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Abstract  

In health and aging studies that include GPS assessments, mobility is often represented by 

a single indicator such as the number of activity locations, the size of the activity space, or 

the total distance covered. We argue, however, that mobility is a multi-dimensional 

construct. In this paper, we first provide a framework to categorize and systematically 

organize daily-life mobility indicators. We then illustrate this framework by computing 

several mobility indicators based on GPS data recorded from healthy older adults. We 

apply a correlational approach to the computed mobility indicators as a first step towards 

discovering underlying dimensions of daily mobility. We found a trend towards higher 

correlations between mobility indicators that represent more similar properties of mobility. 

The framework can be used by health researchers to inform the choice of appropriate 

mobility indicators in the design of empirical studies.  
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1 Introduction 

In light of current demographic changes, it is important to study factors contributing to an 
active, independent and healthy lifestyle up to and into old age. An increasing number of 
studies have investigated the manifold relations between mobility and physical as well as 
psychological health, especially in older adults (Giannouli, Bock, & Zijlstra, 2018; Kaspar, 
Oswald, Wahl, Voss, & Wettstein, 2015; Rantakokko et al., 2015). However, most studies 
that found significant relations between mobility and health outcomes focus on the physical 
dimension of mobility (how much activity takes place) and less on its spatial dimension 
(where activity takes place). In this study, we are interested in this spatial dimension and 
define mobility as everyday spatio-temporal patterns of an individual’s movements in their 
environment. 

The study of daily mobility is important and can be related to various health outcomes for an 
individual in at least two ways (Chaix et al., 2013). Firstly, it provides information about the 
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amount and modes of transportation used. Using active modes of transportation (e.g., 
walking, cycling) has a positive impact on physical activity levels and therefore also on health 
status. Further, the study of mobility can provide information about precise locations and 
thus the environments to which people are exposed. Environments can be beneficial (e.g., 
places for social interactions) or harmful to health and wellbeing (e.g., because of pollution). 
Yet studies often focus only on single aspects of mobility, such as modes of transportation 
(Takemoto et al., 2015), residential neighbourhood properties (Badland et al., 2009), or 
geometric properties of an individual’s activity space (Hirsch, Winters, Clarke, & McKay, 
2014). In contrast, we agree with Perchoux et al. (2014) and suggest that mobility is a 
complex, multi-dimensional construct which should be assessed as comprehensively as 
possible, before relating it to different health outcomes. Combining daily-life GPS 
assessments with contextual information is one way of collecting information on multiple 
aspects of mobility and the resulting environmental exposure. Comparable attempts in the 
literature to classify mobility indicators have typically focused on a few specific aspects of 
mobility and do not characterize a diverse set of mobility indicators (e.g., Brusilovskiy, Klein, 
& Salzer, 2016; Perchoux et al., 2014). 

The aim of this paper is to provide a framework for classifying mobility indicators that 
represent different aspects of an individual’s mobility patterns and their environment, with 
the intention of providing guidelines regarding the choice of appropriate mobility indicators 
in empirical health studies. GPS data of 87 healthy older adults were processed to compute a 
subset of indicators. A correlational approach was then applied to the computed mobility 
indicators as a first step towards discovering underlying dimensions of daily mobility.  

2 Categorization of GPS-based daily mobility indicators  

Table 1 shows a summary of the proposed framework to categorize mobility indicators 
describing various dimensions of individuals’ mobility and environmental exposure based on 
GPS data. The indicators presented in the table are exemplary and no claim to 
exhaustiveness is made. First, we group mobility indicators according to the movement scope 
they are referring to: ‘stops’, ‘moves’ or ‘activity space’. These categories are inspired by 
computational movement analysis, in which it is common to segment spatio-temporal 
trajectories into stops (so-called activity locations or static behaviour) and moves (dynamic 
behaviour) (Laube, 2014; Siła-Nowicka et al., 2016). The stops and moves can subsequently 
be analysed separately. Activity space (in health research also referred to as life space) 
describes the overall distribution of the spatial locations corresponding to an individual’s 
exhaustive spatial footprint (Chaix et al., 2012). Second, each indicator categorized among 
one of the movement scope categories can be assigned to one of four further categories – ‘spatial 
structure’, ‘temporal structure’, ‘nature of activity’ or ‘exposure’ – representing different 
aspects of mobility that may be of interest. The first three categories are derived directly from 
the three intertwined components of spatial behaviour presented in Chaix et al. (2013). 
‘Spatial structure’ refers to geometrical aspects of mobility, including the spatial extent and 
shape of the movement. ‘Temporal structure’ refers to the duration of different spatial 
activities, regularity / variability in mobility patterns, or even to the circadian rhythm 
inherent in a person’s mobility. ‘Nature of activity’ refers to the semantics of the mobility 
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patterns proper, e.g. mode of transportation or types of activity locations visited. ‘Exposure’, 
the last of the proposed categories, is strongly interlinked with mobility, as it defines where 
(spatial structure), when and how long (temporal structure), and how (nature of activity) 
people are exposed to different environments (e.g. built/natural/social) (Chaix et al., 2012). 
To extract this type of information, additional information is needed. This additional 
information can be extracted from GIS data provided by, for example, OSM 
(openstreetmap.org), using additional sensors (audio, visual), or using self-reported data from 
participants. Depending on the research context and the available data, mobility indicators 
can be computed for different temporal granularities, including hourly, daily, weekly or even 
event-based resolutions.  

