data 
Format 

Time of generation 

Sentinel-2A image 19HED .jp2 2016-01-22, 14:41 

Landsat 8 image 
LC82320832016040LGN00  

.tif 2016-02-09, 14:28 

OpenStreetMap (OSM) Esri.shp n/a 

Land use plan .pdf 2014 

Sub districts map  .png n/a 

Census blocks .kmz n/a 

Building blocks (modified 
cadastre) 

.dwg n/a 

Population data .xlsx 2010 

3 Methodology 

The objective of the study was to investigate whether Sentinel-2A data can be used for 
spatially distributing the population in the built-up areas of one entire region, and whether 
ancillary data would be suitable to improve the result. The hypothesis that the use of satellite 
imagery with higher spatial resolution (Sentinel-2A) leads to better results when compared to 
satellite imagery with coarser spatial resolution (Landsat 8) was tested. The method chosen 
for this study was spatial disaggregation, which is based on the assumption that data, 
provided globally for an entire region, are distributed within the region by means of local 
parameters. The spatial distribution is performed by a weighted sum. A strong dependency 
between the global and the local parameters is a precondition for this approach (Liverman et 
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al., 1998). The global parameter for the spatial disaggregation is the total population of the 
region, while the local parameter is the housing density derived from satellite imagery. The 
local population distribution is estimated by applying housing density as a proxy for 
population density. We can formalize this approach as follows: 

Pdens = k * Hdens                                   (1) 
Pop = ∑ Ai * k * Hdensi                           (2) 

Pdens and Hdens are the population and the housing densities respectively. Pop represents 
the total population of the region and Ai corresponds to the area of the housing density i. 
The factor k, representing the relationship between population and housing density, can be 
derived by solving equation (2). The local population density is calculated from equation (1) 
(Liverman et al., 1998; Steinnocher et al., 2011). This method of population disaggregation 
has been used successfully in previous spatial disaggregation studies (Steinnocher et al., 2011, 
2006). 

One approach to improve the estimation of population is to introduce the third dimension in 
the form of building heights (Alahmadi et al., 2013; Gisbert, 2016). The information 
regarding building heights can be used as a weighting factor by calculating the volume of 
buildings. In our case, information about building heights is available only for entire land use 
zones. Within each land use zone, a maximum height for buildings is given. Thus the 
building blocks of different land use zones share the same height according to the land use 
plan, as three different land use zones (residential, commercial and central) feature the same 
maximum height.  

Our study uses Sentinel-2A and Landsat 8 for estimating housing density and ancillary data. 
These data include the OSM layer, information about the land use, and information about 
the building heights derived from the land use plan. The information about the land use and 
height is used as weighting factors. For our study case, we applied the method using a 
Normalized Difference Vegetation Index-based (NDVI) settlement layer derived from 
Sentinel-2A data, and population data for a census block level that was aggregated on to 
district level. The same methodology was then applied on selected Landsat 8 data in order to 
compare the results achieved with Sentinel-2A data. Further explanations do not explicitly 
differentiate between Sentinel-2A and Landsat 8 data, since the methodology is applied 
similarly and is generally independent of the spatial resolution of one satellite’s sensor(s). 

Transferability 

The actual study area is a part of the central district of the city of Mendoza, covers an area of 
18.01 km2, and consists of 162 census blocks. The total number of people residing in the 
area is 102,325. Since this study will be the initial point for a city-wide spatial disaggregation 
in the future, crucial elements were the collection of experience and ensuring the 
transferability of all computational steps.  
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Step-by-Step approach 

The use of different input data and the demand for transferability necessitated a distinct way 
to add information to the spatial disaggregation model: a step-by-step approach was chosen. 
Each additional input layer (the OSM and land-use layers, for example) was gradually added, 
and the particular result at each step (LoA) was compared to the ground truth represented by 
the official census blocks. The NDVI derived from the Sentinel-2A image was used to 
generate the settlement layer. The reclassifications were done using the quantile 
reclassification method. The threshold is defined by choosing the lowest quantile of the 
reclassification as non-built-up area and the other upper quantiles as built-up areas. Due to 
spectral similarity, bare soil is also included in the category “built-up”. However, if the 
information for building blocks or building footprints is available, it is not necessary to add 
further steps to distinguish between bare soil and other non-built-up area, or bare soil and 
built-up area. 

