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Abstract 

Research in transport, ecology, health and other fields stands to profit from an improved 

understanding of movement. As movement data availability improves, the need for 

appropriate movement data analysis increases. However, the limited support for modelling 

moving objects in GIS hampers data exploration and analysis. This paper discusses 

trajectory data models and their implementation in the open-source spatial database 

system PostGIS. We quantify the difference in performance between PostGIS default 

trajectory support, dedicated trajectory data models, and commonly used point-based 

data models. To the best of our knowledge, this is the first paper to evaluate PostGIS 

default trajectory support and compare it to a proposed dedicated trajectory data type 

from the literature. Our experiments include computing trajectory duration and length, 

temporal and spatial filters, extracting positions at a certain time, and visualizing 

trajectories in desktop GIS. We also discuss the limitations of, and potential for, contextual 

trajectories and moving area object trajectories. Our results show that PostGIS functions for 

moving point object trajectories are fast, reduce query complexity, and provide good 

indexing integration, especially concerning multi-dimensional indices; the results also 

reveal that trajectory data models outperform commonly used point-based data models. 

Keywords:  

trajectories, moving objects, spatial databases, PostGIS, PostgreSQL 

1 Introduction 

Analysis of movement data is an increasingly popular topic in the GIScience literature, with 
applications ranging from research in movement ecology (for example, understanding 
migration patterns, monitoring species distribution) (Wang et al., 2016), to transport (for 
example, detecting travel behaviour, monitoring traffic quality) (Siła-Nowicka et al., 2016), 
and health (for example, monitoring physical activity) (Doherty et al., 2014). Movement can 
be described using spatial, temporal and spatio-temporal parameters. These parameters are 
the building blocks of different movement patterns. Dodge et al. (2008) list parameters for 
individual moving objects. Beyond single moving object trajectories, a large number of 
measures (including similarity, density and formation stability) have already been developed 
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for a single trajectory amidst other trajectories, as well as between groups of trajectories 
(Wiratma et al., 2017). 

Thanks to improved data collection technology, many issues that previously suffered from 
insufficient data are now being addressed. Nonetheless, GIS functionality to analyse data 
from moving objects is still limited. The lack of support for handling time in current GIS 
hampers data exploration and analysis. The de facto standard GIS data model is ‘Simple 
Features’, as covered by ISO 19125 ‘Geographic information – Simple feature access’ (ISO, 
2004) and ‘OpenGIS® Implementation Standard for Geographic information – Simple 
feature access’ (OGC, 2017a). Even though other models do exist (for example, topological 
data models), many GIS data formats only support simple features. The OGC Simple 
Feature Access - Common Architecture deals only with at most 2-dimensional geometric 
objects, whereas the ISO Spatial schema handles up to 3-dimensional geometric objects 
(OGC, 2011). Temporal information is not, therefore, considered in the simple features 
specification. Consequently, trajectories are commonly stored as points or segments with 
time stamp attributes to preserve temporal information. For example, the CSV (comma 
separated value) data model used by the Movebank Data Repository (Wikelski & Kays, 2017) 
stores points with time stamps, while the OGC® Moving Features standard (OGC, 2017b) 
models segments with start- and end-time stamps.  

Beyond the field of GIS, the database community has developed the concept of moving 
objects databases (MODs). One of the first projects in this domain was ‘Databases fOr 
MovINg Objects tracking’ (DOMINO) (Wolfson et al., 1997). MODs provide specific 
functionality for handling moving objects and can be seen as extensions of temporal or 
spatial databases (Güting and Schneider, 2005, pp. 26–27). MODs can be optimized to deal 
with either historic or live movement data. Much work has focused on indexing, in particular 
the issue of how to index a large number of trajectories including the time dimension, in 
order to perform efficient querying and updating. For example, Frentzos (2008) discusses 
indexing of unconstrained and network-constrained trajectory data in MODs. As in GIS, 
common data modelling approaches are either primal (where each trajectory segment is 
represented as a line) or dual (where the trajectory segment is represented as a point) 
(Wolfson, 2002). To the best of our knowledge, there exist only research prototypes of 
moving objects databases, including SECONDO and HermesMOD. HermesMOD (n.d.) is 
an extension to PostgreSQL and Oracle by researchers at the University of Piraeus. 
SECONDO (2009) is a database management system (DBMS) ‘suitable for research 
prototyping and teaching’. Since moving objects databases are still in the prototype phase, a 
practical solution for the problem of handling moving objects in GIS environments is to lean 
on a mature spatial DBMS such as PostGIS. 

