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Abstract 

The ever-increasing popularity of bike-sharing schemes has added an additional mode to 
the transport regime in many cities. The data produced by lending and returning bicycles 
at geographically diverse stations has stimulated numerous studies. We focus on the City of 
Vienna bike-sharing system (CityBike Wien; CBW) and its relationship with the public 
transport system, asking whether bike-sharing serves as competitor, relief or supplement. 
We approach the question by surveying the total CityBike Wien trip data from 2015 – about 
1 million records. We cleanse and route all bicycle trips and compare them with routed 
alternative public transport (PT) journeys in terms of travel time ratios and detour factors. 
After calculating and plotting the cumulative frequencies of travel times and distances of 
both modes of transport as well as comparing the current PT and CBW usage levels, we 
conclude that CityBike functions as a supplement to Vienna’s public transport. 
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1 Introduction 

Since the new millennium, bike-sharing systems (BSS) have gained in popularity in cities 
around the world, sparking a lot of research, ranging from the impact of urban bike-sharing 
on cycling flows more generally (Faghih-Imani et al., 2014), via typologies of users (Vogel et 
al., 2014), to the impacts of weather on BSS usage (Gebhart & Noland, 2014) and of BSS on 
health (Woodcock et al., 2014). 

Adding BSS as a new component to urban transport systems provides large-scale location-
related mobility data that can be used to acquire new insights, raising the question of its 
interrelation with other parts of a transport system. How do existing transport regimes 
interact with this newcomer? 

As BSS are another member of the family of sustainable modes, examining the interrelation 
with urban public transport (PT) is an interesting question: is a BSS a competitor, a relief or a 
supplement to PT? As the City of Vienna has a strong and lasting public transport tradition, 



Leth et al 

138 
 

we embark on the task of shedding light on this interrelation by means of a spatial analysis of 
BSS usage patterns, and by comparing BSS routes to alternative PT routes. 

Due to the inherent spatial nature of recorded BSS usage data, the spatial perspective of BSS 
has already received a considerable amount of scientific attention. Beecham and Wood 
(2014a) analyse a large BSS-based dataset for geographical variation of behavioural 
differences between female and male users. There the distinction between trips through 
parks and off major roads vs. commuting trips is clearly recognizable. As shown in previous 
work, even the mapping of detailed group characterizations, such as after-work or lunchtime 
users, is possible (Beecham & Wood, 2014b). Spatial analysis of BSS-user data, for example, 
shows that dwelling/work locations of non-BSS-subscribers are considerably more dispersed 
than those of subscribers (Fishman et al., 2014). The geographic visualization of BSS flows 
allows the identification of changes in travel behaviour over space and time (Wood, Slingsby, 
& Dykes, 2011), which then aids in rebalancing the bike distribution – an issue often studied 
in such systems (Caggiani & Ottomanelli, 2012; Dell'Amico et al., 2014). 

The second focus of studies of BSS is their relationship with PT, where different approaches 
have been applied already. Fishman and colleagues find in their literature review that the 
majority of BSS users are switching from other sustainable modes rather than from the car 
(Fishman, Washington, & Haworth, 2013). For Australian cities, it has been shown that 
where PT is the least accessible, BSS stations show the most intense flows of cyclists 
between stations (Fishman et al., 2014). Fuller et al. (2012) show that events which greatly 
constrain public transport, e.g. personnel strikes, may result in short-term travel behaviour 
alteration, leading to an increase in BSS usage. Fishman, Washington and Haworth (2015) 
report that for five different cities (2 USA, 2 AUS, 1 GBR), the proportion of users 
substituting BSS use for public transport trips ranges from 20 % to 57 %. Jäppinen et al. 
(2013) perform data mining using application programming interfaces (API) in order to 
model journey times of BSS complementing public transport. Their findings suggest the 
desirability of a large-scale BSS to serve as a complement to the PT system. These findings 
do not contradict each other directly, as the purpose of a BSS is strongly dependent on size 
of city and number of stations, as well as on the density of the city and of the BSS stations. 
Martin and Shaheen’s (2014) study of modal split changes triggered by the introduction of 
BSS reported in questionnaires from North American cities shows a differentiated picture: in 
areas with lower population density, BSS serves as a first-/last-leg facilitator, while in higher 
density areas, bike-sharing offers a direct and faster alternative to short PT trips. 