The first step was to set up a binary NDVI-based settlement layer, consisting of two values:  

- 0 = non-built-up area  

- 1 = built-up area 

Within the second step, the NDVI was also used as a basis for a settlement layer that was 
reclassified into 5 classes (NDVISL_5): 

- 0 = non-built-up area  

- 1 - 4 = different densities of built-up area 

Each processing step provided the basis for the next step. Therefore, the third step (LoA 3) 
used the NDVI-based settlement layer (NDVISL_5) and additional information about the 
land use in order to exclude non-residential areas or areas that do not include buildings in 
general (parks, development areas, airports). For the fourth step (LoA 4), this information 
(LoA 3) was used and merged with the OSM layer in order to exclude streets as inadequate 
space for settlement. For the next step, the LoA 4 was merged with the information from the 
cadastre. This step (LoA 5) allowed us to distribute population to building blocks only. In 
the final step (LoA 6), information about the land use derived from the land use plan was 
used as a weighting factor in order to reduce overestimation within densely built-up areas 
that are characterized mainly by commercial activity. In addition, the NDVI-based settlement 
layer was reclassified and reversely weighted. This means that the value of areas showing a 
high degree of impervious surface was reduced and the value of less dense areas increased 
(Table 2). Additionally, the resulting layer was merged again with the building blocks layer. 
The methodology resulted in 6 processing steps, listed in Table 3. The result of every step 
represents a certain level of accuracy (LoA). The sequences for the processing steps are 
shown in a flowchart (Figure 2). Finally, the disaggregation results are validated against 
detailed reference data from the census. 
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Figure 2: Flowchart for the processing steps 

Table 2: Overview of Weighting for LoA 6 

Weighting 

LoA Input data Weighted classes Weights 

6 Land Use: 3 classes 

Low-density residential area 3 

Medium-density residential 
areas 

2 

Commercial Areas 1 

6 
NDVI-based settlement 
layer: 5 classes  

Building density +  
Excluded areas 

4 (low) 

3 (medium low) 

2 (medium high) 

1 (high) 

0 (excluded areas) 
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Quality Assessment 

For the quality assessment, the Total Relative Error (TRE) (3) was calculated using the 
relative deviation between the results of the spatial disaggregation and the ground truth 
represented by the official census blocks.  

TRE = ∑ (│Popref − Popdis │* Ai ) ÷ ∑ (Popref*Ai)     (3) 

Popref represents the population count per census unit derived from statistical data of the 
regional statistical institute (DEIE - La Dirección de Estadísticas e Investigaciones 
Económicas de la Provincia de Mendoza). PopDis represents the estimated population that 
was calculated by applying the spatial disaggregation methodology presented here. The area 
Ai of each census block was attached as a weight to the absolute difference between the 
reference population data Popref and the estimated population Popdis of each census block. 
The calculation of the absolute difference is done on a census-unit basis, and is carried out 
for each census unit of the study area. The Total Relative Error is given as a percentage and 
presented for all LoAs in Table 3.  

Table 3: Overview of the results 

It is worth underlining that the results table is not intended to provide an absolute or 
comprehensive metric of map accuracy. It represents an indicator of quality for the 
methodology used. 

Results 

LoA Description of Input layers 
Total Relative Error: 

Sentinel-2A 

Total Relative Error: 

Landsat 8 

1 
NDVI-based settlement layer: 
binary (0-1) 

80.2% 82.7% 

2 
NDVI-based settlement layer: 5 
classes (0-4) (NDVISL_5) 

84.1% 86.8% 

3 
NDVISL_5, excluded areas (parks, 
development areas) 

48.6% 50.8% 

4 
NDVISL_5, excluded areas, OSM 
layer 

45.1% 58.3% 

5 
NDVISL_5, excluded areas, 
building blocks 

37.5% 42.9% 

6 
NDVISL_5, excluded areas, 
building blocks, land use 

31.3% 34.8% 
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4 Results  

The spatial disaggregation was performed for all 6 processing steps. The results show a 
constant improvement for the Total Relative Error (Table 3).  

Sentinel-2A 

The Total Relative Error decreases when input parameters that modify the spatial 
distribution of the population are added. In Figure 3, the results for the 5th and 6th 
processing steps (LoA 5 and LoA 6) are presented. Green areas represent census blocks that 
were deemed to have been estimated acceptably and also include blocks that were slightly 
over- or underestimated (-0.3 – 0.3). The relative difference represents the factor of the 
under- or overestimation. An overestimation for a census block (orange-red) that has the 
factor 1 means that twice as many people were estimated as actually counted according to the 
official census data. We recognize areas that present medium underestimation (blue) and 
higher overestimation (orange and red) of population, while areas in yellow show a medium 
overestimation of -0.4 to -0.9.  

 
Figure 3: Results for Sentinel-2A; left: LoA 5 – NDVISL_5, excluded areas, building blocks; right: LoA 6 – 

NDVISL_5, excluded areas, building blocks, and land use 
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Figure 4: Input data: OSM (top left), building blocks (top right), excluded areas (bottom left), land use 

(bottom right) 

Figure 4 shows the input data used (excluded areas, land use, OSM, building blocks). We 
consider this LoA an expert layer because the information of the land use as well as the 
NDVI-based settlement layer was weighted in response to the previous results (LoA 3 – LoA 
5). In Figure 6, the results for LoA 6 of both Sentinel-2A and Landsat 8 are compared. 