Table 1: Framework for classifying mobility indicators describing individuals’ mobility and environmental 

exposure according to the movement scope and the investigated aspect. As an illustration, we 

classified a selected set of GPS-based indicators according to these two dimensions. The ones shown 

in bold were computed for this paper.*  

  
*Note. The references within the table are to: Montoliu, Blom & Gatica-Perez (2013); Saeb, Lattie, 

Schueller, Kording, & Mohr (2016); Hirsch, Winters, Clarke, & McKay (2014); Giannouli, Bock, & Zijlstra 

(2018); Klous et al. (2017); Perchoux et al. (2014); Takemoto et al. (2015); Cetateanu et al. (2016), 

Dewulf et al. (2016). 

3 Case study 

Pre-processing of GPS data 

We used the same GPS data as Giannouli et al. (2016) for a group of healthy adults aged 
over 65 to exemplarily compute and analyse a subset of the mobility indicators shown in 
Table 1. The study’s inclusion criteria required participants to be healthy – i.e., all were 
community dwelling, did not use any walking aid, and did not suffer from any acute 
neurological or orthopedic diseases.  

The dataset consists of a sample of approximately one week of GPS data as well as the home 
location of each participant. After pre-processing the GPS data (outlier removal, day 
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segmentation), we retained only participants for whom we had data covering at least 3 
participant-days (each ≥8 hours), and a valid home address (distance between GPS-derived 
home and reported home address ≤150 m). Thus, the original dataset consisting of 86 
participants and 597 participant-days was reduced to 50 participants and 283 participant-
days. 

Selection and computation of mobility indicators 

Table 2 shows the mobility indicators computed for each participant-day of the study sample 
(except for normalized entropy, which is a weekly indicator). We intentionally chose a subset 
of eight indicators (shown in bold in Table 1) relating to different categories of the two 
dimensions movement scope and aspect. Indicators 1 to 5 may be categorized as relating to the 
‘spatial structure’ of mobility behaviour, whereas the computation of Indicator 1 is based on 
‘stops’, Indicator 2 on ‘moves’, and Indicators 3–5 on the overall daily mobility pattern and 
thus on the category ‘activity space’.  

Indicators 6 and 7 refer to the ‘temporal structure’ of mobility. The former is based on the 
‘stop’ locations and the latter on the entire set of GPS locations and is therefore included in 
the ‘activity space’ category. Indicator 8 also refers to the ‘activity space’ category and 
represents the final aspect, ‘exposure’, because it provides information about an individual’s 
context.  

Table 2: Computed mobility indicators 

Mobility indicator Calculation 

(1) Number of activity 
locations (ALs) 

Number of ALs (except for home), detected using stay 
point algorithm by Montoliu et al. (2013) with time 
threshold of 5 minutes and distance threshold of 150 
m. 

(2) Distance  Trajectory length. 
(3) Area of convex hull Convex hull around all GPS fixes. 
(4) Mean action range (AR) Mean straight-line distance from home to GPS fixes. 
(5) Max. AR  Maximum straight-line distance from home to GPS 

fixes. 
(6) Normalized entropy  Time distributed over different ALs (except for home) 

computed as in Saeb et al. (2016). High entropy 
indicates that the participant spent time more 
uniformly across different ALs. 

(7) Time out of home 
(TOOH)  
 

Sum of durations between GPS fixes classified as ‘out 
of home’ (≥ 150 m). Gaps of up to 1 hour were 
interpolated, if previous and subsequent GPS fix were 
both out of home. 