The remainder of this paper is structured as follows. Section 2 introduces approaches for 
modelling moving point objects in PostGIS. Section 3 presents experiments comparing the 
custom PG-Trajectory data model (Kucuk et al., 2016) to default PostGIS trajectory support 
and commonly used point-based data models. Section 4 discusses advantages and 
shortcomings of these approaches and concludes with an outlook on moving area objects, as 
well as on massive movement data. 
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2 Moving point objects in PostGIS 

Güting and Schneider (2005, pp. 28–29) have already confirmed that spatial databases can 
handle moving objects, but cautioned that, in classical spatial databases, time is not managed 
intrinsically. An example of a PostGIS-based data model using a custom trajectory object is 
presented by Kucuk et al. (2016). Their model handles moving point and polygon features as 
an open source extension (DMLAB, 2016) for PostGIS. Kucuk et al. (2016) argue that 
‘[w]hen the trajectories are represented [...] using three columns (traj id, timestamp, 
geometry), users are required to write complex queries and applications for implementing 
trajectory manipulating functions’ (p. 83). They therefore propose a custom data type that 
‘makes these queries easier by wrapping up widely used trajectory functions’ (ibid.) (see Table 
1). Kucuk et al. (2016) indeed handle time explicitly. However, we find that this is not 
necessary – at least for moving point objects – in current versions of PostGIS, thanks to its 
built-in temporal support (version 2.2.0, released in October 2015, onwards (PostGIS, 
2015)), as we will demonstrate in this paper.  

PostGIS supports a superset of the simple features defined by the OGC. It supports 3D 
geometries as well as additional measure values. Using PostGIS temporal support enables a 
data model for moving objects that stores trajectories as LinestringM or LinestringZM, 
where Z stands for elevation and M stands for measure or m-value. In this model, the 
timestamp for each position is stored in the m-values of the vertices that make up the lines. 
In a valid trajectory, m-values have to increase from one vertex to the next. These m-values 
can be accessed both within the PostGIS database, and in desktop GISs such as QGIS. For 
example, we can use ST_M(ST_EndPoint(trajectory)) in PostGIS and 
m(end_point($geometry)) in QGIS to access the end-time of a trajectory. 

To the best of our knowledge, this is the first paper to evaluate PostGIS default trajectory 
support. Our goal is to quantify the differences in performance between PostGIS default 
trajectory support, dedicated trajectory data models, and commonly used point-based data 
models. Specifically, we compare the trajectory data type PG-Trajectory by Kucuk et al. 
(2016) to default PostGIS without custom data types or functions. The comparison 
methodology is based on query run times as well as query complexity, from the perspectives 
of both the user writing the query (number of subqueries that have to be written) and the 
database system (steps in the execution plan). A comparison to other database systems or 
computing environments, such as R, is beyond the scope of this work. Table 1 provides an 
initial overview of relevant functions in both PG-Trajectory and default PostGIS. While not 
all aspects of functionality are available in both approaches, most basic trajectory functions 
overlap. This overlapping functionality is compared in Section 3.  
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Table 1: Comparing PG-Trajectory (Kucuk et al., 2016) and default PostGIS for moving point objects 

 PG-Trajectory Default PostGIS 

Creating and 
editing 

  

Trajectory elements tg_pair (timestamp-geometry pair) PointM  

Constructor _trajectory(tg_pair[]) geometry(LineStringM,4326) 

Add position to 
beginning / end 

t_add_head(tg_pair,traj) / 
t_add_tail(tg_pair,traj) : trajectory 

ST_AddPoint(traj,ptM,0) / 
ST_AddPoint(traj,ptM,-1) : geometry 

Remove position 
from beginning / 
end 

t_drop_head(traj) /  
t_drop_tail(traj) : trajectory 

ST_RemovePoint(traj,0) / 
ST_RemovePoint(traj, 
ST_NPoints(traj) - 1) : geometry 

Update location at 
certain time 

t_update_geom_at(t,geom,traj) : 
trajectory  

- 

Accessing 
trajectory 
information 

  

Start time  tg_start_time(tg_pair[]): timestamp ST_M(ST_StartPoint(traj)) : float  

End time tg_end_time(tg_pair[]) : timestamp ST_M(ST_EndPoint(traj)) : float 

Duration t_duration(traj) : time interval ST_M(ST_EndPoint(traj)) - 

ST_M(ST_StartPoint(traj)) : float  

Length t_distance(traj) : real ST_Length(traj) : float 

Position at certain 
time 

t_geom_at(traj,t) : geometry *  

(code repo contains 
t_record_at_interpolated(traj, t): 
geometry) 

ST_LocateAlong(traj,t) : geometry 

 

Extract 
subtrajectory 

- ST_LocateBetween(traj,t1,t2) : 
geometry 

Pair-wise trajectory 
analysis 

  