We consolidate both perspectives – the BSS–PT relationship, and the spatial aspects of BSS 
analysis. In a journey-time and route-based comparison of BSS and alternative PT journeys, 
we investigate whether BSS serves as a competition, a relief or a supplement to PT. The 
research is based on a rich dataset from 2015 containing data from CityBike Wien (CBW). In 
addition, we utilize the routing engines of BikeCityGuide Apps and of the Wiener Linien 
public transport operator. 

The paper is structured as follows. Section 2 describes the data cleansing procedures for BSS 
station departures and arrivals. We also describe the API-based methods used for the routing 
of bike trips between BSS stations and the routing of alternative trips on the PT network. 
Section 3 presents the results, and section 4 discusses these. In section 5, we draw 
conclusions based on the results and discussion. 



Leth et al 

139 
 

2 Materials and methods 

Hypothesis 

Our initial hypothesis was that on a system level the travel time ratio between PT and 
CityBike for origin/destination (OD) pairs is proportional to the number of trips. The travel 
time ratio approach is backed by Fishman et al.’s (2013) finding that BSS need to have travel 
times that are competitive with other modes in order to attract users. To test this hypothesis, 
we investigated the interdependency between PT and bike trips based on a one-year dataset 
of CityBike logout/login data for 121 CityBike stations. The shorter the trip by CityBike is in 
comparison to PT, the more CityBike trips are expected for this relation. Without knowledge 
of the users’ actual intentions, we had to draw our own conclusions as to whether CityBike is 
in competition with, or a supplement to, PT based on the proportion of bike trips per OD 
pair. 

To test the hypothesis, the existing raw data on CityBike trips had to be prepared and travel 
times for all OD relations had to be estimated. Due to the lack of known origin and 
destination points (e.g. home and office) of the access and egress trips to and from the 
CityBike stations, these stations need to serve as starting and end points for trips on the PT 
system. We are fully aware that this simplification shifts the travel time ratio in favour of 
bikes; we relativize this bias by highlighting the distributions of both the journey times and 
the journey lengths. Travel times and distances were computed for all OD connections for 
both modes separately – bikes and PT. These served as input data for further analysis of the 
behaviour of BSS users (see section 3). The process of data collection is summarized in 
Figure 1, and described in detail in sections ‘PT data preparation’ and ‘Data refinement’ 
below. 

 
Figure 1: Data collection and refining process 
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CityBike data preparation 

CityBike Wien (CBW) was established in Vienna in 2003, since when the system has 
continued to grow steadily. A station-bound system, CBW comprises 1,500 bikes organized 
between 121 stations with 3,097 boxes. CityBike requires users to register with a bank 
account or credit card. Most stations are located in the densely populated urban areas within 
the second ring road. Additional stations are located outside the second ring road, along 
major thoroughfares to the hilly west and in the flat second and twentieth districts to the 
north and east of the city centre. 

CityBike Wien publishes XML-formatted data, including the WGS84 coordinates of each of 
the 121 CityBike stations. We coded a small PHP script for building up a matrix of all 
combinations between any two CityBike stations (121 x 120 = 14,520 OD pairs), where 
origins and destinations are shown as WGS84 coordinates. Because the exact bike route may 
depend on travel direction (e.g. because of one-way streets, or streets restricted to 
buses/trams), the two directions between the same pair of CityBike stations were dealt with 
separately. For all combinations of CityBike points, distances and travel times by CityBike 
and PT were calculated using input data from publicly accessible online databases. 

For trips made by bike, travel time, route, ascent and descent were extracted for each of the 
OD pairs based on the journey planner offered by Bike Citizens1. Bike Citizens delivers 
reliable data quality and also features WGS84 location-based data for routing queries. 

Since bicycle routing and travel time are virtually independent from other parameters (e.g. 
day of the week, time of day), the necessary data could be obtained at the actual time of 
query. 

PT data preparation 

Unlike routing, travel time by public transport does differ according to the time of day and 
day of the week. Therefore, trips were classified into four groups based on the PT timetable, 
with peak and off-peak (= night) periods for weekdays and weekends. The four times of day, 
shown in Table 1, were used as departure times in the query for PT travel times.  

Table 1: Classification of time periods. 

