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Abstract 

While common digital road network graphs are able to represent real-world street network 

topology relations quite adequately, they are highly generalized with regard to the 

composition of a road. Irrespective of their actual number of lanes, roads are shown as just 

one single line. As many intelligent transportation systems (ITS) applications require or 

provide lane-specific data and services, this is no longer sufficient from a short- to medium-

term perspective. In particular, automated driving requires high-accuracy graphs both in 

topology and in geometry to localize positions not only on the correct road, but also in the 

correct lane. In the following paper, a cost-effective methodology for deriving such lane-

level road network graphs will be described. The methodology is applied to standard GNSS 

trajectories collected for three different road types (urban, interurban, motorway) by 

vehicles participating in real-world traffic situations (Floating Car Data). The methodology 

extracts the number and position of lane centrelines from pre-processed GNSS trajectories 

using a kernel density estimation (KDE) and distance relations. Results show that the 

proposed method can, depending on the quality of the input data, reliably model lane 

centrelines for different road settings. 
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1 Introduction and Motivation 

Today automotive navigation systems are widely used, both by professionals in the 
transportation industry and by private consumers. Many vehicle manufacturers offer a GNSS 
navigation device as a vehicle equipment option, making it an integral part of the vehicle. 
Moreover, supplementary equipment such as portable navigation devices (PNDs) and 
smartphones with navigation apps installed are very common. Important components of 
such navigation units (besides the GNSS receivers themselves) are the quality and accuracy 
of the underlying street network maps. The common navigation map basically represents the 
street network as a directed vector graph and is stored in different data formats. A digital 
graph consists of a set of nodes (or, depending on the terms used, vertices or points) and a 
set of edges (or arcs or lines), where each edge links two nodes. As a consequence, a road 
network can naturally be represented by graphs, in which nodes are equivalent to 
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intersections, addresses, road junctions and dead-ends, while edges represent corresponding 
roads linking such points. In the real world, edge directions are equivalent to one-way or 
two-way roads. By further attributing information about length and speed limit to the edges, 
the digital representation of a street network is enhanced (Thomson & Richardson, 1995). 

However, while today’s road maps for developed countries have reached good to excellent 
representation of the roads as a network , the geometric depiction of the roads is highly 
generalized. Typically, a single line represents a whole road segment without showing the 
separate lanes. The process of reducing the complexity of physical real-world objects while at 
the same time trying to preserve the semantic and structural features and the logical relations 
of these objects is called generalization. A good generalization aims to preserve as much 
accuracy as possible for the required purpose (Weibel & Jones, 1998). In the context of 
vehicle navigation, the main requirement is to locate the position of the vehicle on the right 
road segment. Current road network graphs (Figure 1) seem just sufficient for this task.  

However, demand changes over time. The transportation sector and political agendas 
promote and foster intelligent transportation systems (ITSs) more and more. ITSs describe 
technology applied to vehicles and infrastructure in order to transfer information between 
systems for the improvement of safety, transportation performance and travel comfort, and 
to decrease negative environmental impact. This includes vehicle-to-vehicle and vehicle-to-
infrastructure communication as well as in-vehicle applications, in particular Advanced 
Driver Assistance Systems (ADAS) installed in the vehicle console (Faouzi et al., 2011). In 
this context, so-called enhanced, content-rich (e.g. lane number, street curvature) maps with 
improved geometry come into play. Enhanced maps do not simply improve navigation 
systems by providing more information; they go beyond that. They have proved beneficial to 
many ITS and especially ADAS applications such as adaptive cruise control, advanced traffic 
information, speed limit assistance, lane-keeping assistance, curve speed warning, route 
guidance and path prediction (Pandazis, 2002). In this broader perspective, different national 
and international research efforts like ED Map (EDMap Consortium, 2004) in the US and 
the EU’s NextMAP (Pandazis, 2002) project particularly emphasize a short-to-medium term 
necessity for lane-level digital road maps, map-matching technology and information. 
Examples for such use cases would be lane pre-selection (straight, left/right turn), lane-
specific access restrictions (e.g. bus lane), faster and easier formation of an emergency lane, 
lane-level road conditions (e.g. snow cleared or not), and obstacle warnings (e.g. stranded 
vehicles or the end of a tailback). Furthermore, such enhanced road maps can improve 
automated driving by extending the vehicles “range of vision”, providing the opportunity 
literally to look around a corner/bend before other on-board sensors are able to get even a 
glimpse of the situation. The map would therefore serve as an additional a priori sensor (Lu 
et al., 2005; Gomes, 2014). 