Spatio-temporal 
intersection 

t_overlaps(traj1,traj2) : boolean *  

(code repo contains 
t_intersection(traj1,traj2) : traj) 

ST_CPAWithin(traj1,traj2,maxdist) : 
bool 

Closest point of 
approach (CPA) 

- ST_ClosestPointOfApproach(traj1,tr
aj2) : float 

Time-relaxed 
Euclidean distance 

t_euclidean_distance(traj1,traj2) : 
real 

- 

Edit distance t_edit_distance(traj1,traj2) : real - 

Euclidean distances  t_m_distance(traj1,traj2) : real[] - 

Hausdorff distance - ST_HausdorffDistance(traj1,traj2) : 
float 
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 3 Experiments 

Experiments were performed using the Geolife dataset published by Zheng, Li et al. (2008), 
Zhen, Zhang et al. (2009), and Zhen, Xie et al. (2010), which was also used in the point 
trajectory examples by Kucuk et al. (2016). The Geolife dataset contains 18,670 trajectories 
collected using 182 trackers, mostly in and around Beijing, with some trajectories including 
international travel. The run times of our experiments were measured on a Dell R730 
database server with 8 cores (Intel Xeon E5-2637 v4) and 64 GB memory. The following 
experiments were carried out: 

1. Computing total trajectory duration and length per tracker 

2. Finding trajectories that occurred during a certain time frame (temporal filter) 

3. Finding trajectories that originated in a certain spatial region (spatial filter) 

4. Extracting positions at a certain point in time 

5. Visualizing trajectories in desktop GIS 

We found that the PG-Trajectory source code published by Kucuk et al. at 
https://bitbucket.org/gsudmlab/pg-trajectory had to be fixed at several locations before it 
was possible to import Geolife trajectories and use trajectory functions. The updated code is 
available at https://bitbucket.org/anitagraser/pg-trajectory. 

In addition to the PG-Trajectory and default PostGIS trajectory data models, we also 
compared results with the commonly used basic point-based data model. Trajectory table 
definitions for all three approaches as well as an example of trajectory data insertion are 
provided in Table 2. The custom trajectory data type by Kucuk et al. (2016) stores an array of 
timestamp-geometry pairs, as well as trajectory start- and end-time stamps. Therefore, to 
enable a fair comparison, a table with a LineStringM and additional time-range column was 
chosen to represent PostGIS's temporal support.  

Table 2: Trajectory table creation, data insertion, and index creation for the three data model 

approaches compared in this paper 

PG-Trajectory Default PostGIS Point-based 

CREATE TABLE 
pgtrajectory.geolife(  

id serial NOT NULL, 

tracker integer, 

traj trajectory  

); 

 

CREATE TABLE 
geolife.trajectory_ext(  

id serial NOT NULL, 

tracker integer, 

track geometry(LineStringM), 

time_range tstzrange 

); 

CREATE TABLE 
geolife.trajectory_pt(  

id serial NOT NULL, 

sequence bigint, 

trajectory_id bigint, 

tracker integer, 

pt geometry(Point), 

t timestamp with time zone); 

INSERT INTO 
pgtrajectory.geolife 
(tracker,traj) 

VALUES (010, 

_trajectory(ARRAY[ 

ROW('2007-11-17 
17:08:27+00',POINT(121.5

INSERT INTO 
geolife.trajectory_ext 
(tracker,track,time_range) 
VALUES (010, 

 ST_SetSRID( 

  ST_GeometryFromText( 

   'LINESTRINGM (121.574898 

INSERT INTO 
geolife.trajectory_pt 
(sequence,trajectory_id,track
er,pt,t) 

VALUES (1, 1, 010, 
ST_SetSRID(ST_GeometryFromTex
t( 
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74898,31.195130))::tg_pa
ir, 

ROW('2007-11-17 
17:08:32+00',POINT(121.5
73458,31.197597))::tg_pa
ir, ... ])); 

31.195130 1195319307, 

121.573458 31.197597 
1195319312, ...) '),4326), 

'[2007-11-17 
18:08:27+01,2007-11-17 
18:10:01+01]'::tstzrange); 

'POINT(121.574898 
31.195130)')), '2007-11-17 
17:08:27+00'); 

 

CREATE INDEX 
idx_pgtrajectory_tracker 

 ON trajectory_ext 

 USING btree (tracker); 

CREATE INDEX 
idx_trajectory_ext_time_range 

 ON trajectory_ext 

 USING gist  (time_range); 

 

CREATE INDEX 
sidx_trajectory_ext_track3d 

 ON trajectory_ext 

 USING gist (track 
gist_geometry_ops_nd); 

 