Type of day Date of request Peak 
period 

Reques
t time 

Night 
period 

Reques
t time 

Weekday Wed., Sept. 14th 
2016 

5 am – 9 pm 8 am 1 am – 5 
am 

2 am 

Weekend/ 
holiday 

Sun., Sept. 18th 
2016 

9 am – 9 pm 3 pm 1 am – 5 
am 

2 am 

For PT trip routing, the publicly available journey planner from Wiener Linien, Vienna’s 
municipal public transport operator, was used. The journey planner also contains the 
                                                 
1 www.bikecitizens.net, BikeCityGuide Apps GmbH 
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timetable and station data of other operators. Using WGS84 coordinates, we calculated 
distances and durations of PT trips between CityBike stations, including access, egress and 
interchanges. 

From the OD pairs with four time classifications, a short script (script 1 in Figure 1) 
generated queries for the journey planner. Utilizing a second script (script 2 in Figure 1), 
travel times were calculated for each of the OD pairs and the four departure timings from 
the returned data. For the queries, several detailed parameters, such as walking speed, 
interchange time and maximum number of interchanges, were left at default, as CityBike 
users are assumed to have the same preferences as average public transport users. 

Data refinement 

In both cases, the queries were sent a few seconds apart in order to avoid overloading the 
server of each journey planner. The raw data was temporarily stored as intermediate data, 
and once the data for all the OD pairs became available, travel time, distance and all of the 
waypoints for each of the OD pairs were listed for both transport modes. For cycling, 
information about ascent and descent was added; for PT, information about interchanges, 
the bus/other routes used, and the actual time of the journey were added. 

The PT data needed some further adjustment before utilization. The starting CityBike 
stations for a small number of trips did not provide routing to the geographically closest PT 
stops, a problem which was addressed by manually assigning the closest PT stop to the 
CityBike stations affected. Furthermore, the routing procedure skipped some trip sections on 
foot, which had to be added manually afterwards to provide reasonable trip durations. 
Finally, sometimes the PT routing during the night time (when only the underground and 
some bus lines operate) provided journeys including the last or first service of the regular 
daytime timetable, including tram and bus schedules, thus producing implausible journey 
times. These journeys had to be eliminated from the data set in order to obtain realistic 
journey times at night. 

In parallel with extracting travel times and additional properties for all OD pairs for cycling 
and PT trips, we prepared the actual CityBike trip data. The raw dataset comprises all trips 
made using CityBike bikes which started after 1 January 2015 00:00 and ended before 31 
December 2015 24:00. Departure and arrival times and stations, anonymized user ID and sex 
are included for each trip. In general, raw data from BSS require data cleansing to meet 
analysis requirements (Vogel, Greiser, & Mattfeld, 2011). Negative rental periods (resulting 
from incorrect return procedures) and trips with no return station (bikes reported stolen) 
were filtered from the dataset, as were trips from and to temporary stations used for 
particular events and tests. As giving one’s sex is not a compulsory part of user registration, 
CityBike Wien attributed a user’s sex by comparing the person’s given first name(s) with an 
online name/sex database2. As we needed only direct trips for our further calculations, we 
also removed round trips (identical departure and arrival stations) and indirect trips (going 
from A to B via somewhere else): having no knowledge about the actual routes taken by the 
riders, we defined direct trips as trips with an average speed of at least 7 km/h. The average 

                                                 
2
 http://www.albertmartin.de/vornamen/datei-abgleich 

https://mail.intern.tuwien.ac.at/owa/redir.aspx?REF=RJ5ivaVpEOQ9XKiw5z5ikRjCWXxhV6ZW8KqHRpMTC3kkKlD1JEjUCAFodHRwOi8vd3d3LmFsYmVydG1hcnRpbi5kZS92b3JuYW1lbi9kYXRlaS1hYmdsZWljaA..
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speed was calculated as quotient of rental duration and routed trip distance. The threshold of 
7 km/h was derived from a trip duration distribution which deviates from the Gaussian 
distribution curve between 1 and 7 km/h (see Figure 2, right). The approximate Gaussian 
distribution of trip speeds was derived from Schnötzlinger (2017, forthcoming), who 
analysed the speed distribution for all Bike Citizens GPS tracks for 2015 in Vienna (Figure 2, 
left). The lower mean of the CityBike speed distribution (11 km/h vs. 15 km/h from 
Schnötzlinger’s analysis) may be the result of the heavier build of the CityBike bikes in 
comparison to regular bikes. Two thirds of trips could thus be identified as direct trips (see 
Table 2). 

