
Graser

16

Evaluating Spatio-temporal Data

Models for Trajectories in PostGIS

Databases

 GI_Forum 2018, Issue.1

Page: 16 - 33

Full Paper

Corresponding Author:

anitagraser@gmx.at

DOI: 10.1553/giscience2018_01_s16

Anita Graser

AIT Austrian Institute of Technology, Vienna, Austria

Abstract

Research in transport, ecology, health and other fields stands to profit from an improved

understanding of movement. As movement data availability improves, the need for

appropriate movement data analysis increases. However, the limited support for modelling

moving objects in GIS hampers data exploration and analysis. This paper discusses

trajectory data models and their implementation in the open-source spatial database

system PostGIS. We quantify the difference in performance between PostGIS default

trajectory support, dedicated trajectory data models, and commonly used point-based

data models. To the best of our knowledge, this is the first paper to evaluate PostGIS

default trajectory support and compare it to a proposed dedicated trajectory data type

from the literature. Our experiments include computing trajectory duration and length,

temporal and spatial filters, extracting positions at a certain time, and visualizing

trajectories in desktop GIS. We also discuss the limitations of, and potential for, contextual

trajectories and moving area object trajectories. Our results show that PostGIS functions for

moving point object trajectories are fast, reduce query complexity, and provide good

indexing integration, especially concerning multi-dimensional indices; the results also

reveal that trajectory data models outperform commonly used point-based data models.

Keywords:

trajectories, moving objects, spatial databases, PostGIS, PostgreSQL

1 Introduction

Analysis of movement data is an increasingly popular topic in the GIScience literature, with
applications ranging from research in movement ecology (for example, understanding
migration patterns, monitoring species distribution) (Wang et al., 2016), to transport (for
example, detecting travel behaviour, monitoring traffic quality) (Siła-Nowicka et al., 2016),
and health (for example, monitoring physical activity) (Doherty et al., 2014). Movement can
be described using spatial, temporal and spatio-temporal parameters. These parameters are
the building blocks of different movement patterns. Dodge et al. (2008) list parameters for
individual moving objects. Beyond single moving object trajectories, a large number of
measures (including similarity, density and formation stability) have already been developed

Graser

17

for a single trajectory amidst other trajectories, as well as between groups of trajectories
(Wiratma et al., 2017).

Thanks to improved data collection technology, many issues that previously suffered from
insufficient data are now being addressed. Nonetheless, GIS functionality to analyse data
from moving objects is still limited. The lack of support for handling time in current GIS
hampers data exploration and analysis. The de facto standard GIS data model is ‘Simple
Features’, as covered by ISO 19125 ‘Geographic information – Simple feature access’ (ISO,
2004) and ‘OpenGIS® Implementation Standard for Geographic information – Simple
feature access’ (OGC, 2017a). Even though other models do exist (for example, topological
data models), many GIS data formats only support simple features. The OGC Simple
Feature Access - Common Architecture deals only with at most 2-dimensional geometric
objects, whereas the ISO Spatial schema handles up to 3-dimensional geometric objects
(OGC, 2011). Temporal information is not, therefore, considered in the simple features
specification. Consequently, trajectories are commonly stored as points or segments with
time stamp attributes to preserve temporal information. For example, the CSV (comma
separated value) data model used by the Movebank Data Repository (Wikelski & Kays, 2017)
stores points with time stamps, while the OGC® Moving Features standard (OGC, 2017b)
models segments with start- and end-time stamps.

Beyond the field of GIS, the database community has developed the concept of moving
objects databases (MODs). One of the first projects in this domain was ‘Databases fOr
MovINg Objects tracking’ (DOMINO) (Wolfson et al., 1997). MODs provide specific
functionality for handling moving objects and can be seen as extensions of temporal or
spatial databases (Güting and Schneider, 2005, pp. 26–27). MODs can be optimized to deal
with either historic or live movement data. Much work has focused on indexing, in particular
the issue of how to index a large number of trajectories including the time dimension, in
order to perform efficient querying and updating. For example, Frentzos (2008) discusses
indexing of unconstrained and network-constrained trajectory data in MODs. As in GIS,
common data modelling approaches are either primal (where each trajectory segment is
represented as a line) or dual (where the trajectory segment is represented as a point)
(Wolfson, 2002). To the best of our knowledge, there exist only research prototypes of
moving objects databases, including SECONDO and HermesMOD. HermesMOD (n.d.) is
an extension to PostgreSQL and Oracle by researchers at the University of Piraeus.
SECONDO (2009) is a database management system (DBMS) ‘suitable for research
prototyping and teaching’. Since moving objects databases are still in the prototype phase, a
practical solution for the problem of handling moving objects in GIS environments is to lean
on a mature spatial DBMS such as PostGIS.

The remainder of this paper is structured as follows. Section 2 introduces approaches for
modelling moving point objects in PostGIS. Section 3 presents experiments comparing the
custom PG-Trajectory data model (Kucuk et al., 2016) to default PostGIS trajectory support
and commonly used point-based data models. Section 4 discusses advantages and
shortcomings of these approaches and concludes with an outlook on moving area objects, as
well as on massive movement data.