CREATE INDEX 
idx_trajectory_ext_tracker 

 ON trajectory_ext 

 USING btree (tracker); 

CREATE INDEX 
sidx_trajectory_pt_pt 

 ON trajectory_pt 

 USING gist (pt); 

 

CREATE INDEX 
sidx_trajectory_pt_trajectory
_id 

 ON trajectory_pt 

 USING btree (trajectory_id); 

 

CREATE INDEX 
sidx_trajectory_pt_tracker 

 ON trajectory_pt 

 USING btree (tracker); 

 

CREATE INDEX 
sidx_trajectory_pt_t 

 ON trajectory_pt 

 USING btree (t); 

Duration and length 

The first experiment was to determine trajectory duration and length for all observed moving 
objects (identified by a tracker id in the case of the Geolife dataset). Queries and their run 
times are provided in Tables 3 and 4. Both duration and distance queries are fastest using 
default PostGIS trajectory types (default PostGIS variant a in Table 3). Only if temporal 
information has to be extracted from the LineStringM (variant b in Table 3) is the default 
trajectory approach slower than the PG-Trajectory. The basic point-based data model is 
significantly slower (up to 194 times) than either of the trajectory-based data models. This is 
because queries for the point-based trajectory data model result in a more complex execution 
plan, including a second time-consuming HashAggregate step.  

Queries for the point-based data model are more complex than queries for the other models, 
since each requires an additional subquery. More specifically, to keep point-based queries 
readable, we use WITH queries, also known as Common Table Expressions (CTE). The 
WITH query in Table 3 prepares a temporary table, which groups points belonging to the 
same trajectory and extracts start and end times. It is worth noting that WITH queries can 
negatively impact query performance, but potential improvements gained by designing more 
complex nested queries are not investigated further in this paper. 
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Results show that the total duration of trajectories of tracker1 according to PG-Trajectory 
differs by one hour from the durations obtained using the other two approaches. We have 
not so far been able to determine the reason for this. 

Table 3: Total trajectory duration for all trackers 

PG-Trajectory  Default PostGIS  Point-based  

SELECT tracker,  

 sum(t_duration(traj)) 

FROM pgtrajectory.geolife 

GROUP BY tracker 

ORDER BY tracker 

SELECT tracker,  (a) 

 sum(upper(time_range) -  

 lower(time_range)) 

FROM geolife.trajectory_ext 

GROUP BY tracker 

ORDER BY tracker 

WITH tmp AS ( 

 SELECT trajectory_id, 

  tracker, 

  min(t) start_time,  

  max(t) end_time 

 FROM geolife.trajectory_pt 

 GROUP BY trajectory_id, 

          tracker 

) 

SELECT tracker,  

 sum(end_time - start_time) 

FROM tmp 

GROUP BY tracker 

ORDER BY tracker 

SELECT tracker,  (b) 

 sum(to_timestamp(st_m( 

  st_endpoint(track))) 

  - to_timestamp(st_m( 

  st_startpoint(track)))) 

FROM geolife.trajectory_ext 

GROUP BY tracker 

ORDER BY tracker 

Execution plan 

Sort (cost=5487.20..5487.66) 

-> HashAggregate 

   (cost=5478.55..5480.37) 

   -> Seq Scan on geolife   

      (cost=0.00..717.70) 

Sort (cost=5978.73..5979.18) 

-> HashAggregate  

   (cost=5970.07..5971.89) 

   -> Seq Scan on 
trajectory_ext 

      (cost=0.00..5736.70) 

Sort 
(cost=880610.37..880610.87) 

CTE tmp 

-> HashAggregate 

   
(cost=829233.68..842931.56) 

   -> Seq Scan on 
trajectory_pt 

      (cost=0.00..580463.84) 

-> HashAggregate 

   (cost=37669.17..37671.17) 

   -> CTE Scan on tmp 

      (cost=0.00..27395.76) 

Results (top 3 rows) 

tracker;sum 

0;"2 days 879:43:29" 

1;"314:05:30" 

2;"700:49:38" 

tracker;sum 

0;"2 days 879:43:29" 

1;"315:05:30" 

2;"700:49:38" 

tracker;sum 

0;"2 days 879:43:29" 

1;"315:05:30" 

2;"700:49:38" 

Run time 

1.8 sec a) 31 ms, b) 2.1 sec 6.0 sec 
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Table 4 shows total trajectory-length queries and results. The point-based query is the most 
complex, requiring two CTEs. Even so, the point-based query run time is shorter than for 
PG-Trajectory due to the more efficient implementation of the length function. In all three 
cases, lengths are computed after casting from geometry to geography data type. The 
remaining minor differences in the resulting lengths are due to rounding. 