 
Figure 2 : Left: speed distribution of CityBike Wien, 2015 data, with cumulated frequency (blue) and a 
superimposed approximate Gaussian distribution (red) denoting the cut-off value; Right: actual 
distribution of average trip speeds from the 2015 BikeCityGuide Apps GPS-tracking dataset for Vienna. 

Table 2: Data-cleansing process 

Description of data Number of trips 

Raw dataset 2015 1,005,856 

- Rental duration ≤ 0 seconds - 19,950 
- Bikes reported stolen - 470 
- Round trips (identical departure and arrival stations) - 77,464 
- Temporary stations (event and test stations) - 230 
- Indirect trips - 237,782 

  
Refined dataset 669,960 

- Weekday peak (5 am to 9 pm) 406,597 
- Weekday night (1 am to 5 am) 24,186 
- Weekend or holiday peak (9 am to 9 pm) 111,661 
- Weekend or holiday night (1 am to 5 am) 18,430 

As the analysis is based on the comparison of the duration of direct bike trips and the 
duration of PT trips, we divided the refined dataset into four time periods – weekday peak 
and night, and weekend/holiday peak and night (see ‘PT data preparation’ above). 
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3 Results 

The comparison of the number of trips with the travel time ratio of CityBike to PT for all 
14,520 possible OD connections results in a triangle-shaped distribution. Figure 3 (left) 
shows the relative scatter plot density for weekday peak trips (n being the number of OD 
connections used in this time period, = 13,565); Figure 4 (left) shows the relative scatter plot 
density for weekday night trips (n = 6,542). The weighted average travel time ratios are 0.575 
(weekday peak) and 0.496 (weekday night). For other days and periods and for standard 
deviations, see Table 3. The most frequent relations occur between ratios of 0.5 and 1.0, with 
a convergence around 0.5 as the number of trips per OD pair increases. This indicates that 
when trips by bicycle take longer than by PT, PT is preferred over CBW. PT trips are 
potentially substituted when they take longer than bike trips (due to longer routes or having 
to switch modes of transport). 

 
Figure 3: Left: weekday peak distribution of travel time ratio bike to PT over number of trips for OD pairs 
(for visibility reasons, the x-axis is cut off at 300 trips; the maximum number of trips for one OD 
connection is 1,369); Right: the corresponding Lorenz curve for OD pairs and trips 

  
Figure 4: Left: weekday night distribution of travel time ratio bike to PT over number of trips for OD pairs; 
Right: the corresponding Lorenz curve for OD pairs and tripsi 
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Table 3: Weighted means and standard deviations of travel time ratios according to different days 
and periods of the day 

Day and 
period 

 Weighted mean Standard 
deviation 

Weekday peak  0.575 0.212 
Weekday night  0.496 0.171 
Weekend peak  0.600 0.223 
Weekend night  0.494 0.203 

To illustrate the proportionality of the number of frequent and rare trips, a Lorenz curve was 
calculated for the weekday sub-sets (Figures 3 and 4, right) and the total sample. Originally 
used for representing the inequality of wealth distribution, a Lorenz curve shows the 
difference between the actual distribution (blue) and a perfectly equal distribution (orange). 
Delbosc and Currie (2011) used it in the transport sector to assess public transport equity. 
The Lorenz curve indicates that 10 % of the total sample’s trips take place on 50 % of OD 
connections. On 402 potential connections, no direct CityBike trips at all were detected in 
the 2015 dataset. 45 % of trips take place on 10 % of connections. The total sample’s Gini 
coefficient3, used for describing the Lorenz curve mathematically, is 0.628. The Gini 
coefficients for the sub-samples are 0.652 (weekday peak) and 0.761 (weekday night). 

Locating the effects 

To shed light on the question of whether the Viennese BSS is a competition or a supplement 
for the PT system, we assigned the direct trips to the PT and bike networks (Figure 5). The 
left-hand map shows the PT routes which are potentially disburdened by switching to the 
bike routes shown in the right-hand map. The brightness and thickness of lines is 
proportional to the number of assigned trips. 