Graser

18

2 Moving point objects in PostGIS

Güting and Schneider (2005, pp. 28–29) have already confirmed that spatial databases can
handle moving objects, but cautioned that, in classical spatial databases, time is not managed
intrinsically. An example of a PostGIS-based data model using a custom trajectory object is
presented by Kucuk et al. (2016). Their model handles moving point and polygon features as
an open source extension (DMLAB, 2016) for PostGIS. Kucuk et al. (2016) argue that
‘[w]hen the trajectories are represented [...] using three columns (traj id, timestamp,
geometry), users are required to write complex queries and applications for implementing
trajectory manipulating functions’ (p. 83). They therefore propose a custom data type that
‘makes these queries easier by wrapping up widely used trajectory functions’ (ibid.) (see Table
1). Kucuk et al. (2016) indeed handle time explicitly. However, we find that this is not
necessary – at least for moving point objects – in current versions of PostGIS, thanks to its
built-in temporal support (version 2.2.0, released in October 2015, onwards (PostGIS,
2015)), as we will demonstrate in this paper.

PostGIS supports a superset of the simple features defined by the OGC. It supports 3D
geometries as well as additional measure values. Using PostGIS temporal support enables a
data model for moving objects that stores trajectories as LinestringM or LinestringZM,
where Z stands for elevation and M stands for measure or m-value. In this model, the
timestamp for each position is stored in the m-values of the vertices that make up the lines.
In a valid trajectory, m-values have to increase from one vertex to the next. These m-values
can be accessed both within the PostGIS database, and in desktop GISs such as QGIS. For
example, we can use ST_M(ST_EndPoint(trajectory)) in PostGIS and
m(end_point($geometry)) in QGIS to access the end-time of a trajectory.

To the best of our knowledge, this is the first paper to evaluate PostGIS default trajectory
support. Our goal is to quantify the differences in performance between PostGIS default
trajectory support, dedicated trajectory data models, and commonly used point-based data
models. Specifically, we compare the trajectory data type PG-Trajectory by Kucuk et al.
(2016) to default PostGIS without custom data types or functions. The comparison
methodology is based on query run times as well as query complexity, from the perspectives
of both the user writing the query (number of subqueries that have to be written) and the
database system (steps in the execution plan). A comparison to other database systems or
computing environments, such as R, is beyond the scope of this work. Table 1 provides an
initial overview of relevant functions in both PG-Trajectory and default PostGIS. While not
all aspects of functionality are available in both approaches, most basic trajectory functions
overlap. This overlapping functionality is compared in Section 3.

Graser

19

Table 1: Comparing PG-Trajectory (Kucuk et al., 2016) and default PostGIS for moving point objects

 PG-Trajectory Default PostGIS

Creating and
editing

Trajectory elements tg_pair (timestamp-geometry pair) PointM

Constructor _trajectory(tg_pair[]) geometry(LineStringM,4326)

Add position to
beginning / end

t_add_head(tg_pair,traj) /
t_add_tail(tg_pair,traj) : trajectory

ST_AddPoint(traj,ptM,0) /
ST_AddPoint(traj,ptM,-1) : geometry

Remove position
from beginning /
end

t_drop_head(traj) /
t_drop_tail(traj) : trajectory

ST_RemovePoint(traj,0) /
ST_RemovePoint(traj,
ST_NPoints(traj) - 1) : geometry

Update location at
certain time

t_update_geom_at(t,geom,traj) :
trajectory

-

Accessing
trajectory
information

Start time tg_start_time(tg_pair[]): timestamp ST_M(ST_StartPoint(traj)) : float

End time tg_end_time(tg_pair[]) : timestamp ST_M(ST_EndPoint(traj)) : float

Duration t_duration(traj) : time interval ST_M(ST_EndPoint(traj)) -

ST_M(ST_StartPoint(traj)) : float

Length t_distance(traj) : real ST_Length(traj) : float

Position at certain
time

t_geom_at(traj,t) : geometry *

(code repo contains
t_record_at_interpolated(traj, t):
geometry)

ST_LocateAlong(traj,t) : geometry

Extract
subtrajectory

- ST_LocateBetween(traj,t1,t2) :
geometry

Pair-wise trajectory
analysis

Spatio-temporal
intersection

t_overlaps(traj1,traj2) : boolean *

(code repo contains
t_intersection(traj1,traj2) : traj)

ST_CPAWithin(traj1,traj2,maxdist) :
bool

Closest point of
approach (CPA)

- ST_ClosestPointOfApproach(traj1,tr
aj2) : float

Time-relaxed
Euclidean distance

t_euclidean_distance(traj1,traj2) :
real

-

Edit distance t_edit_distance(traj1,traj2) : real -

Euclidean distances t_m_distance(traj1,traj2) : real[] -

Hausdorff distance - ST_HausdorffDistance(traj1,traj2) :
float

Graser

20

 3 Experiments

Experiments were performed using the Geolife dataset published by Zheng, Li et al. (2008),
Zhen, Zhang et al. (2009), and Zhen, Xie et al. (2010), which was also used in the point
trajectory examples by Kucuk et al. (2016). The Geolife dataset contains 18,670 trajectories
collected using 182 trackers, mostly in and around Beijing, with some trajectories including
international travel. The run times of our experiments were measured on a Dell R730
database server with 8 cores (Intel Xeon E5-2637 v4) and 64 GB memory. The following
experiments were carried out:

1. Computing total trajectory duration and length per tracker

2. Finding trajectories that occurred during a certain time frame (temporal filter)

3. Finding trajectories that originated in a certain spatial region (spatial filter)

4. Extracting positions at a certain point in time

5. Visualizing trajectories in desktop GIS

We found that the PG-Trajectory source code published by Kucuk et al. at
https://bitbucket.org/gsudmlab/pg-trajectory had to be fixed at several locations before it
was possible to import Geolife trajectories and use trajectory functions. The updated code is
available at https://bitbucket.org/anitagraser/pg-trajectory.

In addition to the PG-Trajectory and default PostGIS trajectory data models, we also
compared results with the commonly used basic point-based data model. Trajectory table
definitions for all three approaches as well as an example of trajectory data insertion are
provided in Table 2. The custom trajectory data type by Kucuk et al. (2016) stores an array of
timestamp-geometry pairs, as well as trajectory start- and end-time stamps. Therefore, to
enable a fair comparison, a table with a LineStringM and additional time-range column was
chosen to represent PostGIS's temporal support.

Table 2: Trajectory table creation, data insertion, and index creation for the three data model

approaches compared in this paper

PG-Trajectory Default PostGIS Point-based

CREATE TABLE
pgtrajectory.geolife(

id serial NOT NULL,

tracker integer,

traj trajectory

);

CREATE TABLE
geolife.trajectory_ext(

id serial NOT NULL,

tracker integer,

track geometry(LineStringM),

time_range tstzrange

);

CREATE TABLE
geolife.trajectory_pt(

id serial NOT NULL,

sequence bigint,

trajectory_id bigint,

tracker integer,

pt geometry(Point),

t timestamp with time zone);

INSERT INTO
pgtrajectory.geolife
(tracker,traj)

VALUES (010,

_trajectory(ARRAY[

ROW('2007-11-17
17:08:27+00',POINT(121.5

INSERT INTO
geolife.trajectory_ext
(tracker,track,time_range)
VALUES (010,

 ST_SetSRID(

 ST_GeometryFromText(

 'LINESTRINGM (121.574898

INSERT INTO
geolife.trajectory_pt
(sequence,trajectory_id,track
er,pt,t)

VALUES (1, 1, 010,
ST_SetSRID(ST_GeometryFromTex
t(

Graser

21

74898,31.195130))::tg_pa
ir,

ROW('2007-11-17
17:08:32+00',POINT(121.5
73458,31.197597))::tg_pa
ir, ...]));

31.195130 1195319307,

121.573458 31.197597
1195319312, ...) '),4326),

'[2007-11-17
18:08:27+01,2007-11-17
18:10:01+01]'::tstzrange);

'POINT(121.574898
31.195130)')), '2007-11-17
17:08:27+00');

CREATE INDEX
idx_pgtrajectory_tracker

 ON trajectory_ext

 USING btree (tracker);

CREATE INDEX
idx_trajectory_ext_time_range

 ON trajectory_ext

 USING gist (time_range);

CREATE INDEX
sidx_trajectory_ext_track3d

 ON trajectory_ext

 USING gist (track
gist_geometry_ops_nd);

CREATE INDEX
idx_trajectory_ext_tracker

 ON trajectory_ext

 USING btree (tracker);

CREATE INDEX
sidx_trajectory_pt_pt

 ON trajectory_pt

 USING gist (pt);

CREATE INDEX
sidx_trajectory_pt_trajectory
_id

 ON trajectory_pt

 USING btree (trajectory_id);

CREATE INDEX
sidx_trajectory_pt_tracker

 ON trajectory_pt

 USING btree (tracker);

CREATE INDEX
sidx_trajectory_pt_t

 ON trajectory_pt

 USING btree (t);

Duration and length

The first experiment was to determine trajectory duration and length for all observed moving
objects (identified by a tracker id in the case of the Geolife dataset). Queries and their run
times are provided in Tables 3 and 4. Both duration and distance queries are fastest using
default PostGIS trajectory types (default PostGIS variant a in Table 3). Only if temporal
information has to be extracted from the LineStringM (variant b in Table 3) is the default
trajectory approach slower than the PG-Trajectory. The basic point-based data model is
significantly slower (up to 194 times) than either of the trajectory-based data models. This is
because queries for the point-based trajectory data model result in a more complex execution
plan, including a second time-consuming HashAggregate step.

Queries for the point-based data model are more complex than queries for the other models,
since each requires an additional subquery. More specifically, to keep point-based queries
readable, we use WITH queries, also known as Common Table Expressions (CTE). The
WITH query in Table 3 prepares a temporary table, which groups points belonging to the
same trajectory and extracts start and end times. It is worth noting that WITH queries can
negatively impact query performance, but potential improvements gained by designing more
complex nested queries are not investigated further in this paper.