Table 4: Total trajectory length for each tracker 

PG-Trajectory  Default PostGIS  Point-based  

SELECT tracker,  

 round(sum( 

  t_distance(traj) 

 )) 

FROM pgtrajectory.geolife 

GROUP BY tracker 

ORDER BY tracker 

SELECT tracker,  

 round(sum( 

 ST_Length(track::geography) 

 )) 

FROM geolife.trajectory_ext 

GROUP BY tracker 

ORDER BY tracker 

WITH ordered AS ( 

 SELECT trajectory_id,  

  tracker, t, pt 

 FROM geolife.trajectory_pt 

 ORDER BY t 

), tmp AS ( 

 SELECT trajectory_id,  

  tracker,  

  st_makeline(pt) traj 

 FROM ordered  

 GROUP BY trajectory_id,  

          tracker 

) 

SELECT tracker,  

 round(sum( 

  ST_Length(traj::geography) 

 )) 

FROM tmp 

GROUP BY tracker  

ORDER BY tracker 

Execution plan 

Sort (cost=5487.66..5488.11) 

-> HashAggregate 

   (cost=5478.55..5480.82) 

   -> Seq Scan on geolife 

      (cost=0.00..717.70) 

Sort 
(cost=10553.33..10553.79) 

-> HashAggregate 

   (cost=10544.22..10546.50) 

   -> Seq Scan on 
trajectory_ext 

      (cost=0.00..5736.70) 

Sort 
(cost=2604096.7..2604097.2) 

CTE ordered 

-> Index Scan using 

   sidx_trajectory_pt_t  

   (cost=0.44..1908369.55) 

CTE tmp 

-> HashAggregate 

   
(cost=684117.06..684617.06) 

   -> CTE Scan on ordered 

      (cost=0.00..497539.68) 

-> HashAggregate 

   (cost=11100.00..11102.50) 

   -> CTE Scan on tmp 

      (cost=0.00..800.00) 
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Results (top 3 rows) 

tracker;round 

0;6520101 

1;986594 

2;3339309 

tracker;round 

0;6520101 

1;986594 

2;3339309 

tracker;round 

0;6520101 

1;986594 

2;3339309 

Run time 

01:32 min 22.7 sec 43.0 sec 

Temporal filters 

In the second experiment, we extracted trajectories that occurred during a certain time 
frame, as shown in Table 5. The default PostGIS query illustrates how time ranges can be 
used in combination with the ‘overlaps’ operator && (default PostGIS variant a), thus 
providing a more succinct way to write temporal queries. The point-based query is the most 
complex and slowest, requiring two CTEs. Default PostGIS queries using time ranges 
(variant a in Table 5) or the n-dimensional index (variant b) are considerably faster than the 
PG-Trajectory approach, since their execution plans avoid sequential scans by leveraging 
appropriate indices. Even if temporal information had to be extracted from the LineStringM 
(variant c), the default approach would still be faster than PG-Trajectory. 

Results show that all three approaches identify the same trajectories that overlap the 
specified time range. Trajectory ids vary between result sets, since these ids are not defined in 
the imported Geolife dataset but rather generated using auto-incrementing values on data 
import.  

Table 5: Filtering trajectories by time 

PG-Trajectory  Default PostGIS  Point-based  

SELECT id, tracker,  

 (traj).s_time,  

 (traj).e_time 

FROM pgtrajectory.geolife 

WHERE (traj).e_time  

      > '2008-11-26 11:00' 

AND (traj).s_time  

      < '2008-11-26 15:00' 

SELECT id, tracker,  

 time_range 

FROM geolife.trajectory_ext 

WITH tmp AS ( 

 SELECT trajectory_id,  

  tracker, 

  min(t) start_time, 

  max(t) end_time 

 FROM geolife.trajectory_pt 

 GROUP BY trajectory_id,  

          tracker 

) 

SELECT trajectory_id,  

 tracker, start_time,  

 end_time 

FROM tmp 

WHERE end_time  

      > '2008-11-26 11:00' 

WHERE  (a) 

time_range && '[2008-11-26 
11:00+1,2008-11-26 
15:00+01]'::tstzrange 

WHERE track &&& (b) 

ST_Collect( 

 ST_MakePointM(-180,-90, 

  extract(epoch from '2008-
11-26 11:00'::timestamptz)), 

 ST_MakePointM(180,90, 

  extract(epoch from '2008-
11-26 15:00'::timestamptz)) 

) 
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WHERE  (c) 

 to_timestamp(st_m( 

  st_endpoint(track)))  

  > '2008-11-26 11:00' 

AND to_timestamp(st_m( 

  st_startpoint(track)))  

  < '2008-11-26 15:00') 