(8) Exposure to nature Ratio of GPS fixes within CORINE land cover classes 
representing natural environments (European 
Environment Agency, 2018). 
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Results  

Table 3 shows the mean (m) and standard deviation (sd) for the computed subset of mobility 
indicators.  

Table 3: Statistics for the mobility indicators of each individual’s registration period  

Mobility Indicator [m (sd)] 

(1) Average daily number of ALs  3.23 (1.63) 

(2) Average daily distance [km] 23.70 (13.31) 

(3) Average daily area of convex hull [km2] 18.03 (23.02) 

(4) Average daily mean AR [km] 2.57 (2.48) 

(5) Average daily max. AR [km] 6.37 (5.19) 

(6) Weekly normalized entropy [0-1] 0.52 (0.22) 

(7) Average daily TOOH [min]  148.75 (69.76) 
(8) Average daily exposure to nature [0-1] 0.16 (0.15) 

Table 4 presents the correlation values for the mobility indicators. It shows that Indicators 2 
to 5 (representing the ‘spatial structure’ aspect and ‘move’ or ‘activity space’ categories) are 
all highly correlated (0.82–0.93). Indicator 1, which also covers the aspect of ‘spatial 
structure’ but for the movement scope of ‘stops’, is also correlated with the ‘spatial structure’ 
Indicators 2 to 5. The number of ALs gives an indication of how many different activities an 
individual might be engaged in, which is not directly related to how much space an individual 
covers. No significant correlations with the remaining indicators were found for the 
normalized entropy (Indicator 6). How time is allocated to different ALs does not therefore 
seem to be related to either the spatial structure or the temporal duration of mobility. The 
correlation between TOOH and the other indicators representing the ‘spatial structure’ of 
mobility is moderate to high (0.40–0.75). The two highest correlation values amongst them 
were for Indicators 1 (number of ALs) and 2 (distance). This can be attributed to the fact 
that both describe, rather, the amount of moving through space, which may be independent 
of the spatial extent of the mobility. Finally, exposure to nature (8) seems to be moderately 
(0.29–0.51) related to all other indicators representing spatial and temporal aspects of 
mobility, except for the entropy indicator.  

Table 4: Associations between the mobility indicators* 

 Mobility Indicator (2) (3) (4) (5) (6) (7) (8) 

(1) Number of ALs 0.55 0.48 0.41 0.39 0.17 0.75 0.29 

(2) Distance  - 0.91 0.82 0.92 0.02 0.58 0.46 

(3) Area of convex hull  - - 0.91 0.93 -0.09 0.47 0.49 

(4) Mean AR - - - 0.93 0.05 0.48 0.51 

(5) Max. AR  - - - - 0.00 0.40 0.47 

(6) Normalized entropy  - - - - - 0.22 0.17 
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(7) TOOH - - - - - - 0.31 

(8) Exposure to nature - - - - - - - 

*Note. Spearman’s correlation coefficients were computed. According to the Shapiro-Wilk normality 

test, the variables were not normally distributed. Correlation coefficients in bold are significant at 

p<0.05. 

4 Discussion and Conclusion 

We have introduced a framework to categorize different mobility indicators along the two 
dimensions movement scope and aspect of mobility activities. In a preliminary case study, we 
computed mobility indicators for a group of 50 healthy older adults using various categories 
along these two dimensions. Correlation analysis shows that indicators relating to more 
similar properties of mobility (partially reflected by the aspect category of the framework 
presented) are more closely associated with each other. However, the various categories may 
still feature indicators reflecting very different aspects of mobility. This is shown, for 
example, by TOOH and normalized entropy, which both represent temporal structures of 
mobility. The former, however, refers more to the duration of mobility, whereas the latter 
refers to how time was spent throughout different activity locations. 

The suggested framework highlights the breadth of aspects that can be looked at when 
studying human mobility in a health context. Inspired by work from computational 
movement analysis, the framework further suggests on which category along the movement 
scope dimension the computation of the indicators can be based. In future research, we plan 
to compute a more complete set of mobility indicators for the proposed framework, before 
carrying out dimensionality reduction to uncover the underlying dimensions of mobility. This 
could inform the choice in empirical studies of a minimal set of mobility indicators that 
reflect as closely as possible the most important dimensions of individuals’ mobility 
behaviour.  
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