Graser

22

Results show that the total duration of trajectories of tracker1 according to PG-Trajectory
differs by one hour from the durations obtained using the other two approaches. We have
not so far been able to determine the reason for this.

Table 3: Total trajectory duration for all trackers

PG-Trajectory Default PostGIS Point-based

SELECT tracker,

 sum(t_duration(traj))

FROM pgtrajectory.geolife

GROUP BY tracker

ORDER BY tracker

SELECT tracker, (a)

 sum(upper(time_range) -

 lower(time_range))

FROM geolife.trajectory_ext

GROUP BY tracker

ORDER BY tracker

WITH tmp AS (

 SELECT trajectory_id,

 tracker,

 min(t) start_time,

 max(t) end_time

 FROM geolife.trajectory_pt

 GROUP BY trajectory_id,

 tracker

)

SELECT tracker,

 sum(end_time - start_time)

FROM tmp

GROUP BY tracker

ORDER BY tracker

SELECT tracker, (b)

 sum(to_timestamp(st_m(

 st_endpoint(track)))

 - to_timestamp(st_m(

 st_startpoint(track))))

FROM geolife.trajectory_ext

GROUP BY tracker

ORDER BY tracker

Execution plan

Sort (cost=5487.20..5487.66)

-> HashAggregate

 (cost=5478.55..5480.37)

 -> Seq Scan on geolife

 (cost=0.00..717.70)

Sort (cost=5978.73..5979.18)

-> HashAggregate

 (cost=5970.07..5971.89)

 -> Seq Scan on
trajectory_ext

 (cost=0.00..5736.70)

Sort
(cost=880610.37..880610.87)

CTE tmp

-> HashAggregate

(cost=829233.68..842931.56)

 -> Seq Scan on
trajectory_pt

 (cost=0.00..580463.84)

-> HashAggregate

 (cost=37669.17..37671.17)

 -> CTE Scan on tmp

 (cost=0.00..27395.76)

Results (top 3 rows)

tracker;sum

0;"2 days 879:43:29"

1;"314:05:30"

2;"700:49:38"

tracker;sum

0;"2 days 879:43:29"

1;"315:05:30"

2;"700:49:38"

tracker;sum

0;"2 days 879:43:29"

1;"315:05:30"

2;"700:49:38"

Run time

1.8 sec a) 31 ms, b) 2.1 sec 6.0 sec

Graser

23

Table 4 shows total trajectory-length queries and results. The point-based query is the most
complex, requiring two CTEs. Even so, the point-based query run time is shorter than for
PG-Trajectory due to the more efficient implementation of the length function. In all three
cases, lengths are computed after casting from geometry to geography data type. The
remaining minor differences in the resulting lengths are due to rounding.

Table 4: Total trajectory length for each tracker

PG-Trajectory Default PostGIS Point-based

SELECT tracker,

 round(sum(

 t_distance(traj)

))

FROM pgtrajectory.geolife

GROUP BY tracker

ORDER BY tracker

SELECT tracker,

 round(sum(

 ST_Length(track::geography)

))

FROM geolife.trajectory_ext

GROUP BY tracker

ORDER BY tracker

WITH ordered AS (

 SELECT trajectory_id,

 tracker, t, pt

 FROM geolife.trajectory_pt

 ORDER BY t

), tmp AS (

 SELECT trajectory_id,

 tracker,

 st_makeline(pt) traj

 FROM ordered

 GROUP BY trajectory_id,

 tracker

)

SELECT tracker,

 round(sum(

 ST_Length(traj::geography)

))

FROM tmp

GROUP BY tracker

ORDER BY tracker

Execution plan

Sort (cost=5487.66..5488.11)

-> HashAggregate

 (cost=5478.55..5480.82)

 -> Seq Scan on geolife

 (cost=0.00..717.70)

Sort
(cost=10553.33..10553.79)

-> HashAggregate

 (cost=10544.22..10546.50)

 -> Seq Scan on
trajectory_ext

 (cost=0.00..5736.70)

Sort
(cost=2604096.7..2604097.2)

CTE ordered

-> Index Scan using

 sidx_trajectory_pt_t

 (cost=0.44..1908369.55)

CTE tmp

-> HashAggregate

(cost=684117.06..684617.06)

 -> CTE Scan on ordered

 (cost=0.00..497539.68)

-> HashAggregate

 (cost=11100.00..11102.50)

 -> CTE Scan on tmp

 (cost=0.00..800.00)

Graser

24

Results (top 3 rows)

tracker;round

0;6520101

1;986594

2;3339309

tracker;round

0;6520101

1;986594

2;3339309

tracker;round

0;6520101

1;986594

2;3339309

Run time

01:32 min 22.7 sec 43.0 sec

Temporal filters

In the second experiment, we extracted trajectories that occurred during a certain time
frame, as shown in Table 5. The default PostGIS query illustrates how time ranges can be
used in combination with the ‘overlaps’ operator && (default PostGIS variant a), thus
providing a more succinct way to write temporal queries. The point-based query is the most
complex and slowest, requiring two CTEs. Default PostGIS queries using time ranges
(variant a in Table 5) or the n-dimensional index (variant b) are considerably faster than the
PG-Trajectory approach, since their execution plans avoid sequential scans by leveraging
appropriate indices. Even if temporal information had to be extracted from the LineStringM
(variant c), the default approach would still be faster than PG-Trajectory.