AND start_time  

      < '2008-11-26 15:00' 

 

Execution plan 

Seq Scan on geolife  
(cost=0.00..811.05) 

 Filter 

Bitmap Heap Scan on  (a) 

trajectory_ext  
(cost=4.31..23.93) 

 -> Bitmap Index Scan on 

   
idx_trajectory_ext_time_rang
e  

   (cost=0.00..4.31) 

CTE Scan on tmp  
(cost=842931.56..877176.26) 

 Filter 

 CTE tmp 

 -> HashAggregate 

    
(cost=829233.68..842931.56) 

    -> Seq Scan on 
trajectory_pt 

       
(cost=0.00..580463.84) 

Index Scan using  (b) 

sidx_trajectory_ext_track3d  

(cost=0.29..12.32) 

Seq Scan on trajectory_ext  (c) 

(cost=0.00..6110.10) 

 Filter 

Results (top 3 rows) 

id;tracker;s_time;e_time 

1197;5;"2008-11-25 
23:26:34";"20 

2089;14;"2008-11-26 
11:07:04";"2 

7872;68;"2008-11-26 
12:59:36";"2 

id;tracker;time_range 

1347;5;"["2008-11-25 
23:26:34+01 

2252;14;"["2008-11-26 
11:07:04+0 

10494;68;"["2008-11-26 
12:59:36+ 

trajectory_id;tracker;start_
time 

1347;5;"2008-11-25 
23:26:34+01"; 

2252;14;"2008-11-26 
11:07:04+01" 

10494;68;"2008-11-26 
12:59:36+01 

Run time 

2.5 sec a) with index: 12 ms, without: 
21 ms, b) 12 ms, c) 1.8 sec 

6.0 sec 

Spatial filters 

In the third experiment, we extracted trajectories that originated in a certain spatial region, as 
shown in Table 6. It is straightforward to adjust these queries to find trajectories that either 
end in a specific region, or both start and end within defined regions. The point-based query 
is the most complex and slowest (45 times slower than default PostGIS), requiring three 
CTEs instead of just one. Again, PG-Trajectory requires a sequential scan, while the default 
PostGIS leverages the index. Results show that all three approaches return the same 
trajectories that start within the buffer designated as areaA.  
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Table 6: Filtering trajectories’ start locations 

PG-Trajectory  Default PostGIS  Point-based  

WITH my AS ( SELECT  

 ST_Buffer(ST_SetSRID( 

 ST_MakePoint(116.31894, 

 39.97472),4326),0.0005)  

 areaA 

) 

SELECT id, tracker,  

 traj 

FROM pgtrajectory.geolife 

JOIN my 

ON ST_Within( ST_SetSRID(  

 (tg_head((traj).tr_data)).g 

 ,4326), 

 areaA) 

WITH my AS ( SELECT 

 ST_Buffer(ST_SetSRID( 

 ST_MakePoint(116.31894, 

 39.97472),4326),0.0005) 

 areaA 

) 

SELECT id, tracker,  

 ST_AsText(track) 

FROM geolife.trajectory_ext 

JOIN my 

ON areaA && track 

AND ST_Within( 

 ST_StartPoint(track), 

 areaA) 

WITH my AS ( SELECT  

 ST_Buffer(ST_SetSRID( 

ST_MakePoint(116.31894,39.97
472),4326),0.0005) areaA 

), ordered AS ( 

 SELECT trajectory_id,  

  tracker, t, pt 

 FROM geolife.trajectory_pt 

 ORDER BY t 

), tmp AS ( 

 SELECT trajectory_id,  

  tracker,  

  st_makeline(pt) traj 

 FROM ordered 

 GROUP BY trajectory_id, 

          tracker 

) 

SELECT tracker, 

 ST_AsText(traj) 

FROM tmp 

JOIN my 

ON ST_Within( 

 ST_StartPoint(traj), 

 my.areaA) 

Execution plan 

Nested Loop 
(cost=0.01..10286.1) 

 Join Filter 

 CTE my 

 -> Result (cost=0.00..0.01) 

-> CTE Scan on my 

   (cost=0.00..0.02) 

-> Seq Scan on geolife 

   (cost=0.00..717.70) 

Nested Loop 
(cost=0.29..12.87) 

 CTE my 

 -> Result (cost=0.00..0.01) 

-> CTE Scan on my 

   (cost=0.00..0.02) 

-> Index Scan using 

   sidx_trajectory_ext_track  

   (cost=0.28..12.83) 

   Filter 

Nested Loop  
(cost=2592986.62..2604486.67
) 

 Join Filter 

 CTE my 

  -> Result 
(cost=0.00..0.01) 