Our analysis reveals three features in particular: 

 Trips to and from locations associated with students (university student residences) 
(no. 1 in Figure 5) 

 Feeder trips to and from the local and regional transport hub ‘Landstraße – Wien 
Mitte’ (no. 2 in Figure 5) 

 Trips along the new pedestrian and shared-space zone ‘Mariahilfer Straße’ (no. 3 in 
Figure 5). 
 

Our analysis also strengthens the perception that PT trips are focused on a few axes while 
bike trips are more distributed over the network as a whole. With the results of the travel 
time ratio calculation in mind, this allows the conclusion that CityBike is used for tangential 
trips, e.g. in the peripheral areas of the PT network, where PT connections are not well 
developed or are inconvenient due to the need for interchange.  

                                                 
3 The Gini coefficient is the ratio of the area between the line of equality and the Lorenz curve divided 
by the total area under the line of equality. The larger the value, the more uneven the distribution. 
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Figure 5: Potential decrease of trips on PT network (left) and corresponding increase of bike trips 
(right); 1: areas with university student residences; 2: area around regional transport hub ‘Landstraße – 
Wien Mitte’; 3: pedestrian / shared-space ‘Mariahilfer Straße’ 

Detour factors 

By comparing the direct (beeline) distance of OD pairs to the routed distance, we found the 
detour factor of the 2015 CityBike trips to be 1.29, while for the corresponding PT trips it 
was 1.40. This means that CityBike trips, and thus bike routes in the inner districts of 
Vienna, are about 30 % longer than the beeline (Figure 6, left) while PT trips add up to 40 % 
to the beeline distance (Figure 6, right). Not only are the corresponding PT trips 11 % 
longer, on average, than CityBike trips, the lower R2 indicates also that individual trips scatter 
more widely around the regression line (Figure 6, right). 
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Figure 6: Detour factor based on OD pairs for CityBike trips (left) and the corresponding PT trips (right). 

Travel time and trip distance distributions 

Plotting cumulative frequency distributions for trip distance and travel time (Figure 7) 
indicates that CityBike trips (red) and sole PT rides (dashed blue, not including access/egress 
walks) exhibit very similar distributions. It appears that the addition of access and egress 
walking time (Figure 7, right) distinguishes the total PT trip from the CityBike trip. From the 
point of view of distance, the access and egress walks appear to shift PT from slightly below 
CityBike to slightly above (Figure 7, left). 

 

Figure 7: Cumulative frequency distributions of distance (left) and travel time (right) for CityBike trips 
(red) and PT trips (blue). PT trips of total length (solid line) include the sole PT ride (dashed) and the 
access and egress walks (dotted) to/from starting/final stops. 

The most frequent OD pair (weekday peak) was identified as having 2,631 trips per year in 
both directions combined, which is less than 1 trip per hour on average. 
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4 Discussion 

Interpretation 

Travel time ratio distributions show an accumulation of densities around 0.5 in the form of 
average values and the ratio of journeys between two points with very high demand, the 
number of trips per OD relation reaching more than 300. All surveyed periods (weekdays vs. 
weekends, and peak vs. night) suggest that the use of CityBike is likely to be for relations 
where alternative PT trips take around twice as long. 

The travel time ratio is systematically biased in favour of bikes due to the definition of CBW 
stations as starting and end points. However, the inclusion of access times to and egress 
times from CBW stations would only shift and stretch the resulting distribution of travel 
time ratio bike to PT over number of trips without changing the conclusions: the lower the 
travel time ratio bike to PT, the more CBW trips occur. 

The Lorenz curves indicate that, although appearing more compact in the density scatter 
plot, night-time connections are less evenly distributed than daytime ones. As a single 
measurement (within the year 2015), the Lorenz curve and Gini coefficient combined are 
only conclusive on the skewness of CityBike usage. The indicator would gain value if 
compared in a time series or with other BSS around the world. High frequency trips appear 
to play an important role in the BSS but are limited to just a few connections. 

Most studies, for example Rietveld et al. (1996), Weijermars et al. (2008), and Meeder (2015), 
define or use the detour factor as the ratio between the shortest distance along the network 
and the Euclidean distance. The Dutch ‘Design manual for bicycle traffic’ (CROW, 2016, p. 
66) gives a target value of 1.2 for a well-designed main-route network and allows the detour 
factor to reach values of 1.3 to 1.4 for the network beyond. 