Results show that all three approaches identify the same trajectories that overlap the
specified time range. Trajectory ids vary between result sets, since these ids are not defined in
the imported Geolife dataset but rather generated using auto-incrementing values on data
import.

Table 5: Filtering trajectories by time

PG-Trajectory Default PostGIS Point-based

SELECT id, tracker,

 (traj).s_time,

 (traj).e_time

FROM pgtrajectory.geolife

WHERE (traj).e_time

 > '2008-11-26 11:00'

AND (traj).s_time

 < '2008-11-26 15:00'

SELECT id, tracker,

 time_range

FROM geolife.trajectory_ext

WITH tmp AS (

 SELECT trajectory_id,

 tracker,

 min(t) start_time,

 max(t) end_time

 FROM geolife.trajectory_pt

 GROUP BY trajectory_id,

 tracker

)

SELECT trajectory_id,

 tracker, start_time,

 end_time

FROM tmp

WHERE end_time

 > '2008-11-26 11:00'

WHERE (a)

time_range && '[2008-11-26
11:00+1,2008-11-26
15:00+01]'::tstzrange

WHERE track &&& (b)

ST_Collect(

 ST_MakePointM(-180,-90,

 extract(epoch from '2008-
11-26 11:00'::timestamptz)),

 ST_MakePointM(180,90,

 extract(epoch from '2008-
11-26 15:00'::timestamptz))

)

Graser

25

WHERE (c)

 to_timestamp(st_m(

 st_endpoint(track)))

 > '2008-11-26 11:00'

AND to_timestamp(st_m(

 st_startpoint(track)))

 < '2008-11-26 15:00')

AND start_time

 < '2008-11-26 15:00'

Execution plan

Seq Scan on geolife
(cost=0.00..811.05)

 Filter

Bitmap Heap Scan on (a)

trajectory_ext
(cost=4.31..23.93)

 -> Bitmap Index Scan on

idx_trajectory_ext_time_rang
e

 (cost=0.00..4.31)

CTE Scan on tmp
(cost=842931.56..877176.26)

 Filter

 CTE tmp

 -> HashAggregate

(cost=829233.68..842931.56)

 -> Seq Scan on
trajectory_pt

(cost=0.00..580463.84)

Index Scan using (b)

sidx_trajectory_ext_track3d

(cost=0.29..12.32)

Seq Scan on trajectory_ext (c)

(cost=0.00..6110.10)

 Filter

Results (top 3 rows)

id;tracker;s_time;e_time

1197;5;"2008-11-25
23:26:34";"20

2089;14;"2008-11-26
11:07:04";"2

7872;68;"2008-11-26
12:59:36";"2

id;tracker;time_range

1347;5;"["2008-11-25
23:26:34+01

2252;14;"["2008-11-26
11:07:04+0

10494;68;"["2008-11-26
12:59:36+

trajectory_id;tracker;start_
time

1347;5;"2008-11-25
23:26:34+01";

2252;14;"2008-11-26
11:07:04+01"

10494;68;"2008-11-26
12:59:36+01

Run time

2.5 sec a) with index: 12 ms, without:
21 ms, b) 12 ms, c) 1.8 sec

6.0 sec

Spatial filters

In the third experiment, we extracted trajectories that originated in a certain spatial region, as
shown in Table 6. It is straightforward to adjust these queries to find trajectories that either
end in a specific region, or both start and end within defined regions. The point-based query
is the most complex and slowest (45 times slower than default PostGIS), requiring three
CTEs instead of just one. Again, PG-Trajectory requires a sequential scan, while the default
PostGIS leverages the index. Results show that all three approaches return the same
trajectories that start within the buffer designated as areaA.

Graser

26

Table 6: Filtering trajectories’ start locations

PG-Trajectory Default PostGIS Point-based

WITH my AS (SELECT

 ST_Buffer(ST_SetSRID(

 ST_MakePoint(116.31894,

 39.97472),4326),0.0005)

 areaA

)

SELECT id, tracker,

 traj

FROM pgtrajectory.geolife

JOIN my

ON ST_Within(ST_SetSRID(

 (tg_head((traj).tr_data)).g

 ,4326),

 areaA)

WITH my AS (SELECT

 ST_Buffer(ST_SetSRID(

 ST_MakePoint(116.31894,

 39.97472),4326),0.0005)

 areaA

)

SELECT id, tracker,

 ST_AsText(track)

FROM geolife.trajectory_ext

JOIN my

ON areaA && track

AND ST_Within(

 ST_StartPoint(track),

 areaA)