 CTE ordered 

  -> Index Scan using  

     sidx_trajectory_pt_t  

     (cost=0.44..1908369.55) 

 CTE tmp 

  -> HashAggregate   

     
(cost=684117.06..684617.06) 

     -> CTE Scan on ordered   

        
(cost=0.00..497539.68)    
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-> CTE Scan on my   

   (cost=0.00..0.02) 

-> CTE Scan on tmp   

   (cost=0.00..800.00) 

Results (top 3 rows) 

id;tracker;traj 

9803;92;"("2008-07-14 
09:44:03", 

10031;95;"("2011-05-01 
17:29:38" 

10253;100;"("2011-07-31 
12:26:29 

id;tracker;st_astext 

9293;92;"LINESTRING M 
(116.31869 

9365;95;"LINESTRING M 
(116.3185  

9511;100;"LINESTRING M 
(116.3193 

tracker;st_astext 

92;"LINESTRING M (116.318692 
39. 

95;"LINESTRING M (116.3185 
39.9 

100;"LINESTRING M (116.31937 
39. 

Run time 

1.8 sec 488 ms 21.9 sec 

Extracting positions at a certain point in time 

In the fourth experiment, we extracted positions from trajectories to determine where 
moving objects were located at a certain point in time, as shown in Table 7. The point-based 
query is the most complex and slowest, and requires two CTEs. Trajectory data models and 
indexed time ranges are up to 2,000 times faster than point-based data models. Results are 
not consistent between PG-Trajectory and default PostGIS, because PG-Trajectory's 
t_record_at_interpolated() is hard-coded to return the average position between the 
positions immediately before and after the specified point in time.  

Table 7: Extracting moving object positions at a certain point in time 

PG-Trajectory  Default PostGIS Point-based  

SELECT id, tracker, 

 ST_AsText( 

  t_record_at_interpolated( 

   traj, 

   '2008-11-26 13:00')) 

FROM pgtrajectory.geolife 

WHERE (traj).e_time  

      >= '2008-11-26 13:00' 

AND (traj).s_time  

      <= '2008-11-26 13:00' 

SELECT id, tracker, 

 ST_AsText(ST_LocateAlong( 

  track, 

  extract(epoch from '2008-

11-26 13:00'::timestamptz))) 

FROM geolife.trajectory_ext 

WHERE time_range @> '2008-

11-26 13:00'::timestamptz 

WITH ordered AS ( 

 SELECT trajectory_id,  

  tracker, t, pt 

 FROM geolife.trajectory_pt 

 ORDER BY t 

), tmp AS ( 

 SELECT trajectory_id,  

  tracker,  

  min(t) start_time,  

  max(t) end_time,  

  st_makeline(pt) traj 

 FROM ordered 

 GROUP BY trajectory_id,  

          tracker 
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) 

SELECT tracker,  

 ST_AsText(ST_LocateAlong( 

  traj,  

  extract(epoch from '2008-

11-26 13:00'::timestamptz))) 

FROM tmp 

WHERE end_time  

      >= '2008-11-26 13:00' 

AND start_time  

      <= '2008-11-26 13:00' 

Execution plan 

Seq Scan on geolife  

(cost=0.00..1334.74) 

 Filter 

Index Scan using 

idx_trajectory_ext_time_rang

e  

(cost=0.28..8.30) 

CTE Scan on tmp  

(cost=2717371.53..2718404.86) 

 Filter 

 CTE ordered 

 -> Index Scan using  

    sidx_trajectory_pt_t  

    (cost=0.44..1908369.55) 

 CTE tmp 

 -> HashAggregate   

    (cost=808501.98..809001. 

98) 

    -> CTE Scan on ordered 

       (cost=0.00..497539.68) 

Results  

id;tracker;st_astext 

7872;68;"POINT(116.414505 

39.984 

9003;84;"POINT(116.388098 

39.968 

11494;126;"POINT(116.371539

5 39. 

15458;153;"POINT(116.435101 

39.9 

18270;167;"POINT(116.371539

5 39. 

id;tracker;st_astext 

10494;68;"MULTIPOINT M 

(116.4116 

8469;84;"MULTIPOINT M 

(116.44798 

11286;126;"MULTIPOINT M 

(116.422 

15332;153;"MULTIPOINT M 

(116.399 

18448;167;"MULTIPOINT M 

(116.422 

tracker;st_astext 

68;"MULTIPOINT M (116.411612 

39. 

84;"MULTIPOINT M (116.447984 

39. 