Only a few references widen the concept of detour factor to actually chosen routes in 
comparison to shortest possible ones. See, for example, Krenn, Oja and Titze (2014), who 
derived a median of the specific detour factor of 7.6 % for a median trip length of 2.3 km. 

The average detour factor (routed distance / beeline) of 1.29 that we found for CityBike trips 
is well within the range given above. Hence CityBike’s smaller detour factor (11 % points) 
and smaller variation support the notion that this poses a structural advantage for the 
CityBike over PT. 

However, the detour factor represents only one of the three requirements (directness) for a 
bicycle-friendly network; cohesion and safety could not be measured with this method. 
Detour factors of 2 or higher (detour twice as long as the beeline) appear in the range of 
short distances (up to around 2 km beeline). This could indicate that one-way streets closed 
for contra-flow cycling are considered a problem in the case of riding a bike. In the PT case, 
with detour factors in excess of 2 km beeline, this may point to less favourable PT 
connections in terms of interchange or accessibility. Vienna’s rivers are crossed by only a few 
bridges, which might add to the phenomenon in selected cases. 

Travel time ratios and detour factors suggest that CityBike has the potential to be a 
competitor to PT. This suggestion is strongly supported by the results of a parallel 

file:///D:/WORK/GI%20Forum/GIS-abs-wien_v8a.doc%23_ENREF_4
file:///D:/WORK/GI%20Forum/GIS-abs-wien_v8a.doc%23_ENREF_5
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file:///D:/WORK/GI%20Forum/GIS-abs-wien_v8a.doc%23_ENREF_1
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questionnaire survey which revealed that 60 % of CityBike users consider their use of 
CityBike to be substituting a PT trip (Leth et al., 2017), backing up Fishman et al.’s (2013) 
findings.   

In contrast, the cumulative frequency distributions contradict this notion. As CityBike and 
the sole PT journeys exhibit similar characteristics in terms of distances and travel times, the 
potential appears to lose importance in the light of the simplification addressed above, due to 
the lack of primal origins and final destinations for those trips.  

The low absolute number of CityBike trips in comparison to PT passenger numbers also 
supports the counter-argument. The most frequent OD pair (during workday, peak) 
accounts for less than 1 trip per hour, thus being nowhere near a competitor to the Viennese 
PT. 939 million annual PT trips are rivalled by 1 million BSS trips. 

Possible further refinements 

Our methodology could be further refined by using GPS data. Detailed movement data of 
CityBike trips would not only help to improve the data-cleansing procedure (real speeds and 
identification of detours), it would also add real routes (i.e. those actually chosen), in contrast 
to our routing via BikeCityGuide Apps. In the meantime, GPS data collected by tracking 
apps such as BikeCityGuide Apps, Strava or Runtastic could help to identify these real 
routes. However, these apps are known to be used primarily for non-routine or sports 
activities, thus adding a bias to routes chosen compared to everyday trips such as commuting 
to work. 

One major way of taking our work forward would be to consider CBW trip and station data 
in conjunction with adjoining urban densities (e.g. number of residents) and trip generators 
(e.g. transport hubs) (McNally, 2007). Regional and express train stations, large educational 
institutions, shopping centres and other leisure facilities are known to produce and attract 
trips and thus could distort the number of trips to and from adjacent CityBike stations. 
However, for our current study this effect only stretches the x-axis of Figure 3 and does not 
affect any of its conclusions.  

As the strong impact of weather phenomena on commuting by bike generally (Nankervis, 
1999) and on BSS usage patterns (Gebhart & Noland, 2014) has been proven, including fine-
grained extreme weather data (intense rain, heavy snowfall, extreme temperatures) would 
improve the understanding of the CityBike’s role as a supplement to public transport. For 
example, the modal split of cycling in Vienna falls from 5.6 % in summer to 3.1 % in winter; 
conversely, for PT it increases from 35.1 % in summer to 39.1 % in winter (Tomschy et al., 
2016). 

Further research could examine other factors influencing mode and route choice, such as the 
travel times and distance ratios of bikes vs. cars. 
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5 Conclusion 

The approach presented in this paper advances previous research by contributing a 
quantitative and qualitative depiction of the relationship between BSS and PT. This includes 
the travel time ratios, route-base heat maps, detour factors and cumulative frequencies of trip 
distances and travel times. We conclude from our analysis that CityBike cannot yet be 
considered a general competitor to PT, but it can be seen as a supplement to it.  