WITH my AS (SELECT

 ST_Buffer(ST_SetSRID(

ST_MakePoint(116.31894,39.97
472),4326),0.0005) areaA

), ordered AS (

 SELECT trajectory_id,

 tracker, t, pt

 FROM geolife.trajectory_pt

 ORDER BY t

), tmp AS (

 SELECT trajectory_id,

 tracker,

 st_makeline(pt) traj

 FROM ordered

 GROUP BY trajectory_id,

 tracker

)

SELECT tracker,

 ST_AsText(traj)

FROM tmp

JOIN my

ON ST_Within(

 ST_StartPoint(traj),

 my.areaA)

Execution plan

Nested Loop
(cost=0.01..10286.1)

 Join Filter

 CTE my

 -> Result (cost=0.00..0.01)

-> CTE Scan on my

 (cost=0.00..0.02)

-> Seq Scan on geolife

 (cost=0.00..717.70)

Nested Loop
(cost=0.29..12.87)

 CTE my

 -> Result (cost=0.00..0.01)

-> CTE Scan on my

 (cost=0.00..0.02)

-> Index Scan using

 sidx_trajectory_ext_track

 (cost=0.28..12.83)

 Filter

Nested Loop
(cost=2592986.62..2604486.67
)

 Join Filter

 CTE my

 -> Result
(cost=0.00..0.01)

 CTE ordered

 -> Index Scan using

 sidx_trajectory_pt_t

 (cost=0.44..1908369.55)

 CTE tmp

 -> HashAggregate

(cost=684117.06..684617.06)

 -> CTE Scan on ordered

(cost=0.00..497539.68)

Graser

27

-> CTE Scan on my

 (cost=0.00..0.02)

-> CTE Scan on tmp

 (cost=0.00..800.00)

Results (top 3 rows)

id;tracker;traj

9803;92;"("2008-07-14
09:44:03",

10031;95;"("2011-05-01
17:29:38"

10253;100;"("2011-07-31
12:26:29

id;tracker;st_astext

9293;92;"LINESTRING M
(116.31869

9365;95;"LINESTRING M
(116.3185

9511;100;"LINESTRING M
(116.3193

tracker;st_astext

92;"LINESTRING M (116.318692
39.

95;"LINESTRING M (116.3185
39.9

100;"LINESTRING M (116.31937
39.

Run time

1.8 sec 488 ms 21.9 sec

Extracting positions at a certain point in time

In the fourth experiment, we extracted positions from trajectories to determine where
moving objects were located at a certain point in time, as shown in Table 7. The point-based
query is the most complex and slowest, and requires two CTEs. Trajectory data models and
indexed time ranges are up to 2,000 times faster than point-based data models. Results are
not consistent between PG-Trajectory and default PostGIS, because PG-Trajectory's
t_record_at_interpolated() is hard-coded to return the average position between the
positions immediately before and after the specified point in time.

Table 7: Extracting moving object positions at a certain point in time

PG-Trajectory Default PostGIS Point-based

SELECT id, tracker,

 ST_AsText(

 t_record_at_interpolated(

 traj,

 '2008-11-26 13:00'))

FROM pgtrajectory.geolife

WHERE (traj).e_time

 >= '2008-11-26 13:00'

AND (traj).s_time

 <= '2008-11-26 13:00'

SELECT id, tracker,

 ST_AsText(ST_LocateAlong(

 track,

 extract(epoch from '2008-

11-26 13:00'::timestamptz)))

FROM geolife.trajectory_ext

WHERE time_range @> '2008-

11-26 13:00'::timestamptz

WITH ordered AS (

 SELECT trajectory_id,

 tracker, t, pt

 FROM geolife.trajectory_pt

 ORDER BY t

), tmp AS (

 SELECT trajectory_id,

 tracker,

 min(t) start_time,

 max(t) end_time,

 st_makeline(pt) traj

 FROM ordered

 GROUP BY trajectory_id,

 tracker

Graser

28

)

SELECT tracker,

 ST_AsText(ST_LocateAlong(

 traj,

 extract(epoch from '2008-

11-26 13:00'::timestamptz)))

FROM tmp

WHERE end_time

 >= '2008-11-26 13:00'

AND start_time

 <= '2008-11-26 13:00'

Execution plan

Seq Scan on geolife

(cost=0.00..1334.74)

 Filter

Index Scan using

idx_trajectory_ext_time_rang

e

(cost=0.28..8.30)

CTE Scan on tmp

(cost=2717371.53..2718404.86)

 Filter

 CTE ordered

 -> Index Scan using

 sidx_trajectory_pt_t

 (cost=0.44..1908369.55)

 CTE tmp

 -> HashAggregate

 (cost=808501.98..809001.

98)

 -> CTE Scan on ordered

 (cost=0.00..497539.68)

Results

id;tracker;st_astext

7872;68;"POINT(116.414505

39.984

9003;84;"POINT(116.388098

39.968

11494;126;"POINT(116.371539

5 39.