126;"MULTIPOINT M 

(116.422563384 

153;"MULTIPOINT M (116.399335 

39 

167;"MULTIPOINT M 

(116.422563384 

Run time 

2.5 sec 11 ms 22.2 sec 
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Visualization 

Visualization is straightforward for default PostGIS trajectories. A GIS that supports 
PostGIS data sources renders LineStringM features as lines. The open-source desktop GIS 
QGIS provides functionality to access m-values and use them for visualization purposes. For 
example, to visualize speed along a trajectory as shown in Figure 1, we can leverage QGIS's 
geometry generator feature to split the trajectory into individual segments for rendering on 
the fly. (For more details, see https://anitagraser.com/2016/10/09/movement-data-in-gis-2-
visualization/.) Speed is calculated using the length of the segment and the time between the 
segment’s start and end points. Speed values from 0 to 50 km/h are then mapped to a red-
yellow-blue colour ramp as follows: 

ramp_color('RdYlBu', 
  scale_linear( 
length(transform(geometry_n($geometry,@geometry_part_num),'EPSG:4326','EPSG:5402
7'))  
    / ( 
      m(end_point(geometry_n($geometry,@geometry_part_num))) - 
      m(start_point(geometry_n($geometry,@geometry_part_num))) 
    ) * 3.6, 
    0,50, 
    0,1 
  ) 
) 

 

 

Figure 1: Visualization of speed variation along a trajectory  
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In contrast, there is no straightforward way to visualize trajectories stored as PG-Trajectory 
objects, since GIS systems do not support this custom data type.  

4 Discussion and outlook 

Our experiments reveal that trajectory data models outperform commonly used point-based 
data models. Our comparison of PG-Trajectory and default trajectory support shows that 
PG-Trajectory performs worse than default PostGIS for moving point objects. PG-
Trajectory query run times are longer than comparable default PostGIS run times (duration 
queries: 58 times longer; length queries: 4,052 times longer; temporal filters: 208 times 
longer; spatial filters: 3.7 times longer; extracting positions: 227 times longer). The custom 
trajectory data type cannot be used with multi-dimensional indices, and there is no 
straightforward way to visualize the data. PG-Trajectory implements a series of distance 
measures for trajectory pairs that are not available in the default PostGIS. There is no 
obvious reason, however, that would prevent porting those functions to the default PostGIS 
trajectory model. We therefore argue that using default functions is (1) faster and (2) no 
more complex, (3) provides better integration, especially concerning multi-dimensional 
indices, and (4) is more sustainable, since these functions are maintained as part of the core 
project. 

In contrast to PG-Trajectory, PostGIS trajectory support does not currently cover moving 
area trajectories. By transferring the moving point object trajectory approach (where moving 
points are modelled as lines) to areas, one approach would be 3-dimensional geometries. 
Similar to LineStringM data types for moving points, moving areas could be modelled as 
PolyhedralSurface data types. PolyhedralSurfaceM types would be consistent with the 
LinestringM approach. On the other hand, PolyhedralSurfaceZ data can already be rendered 
in 3D viewers, such as QGIS 3. As an example, Figure 2 shows a moving square in 2D (left) 
and 3D map view (right) that is modelled as follows: 

INSERT INTO area_trajectory (traj) VALUES ( 
ST_GeometryFromText('POLYHEDRALSURFACE Z ( 
 ((0 0 0, 0 2 0, 2 2 0, 2 0 0, 0 0 0)), 
 ((1 1 1, 1 3 1, 3 3 1, 3 1 1, 1 1 1)), 
 ((2 2 2, 2 4 2, 4 4 2, 4 2 2, 2 2 2)) 
)')) 
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Figure 2: Exemplary moving area object trajectory as PolyhedralSurfaceZ in QGIS 

Another limitation of using PostGIS as a moving object database is the lack of explicit 
spatio-temporal indices. Existing multi-dimensional indices are a step in this direction, but 
explicit spatio-temporal approaches could take advantage of the constraint that time values in 
trajectory objects are continuously increasing.  

Further performance improvements could make it possible to handle increasingly massive 
trajectory datasets. PostgreSQL has traditionally (up to version 9.5, released on 2016-01-07 
(PostgreSQL, 2016)) run queries in a single thread of execution. This is now changing, with 
more and more functionality being parallelized (Ramsey, 2017b). There is no parallel 
processing in PostGIS so far, but it is under development (Ramsey, 2017a). Other avenues 
that are being explored include the use of GPUs to accelerate calculations. The GPU 
extension pg-strom is currently being developed but does not yet support PostGIS (Ramsey, 
2017b). Another approach is horizontal data partitioning provided by the citus extension. 
This allows the scaling-up of write and read operations, so that large amounts of data can be 
processed across multiple worker nodes (Ramsey, 2017b). Moving object applications will 
profit from appropriate trajectory data models that simplify and speed up interacting with the 
data. 
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