Our study did not aim to look at possible extensions of the existing system, in terms of 
either geographical extent or density of stations. However, the accumulation of trips on 
relations with low travel time ratios bike to PT suggests that PT trips that require 
interchanging connections are avoided by using CityBike. Thus urban regions with poor PT 
cross-connections might be a promising target for BSS. Furthermore, we applied the Lorenz 
curve for the first time in assessing a BSS. This approach showed that roughly half of the 
direct CityBike trips occur on only 10 % of the relations.  

If in the future the BSS was to cover larger areas of the city than it does today, CityBike data 
could be used in a locally partitioned manner to check for the cycle-friendliness of routes 
(directness) in these areas. This could be important in helping to reduce the built barriers to 
cycling. 

Some refer to BSS as a mode of public transport, with a limited number of stops but an 
almost limitless number of lines. Within this understanding, too, the size of Vienna’s BSS 
today makes it a supplement to the public transport system rather than a competitor. 

Acknowledgements 

The authors declare no conflict of interest. This research was conducted and the paper was 
written based on the project ‘ABS Wien – Analyse des BikeSharing-Systems in Wien’ funded 
by Vienna’s public utility company Wiener Stadtwerke. We thank Hans-Erich Dechant of 
CityBike Wien for providing us with the station-wise lending data. We also thank two 
anonymous reviewers for their valuable comments that helped to finalize the paper. 

References 

Beecham, R., & Wood, J. (2014a). Exploring gendered cycling behaviours within a large-scale 
behavioural data-set. Transportation Planning and Technology, 37(1), 83-97. 

Beecham, R., & Wood, J. D. (2014b). Characterising group-cycling journeys using interactive graphs. 
Transportation Research Part C, 47, Part 2(10/2014), 194–206. 

Caggiani, L., & Ottomanelli, M. (2012). A Modular Soft Computing based Method for Vehicles 
Repositioning in Bike-sharing Systems. Procedia – Social and Behavioral Sciences (Proceedings of 
EWGT2012 - 15th Meeting of the EURO Working Group on Transportation, September 2012, Paris), 54, 
675-684. 

CROW - Centrum voor Regelgeving en Onderzoek in de Grond-, Water-, en Wegenbouw en de 
Verkeerstechniek (2007). Design Manual for Bicycle Traffic (25). 

CROW (2016). Design manual for bicycle traffic. 



Leth et al 

150 
 

Delbosc, A., & Currie, G. (2011). Using Lorenz curves to assess public transport equity. Journal of 
Transport Geography, 19(6), 1252-1259. 

Dell'Amico, M., Hadjicostantinou, E., Iori, M., & Novellani, S. (2014). The bike sharing rebalancing 
problem: Mathematical formulations and benchmark instances. Omega, 45, 7-19. 

Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014). How land-use and 
urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal. 
Journal of Transport Geography, 41, 306-314. 

Fishman, E., Washington, S., & Haworth, N. (2013). Bike Share: A Synthesis of the Literature. 
Transport Reviews, 33(2), 148–165. 

Fishman, E., Washington, S., & Haworth, N. (2015). Bikeshare's impact on active travel: Evidence 
from the United States, Great Britain, and Australia. Journal of Transport & Health, 2, 135-142. 

Fishman, E., Washington, S., Haworth, N., & Mazzei, A. (2014). Barriers to bikesharing: an analysis 
from Melbourne and Brisbane. Journal of Transport Geography, 41, 325-337. 

Fuller, D., Sahlqvist, S., Cummins, S., & Ogilvie, D. (2012). The impact of public transportation 
strikes on use of a bicycle share program in London: Interrupted time series design. Preventive 
Medicine (Special Section: Complementary and Alternative Medicine II), 54(1), 74-76. 

Gebhart, K., & Noland, R.B. (2014). The impact of weather conditions on bikeshare trips in 
Washington, DC. Transportation, 41(6), 1205-1225. 

Jäppinen, S., Toivonen, T., & Salonen, M. (2013). Modelling the potential effect of shared bicycles on 
public transport travel times in Greater Helsinki: An open data approach. Applied Geography, 43, 13-
24. 

Krenn, P.J., Oja, P., & Titze, S. (2014). Route choices of transport bicyclists: a comparison of actually 
used and shortest routes. International Journal of Behavioral Nutrition and Physical Activity 11(1): 31. 