15458;153;"POINT(116.435101

39.9

18270;167;"POINT(116.371539

5 39.

id;tracker;st_astext

10494;68;"MULTIPOINT M

(116.4116

8469;84;"MULTIPOINT M

(116.44798

11286;126;"MULTIPOINT M

(116.422

15332;153;"MULTIPOINT M

(116.399

18448;167;"MULTIPOINT M

(116.422

tracker;st_astext

68;"MULTIPOINT M (116.411612

39.

84;"MULTIPOINT M (116.447984

39.

126;"MULTIPOINT M

(116.422563384

153;"MULTIPOINT M (116.399335

39

167;"MULTIPOINT M

(116.422563384

Run time

2.5 sec 11 ms 22.2 sec

Graser

29

Visualization

Visualization is straightforward for default PostGIS trajectories. A GIS that supports
PostGIS data sources renders LineStringM features as lines. The open-source desktop GIS
QGIS provides functionality to access m-values and use them for visualization purposes. For
example, to visualize speed along a trajectory as shown in Figure 1, we can leverage QGIS's
geometry generator feature to split the trajectory into individual segments for rendering on
the fly. (For more details, see https://anitagraser.com/2016/10/09/movement-data-in-gis-2-
visualization/.) Speed is calculated using the length of the segment and the time between the
segment’s start and end points. Speed values from 0 to 50 km/h are then mapped to a red-
yellow-blue colour ramp as follows:

ramp_color('RdYlBu',
 scale_linear(
length(transform(geometry_n($geometry,@geometry_part_num),'EPSG:4326','EPSG:5402
7'))
 / (
 m(end_point(geometry_n($geometry,@geometry_part_num))) -
 m(start_point(geometry_n($geometry,@geometry_part_num)))
) * 3.6,
 0,50,
 0,1
)
)

Figure 1: Visualization of speed variation along a trajectory

Graser

30

In contrast, there is no straightforward way to visualize trajectories stored as PG-Trajectory
objects, since GIS systems do not support this custom data type.

4 Discussion and outlook

Our experiments reveal that trajectory data models outperform commonly used point-based
data models. Our comparison of PG-Trajectory and default trajectory support shows that
PG-Trajectory performs worse than default PostGIS for moving point objects. PG-
Trajectory query run times are longer than comparable default PostGIS run times (duration
queries: 58 times longer; length queries: 4,052 times longer; temporal filters: 208 times
longer; spatial filters: 3.7 times longer; extracting positions: 227 times longer). The custom
trajectory data type cannot be used with multi-dimensional indices, and there is no
straightforward way to visualize the data. PG-Trajectory implements a series of distance
measures for trajectory pairs that are not available in the default PostGIS. There is no
obvious reason, however, that would prevent porting those functions to the default PostGIS
trajectory model. We therefore argue that using default functions is (1) faster and (2) no
more complex, (3) provides better integration, especially concerning multi-dimensional
indices, and (4) is more sustainable, since these functions are maintained as part of the core
project.

In contrast to PG-Trajectory, PostGIS trajectory support does not currently cover moving
area trajectories. By transferring the moving point object trajectory approach (where moving
points are modelled as lines) to areas, one approach would be 3-dimensional geometries.
Similar to LineStringM data types for moving points, moving areas could be modelled as
PolyhedralSurface data types. PolyhedralSurfaceM types would be consistent with the
LinestringM approach. On the other hand, PolyhedralSurfaceZ data can already be rendered
in 3D viewers, such as QGIS 3. As an example, Figure 2 shows a moving square in 2D (left)
and 3D map view (right) that is modelled as follows:

INSERT INTO area_trajectory (traj) VALUES (
ST_GeometryFromText('POLYHEDRALSURFACE Z (
 ((0 0 0, 0 2 0, 2 2 0, 2 0 0, 0 0 0)),
 ((1 1 1, 1 3 1, 3 3 1, 3 1 1, 1 1 1)),
 ((2 2 2, 2 4 2, 4 4 2, 4 2 2, 2 2 2))
)'))

Graser

31

Figure 2: Exemplary moving area object trajectory as PolyhedralSurfaceZ in QGIS

Another limitation of using PostGIS as a moving object database is the lack of explicit
spatio-temporal indices. Existing multi-dimensional indices are a step in this direction, but
explicit spatio-temporal approaches could take advantage of the constraint that time values in
trajectory objects are continuously increasing.

Further performance improvements could make it possible to handle increasingly massive
trajectory datasets. PostgreSQL has traditionally (up to version 9.5, released on 2016-01-07
(PostgreSQL, 2016)) run queries in a single thread of execution. This is now changing, with
more and more functionality being parallelized (Ramsey, 2017b). There is no parallel
processing in PostGIS so far, but it is under development (Ramsey, 2017a). Other avenues
that are being explored include the use of GPUs to accelerate calculations. The GPU
extension pg-strom is currently being developed but does not yet support PostGIS (Ramsey,
2017b). Another approach is horizontal data partitioning provided by the citus extension.
This allows the scaling-up of write and read operations, so that large amounts of data can be
processed across multiple worker nodes (Ramsey, 2017b). Moving object applications will
profit from appropriate trajectory data models that simplify and speed up interacting with the
data.