Landsat 8 

The Total Relative Error generally decreases when input parameters that modify the spatial 
distribution of the population are added (Figure 5). However, LoA 2 and LoA 4 show a 
slight decrease, since their Total Relative Error increases compared to the corresponding 
previous Level of Accuracy (LoA) (Table 3).  

The Total Relative Error of results achieved by means of Landsat 8 is higher (Table 2) than 
that for the results from Sentinel-2A. The Total Relative Error of LoA 6 Landsat 8 is 34.8%. 
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Figure 5: Left: LoA 5 – NDVISL_5, excluded areas, building blocks; right: LoA 6 – NDVISL_5, excluded 

areas, building blocks, land use 

 

Figure 6: Comparison of Sentinel-2A and Landsat 8 results; left: LoA 6 – Sentinel-2A; right: LoA 6 – 

Landsat 8 

5 Discussion 

In order to better understand large deviations, we compared the results with the land use 
plan, very high resolution satellite image data and Google Street View. Areas that show an 
overestimation of population are characterized by sparse building distribution or correspond 
to very densely built-up areas. The sparse building distribution is found mainly in the 
developing areas in the north-west of our study area. Within this zone, the area surrounding 
buildings is very dry soil, without vegetation. Thus it was partly misclassified as built-up area. 

The dense built-up areas occur mainly in the south-east part of the study area, close to the 
old city centre. They are characterized by high commercial activity and large-scale impervious 
surfaces, such as shopping centres and carparks in particular. The NDVI-based settlement 
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layer shows high values for impervious surfaces within these areas. Using our methodology, 
these characteristics lead to overestimation of population (LoA 2 to LoA 5) within the 
respective census blocks.  

In order to address the problem of the missing information for actual building heights, we 
used the land use as a weighting factor in our calculations (LoA 6). This had the effect of 
reducing the overestimation. Underestimated areas in the north-west of the study areas also 
showed an improved estimation result. However, other residential areas that were calculated 
acceptably before now appeared to be slightly overestimated. This 6th processing step (LoA 
6) could decrease Total Relative Error but partly at the expense of previously acceptable 
estimates for census blocks. Because data about land use, building heights or even 
population density were only available at larger and coarser scale or covered large areas, these 
input parameters could not improve the Total Relative Error significantly. The desirability of 
using height information as a suitable input parameter for spatial disaggregation strongly 
depends on the particular scale of the land use and land development plans or other maps 
from which the parameter is derived. The introduction of the 3rd dimension in the form of 
actual building heights would add information. TanDEM-X, Google StreetView or site 
inspections are possible sources for the acquisition of such information. However, the added 
information does not necessarily lead to improved results.  

The computed LoA 4 for Landsat 8 shows a Total Relative Error of 58.3% (Table 3), which 
means an increase of 8.5% of the Total Relative Error compared with the corresponding 
previous Level of Accuracy, LoA 3. This leads back to the fact that the street network, 
originally a vector dataset and now rasterized to 30 metres (spatial resolution of Landsat 8), 
reduces information on the respective settlement layer. The settings for the transformation 
were chosen according to the actual, visibly recognizable, layout of the street network 
represented in the grid of settlement layer no. 3 (LoA 4). This caused a loss of information. 
Pixels of built-up area were overlain by pixels from the street network (considered as non-
built-up area); they were therefore not considered a candidate area for population 
distribution. 

Contrary to the case using Sentinel-2A, the lower resolution of Landsat 8 and the influence 
of the street network cannot lead to further improvement of the Total Relative Error. Spatial 
elements of the urban environment such as street corridors or building blocks are better 
represented within Sentinel-2A data and can be distinguished more easily from each other.  

6 Conclusion 

This paper described the use of Sentinel-2A data for population estimation. The global 
parameter for spatial disaggregation was the total population of the study area within the city 
of Mendoza, Argentina. The local parameter was the housing density derived from Sentinel-
2A imagery. Additional input layers, such as OSM data, land use and building heights, were 
considered and their practical use was critically discussed. It has been shown that gradually 
adding information could improve the results, while the resolution of input layers like land 
use or building heights derived from the land use plan proved to be limiting factors. The 
introduction of other sources for actual building height information was suggested. 
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To conclude, the study revealed the practical usability of the proposed methodology for 
planning authorities and could be used to support statistical institutes for future census tasks. 
The comparison of Sentinel-2A with Landsat 8 revealed the importance of Sentinel-2A data 
and its usability for the future. The study showed that Sentinel-2A imagery could be used to 
complement Landsat 8 data. Sentinel-2A imagery, with its higher geometric resolution, has 
advantages over Landsat 8, including its higher spatial resolution and the resulting higher 
accuracy for the estimation of population. The study provides a model for further studies on 
the spatial disaggregation of population based on satellite imagery on a city-wide scale.  
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