Lathia, N., Ahmed, S., & Capra, L. (2012). Measuring the impact of opening the London shared 
bicycle scheme to casual users. Transportation Research Part C: Emerging Technologies, 22(0), 88-102. 

Leth, U., Brezina, T., Ludwig, B., & Birett, C. (2017). Is bike-sharing competitor, relief or supplement 
to public transport?; Real CORP 2017 (22nd International Conference on Urban Planning and 
Regional Development in the Information Society); Wien; 705-709. 

Martin, E.W., & Shaheen, S.A. (2014). Evaluating public transit modal shift dynamics in response to 
bikesharing: a tale of two U.S. cities. Journal of Transport Geography, 41(12), 315-324. 

McNally, M.G. (2007). The four-step model. In: Hensher, D.A. & Button, K.J. (Eds.), Handbook of 
Transport Modelling: 2nd Edition. Emerald Group Publishing Limited, 2007. 

Meeder, M. (2015). Detour factors in pedestrian networks. GIS-based analysis of route directness on 
the neighborhood level as an indicator of walkability. Master Thesis, ETH Zürich. 

Nankervis, M. (1999). The effect of weather and climate on bicycle commuting. Transportation Research 
Part A: Policy and Practice, 33(6), 417-431. 

O'Brien, O., Cheshire, J., & Batty, M. (2014). Mining bicycle sharing data for generating insights into 
sustainable transport systems. Journal of Transport Geography, 34, 262-273. 

Raffler, C. (2016). Untersuchung des Körperenergieverbrauchs als evidenzbasierender Ansatz zur 
Unterstützung der Radverkehrsplanung. Betrachtung anhand österreichischer Berufspendlerdaten 
1971 - 2001. Master's Thesis, TU Wien, Wien. 

Rietveld, P., Zwart, B., van Wee, B., & van den Hoorn, T. (1996). On the relationship between travel 
time and travel distance of commuters; reported versus travel data in the Netherlands. The Annals 
of Regional Science, 33(3), 269-287 

Schnötzlinger, P. (2017). Big Data im Radverkehr. Verkehrsplanerische Analyse der 
großmaßstäblichen Bewegungsdaten von Bike Citizens. Diplomarbeit in Bearbeitung; Technische 
Universität Wien, Wien. 

Tomschy, R., Herry, M., Sammer, G., Klementschitz, R., Riegler, S., Follmer, R., Gruschwitz, D., 
Josef, F., Gensasz, S, Kirnbauer, R., & Spiegel, T. (2016). Österreich unterwegs 2013/2014. 
Ergebnisbericht zur österreichweiten Mobilitätserhebung ‘Österreich unterwegs 2013/2014’. 



Leth et al 

151 

Vienna: Austrian Ministry for Transport, Innovation and Technology. Retrieved from: 
https://www.bmvit.gv.at/verkehr/gesamtverkehr/statistik/oesterreich_unterwegs/downloads/oe
u_2013-2014_Ergebnisbericht.pdf 

Vogel, M., Hamon, R., Lozenguez, G., Merchez, L., Abry, P., Barnier, J., et al. (2014). From bicycle 
sharing system movements to users: a typology of Velo'v cyclists in Lyon based on large-scale 
behavioural dataset. Journal of Transport Geography, 41, 280-291. 

Vogel, P., Greiser, T., & Mattfeld, D.C. (2011). Understanding Bike-Sharing Systems using Data 
Mining: Exploring Activity Patterns. Procedia - Social and Behavioral Sciences: The State of the 
Art in the European Quantitative Oriented Transportation and Logistics Research - 14th Euro 
Working Group on Transportation & 26th Mini Euro Conference & 1st European Scientific 
Conference on Air Transport, 20, 514-523. 

Weijermars, W., Gitelman, V., Papapdimitriou, E., & Lima de Azevedo, C. (2008). Safety performance 
indicators for the road network. European Transport Conference 2008. 

Wood, J., Slingsby, A., & Dykes, J. (2011). Visualising the dynamics of London's bicycle hire scheme. 
Cartographica, 46(4), 239-251. 

Woodcock, J., Tainio, M., Cheshire, J., O'Brien, O., & Goodman, A. (2014). Health effects of the 
London bicycle sharing system: health impact modelling study. British Medical Journal, 348, g425. 