Graser

32

Acknowledgements

This work was supported by the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT) within the programme ‘IKT der Zukunft’ under Grant 861258
(project MARNG).

References

DMLAB (Data Mining Lab). (2016). PG-Trajectory. Georgia State University.
URL: http://pg-trajectory.dmlab.cs.gsu.edu (accessed 2017-12-15).

Dodge, S., Weibel, R., and Lautenschütz, A.-K. (2008). Towards a taxonomy of movement patterns.
Information visualization, 7(3-4):240–252.

Doherty, S. T., Lemieux, C. J., & Canally, C. (2014). Tracking human activity and well-being in natural
environments using wearable sensors and experience sampling. Social Science & Medicine, 106,
83-92.

Frentzos, E. (2008). Trajectory data management in moving object databases. PhD thesis, PhD thesis,
University of Piraeus.

Güting, R. H. and Schneider, M. (2005). Moving objects databases. Elsevier.
HermesMOD (n.d.) HERMES MOD. UNIPI-InfoLab University of Piraeus Information

Management Lab. URL: http://infolab.cs.unipi.gr?page_id=1999 (accessed 2017-12-15).
ISO (2004). ISO 19125-1:2004 Preview Geographic information - Simple feature access - Part 1:

Common architecture. URL: https://www.iso.org/standard/40114.html (accessed 2017-12-15).
Kucuk, A., Hamdi, S. M., Aydin, B., Schuh, M. A., & Angryk, R. A. (2016). PG-TRAJECTORY: A

PostgreSQL/PostGIS based Data Model for Spatiotemporal Trajectories. In Big Data and Cloud
Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International
Conferences on (pp. 81-88). IEEE. doi:10.1109/BDCloud-SocialCom-SustainCom.2016.23

OGC Open Geospatial Consortium (2011). OpenGIS Implementation Specification for Geographic
information - Simple feature access - Part 1: Common architecture.
URL: http://portal.opengeospatial.org/files/?artifact_id=25355 (accessed 2017-12-12).

OGC Open Geospatial Consortium (2017a). Simple Feature Access - Part 1: Common Architecture.
URL: http://www.opengeospatial.org/standards/sfa (accessed 2017-12-12).

OGC Open Geospatial Consortium (2017b) OGC® Moving Features.
URL: http://www.opengeospatial.org/standards/movingfeatures (accessed 2017-12-12).

PostGIS Development Group. (2015). PostGIS 2.2.7dev Manual.
URL: http://postgis.net/docs/manual-2.2/reference.html#Temporal (accessed 2017-12-15).

PostgreSQL Global Development Group. (2016). Release 9.5.
URL: https://www.postgresql.org/docs/9.5/static/release-9-5.html (accessed 2017-12-15).

Ramsey, P. (2017a). Parallel PostGIS II.
URL: http://blog.cleverelephant.ca/2017/10/parallel-postgis-2.html (accessed 2017-12-15).

Ramsey, P. (2017b). PostGIS Scaling. URL: http://blog.cleverelephant.ca/2017/12/postgis-
scaling.html (accessed 2017-12-15).

SECONDO. (2009). Secondo. FernUniversität Hagen.
URL: http://dna.fernuni-hagen.de/Secondo.html/index.html (accessed 2017-12-15).

Siła-Nowicka, K., Vandrol, J., Oshan, T., Long, J. A., Demšar, U., & Fotheringham, A. S. (2016).
Analysis of human mobility patterns from GPS trajectories and contextual information.
International Journal of Geographical Information Science, 30(5), 881-906.

Graser

33

Wang, Y., Luo, Z., Takekawa, J., Prosser, D., Xiong, Y., Newman, S., ... & Yan, B. (2016). A new
method for discovering behavior patterns among animal movements. International Journal of
Geographical Information Science, 30(5), 929-947.

Wikelski, M., and Kays, R. (2017). Movebank: archive, analysis and sharing of animal movement data.
Hosted by the Max Planck Institute for Ornithology. URL: http://www.movebank.org/ (accessed
2017-12-15).

Wiratma, L., van Kreveld, M., and Löffler, M. (2017). On Measures for Groups of Trajectories. In
International Conference on Geographic Information Science, 311–330. Springer.

Wolfson, O. (2002). Moving objects information management: The database challenge. In
International Workshop on Next Generation Information Technologies and Systems, 75–89.
Springer.

Wolfson, O., Chamberlain, S., Dao, S., and Jiang, L. (1997). Location management in moving objects
databases. In WoSBIS, volume 97, 7–13.

Zheng, Y., Li, Q., Chen, Y., Xie, X., and Ma, W.-Y. (2008). Understanding mobility based on GPS
data. In Proceedings of the 10th international conference on Ubiquitous computing, 312–321.
ACM.

Zheng, Y., Xie, X., and Ma, W.-Y. (2010). GeoLife: A Collaborative Social Networking Service among
User, Location and Trajectory. IEEE Data Eng. Bull., 33(2):32–39.

Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y. (2009). Mining interesting locations and travel sequences
from GPS trajectories. In Proceedings of the 18th international conference on World wide web,
791–800. ACM.