All parties involved – the major players of street map providers HERE®1, TomTom®2 and 
Google®3, the automotive industry, as well as politicians – have recognized the need for 

                                                           
1
https://company.here.com/automotive/intelligent-car/here-hd-live-map/ [accessed 2016-01-21] 

2http://automotive.tomtom.com/en/highly-automated-driving/highly-detailed-map [accessed 2016-
01-21] 
3https://googleblog.blogspot.co.at/2010/10/what-were-driving-at.html [accessed 2016-01-21] 

https://company.here.com/automotive/intelligent-car/here-hd-live-map/
http://automotive.tomtom.com/en/highly-automated-driving/highly-detailed-map
https://googleblog.blogspot.co.at/2010/10/what-were-driving-at.html
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high-resolution road graphs (EDMap Consortium, 2004). The first two parties conduct vast 
measurement campaigns using their vehicle fleets equipped with high-accuracy measurement 
technology (e.g. GNSS, LiDAR, Image Processing). 

However, conducting such measurement campaigns and post-processing the data is 
expensive and time-consuming. Calculations based on the experience acquired in the 
EDMap project estimate the time needed to map all road types in the US for lane-level 
applications to be roughly 10 years. If one assumes a measurement fleet of 20 cars, with each 
car driving 200 miles per day, and 240 working days per year, to map the existing 5,000,000 
road miles in the US, the total miles to be driven would come to 11,000,000. In this 
calculation, the estimate of 10 years does not even include time for data post-processing or 
fleet maintenance. Although the data-collection time can be reduced greatly by increasing the 
size of the fleet, costs of about $150,000 just for the additional measuring equipment are 
surely a limiting factor (Pandazis, 2002). 

Even though these numbers have to be handled with caution, the question arises of which 
user groups will have access to such kinds of maps besides the providers themselves and the 
automotive industry (HERE® now belongs to a consortium of Audi, BMW and Daimler) 
and at what price. Furthermore, data collection in rural areas or whole countries could be 
postponed or even skipped if economic viability is taken into consideration. 

Hence, an affordable solution is necessary to derive accurate lane-level road network graphs 
(see Figure 1) mainly from standard GNSS-trajectories (e.g. smartphones) of regular traffic 
participants (Floating Car Data = FCD). In this paper, a data-driven approach which uses 
statistical methodologies for achieving the goal will be presented. But first, a brief overview 
of the current state of research and the underlying data for the research will be given. 

 

Figure 1: Comparison of a conventional road network graph showing single-road geometry (left) and 

an enhanced road network graph which models each lane separately as separate geometry (right). 

Background map: Bing Aerial Imagery 
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2 State of research  

Extracting topology, geometry and other information from standard GNSS trajectories for 
the creation and/or refinement of digital street maps has been the topic of several research 
projects. These projects vary in terms of data and methodology used, as well as their 
objectives. 

Zhang et al. (2010) implemented a cluster algorithm for centre-line generation from collected 
GNSS traces available over OpenStreetMap (OSM). After some data pre-processing which 
eliminates the most striking GPS deviations from the data set, the road centrelines are 
derived from the remaining tracks. Although the number of lanes was estimated, their 
precise position was not determined, nor was their geometry modelled. Another 
methodology, which uses a modified Gaussian mixture model (GMM) and was developed by 
Chen & Krumm (2010), could under the assumption of constant lane widths reliably identify 
the number of lanes. However, they, too, did not try to localize the lane positions. Edelkamp 
& Schrödl (2003) tried just that by using a multi-step approach. They start by filtering the 
input data for GPS noise and outliers. Second, the remaining trajectories are divided into 
sequences of segments which relate to an initial digital road map, using a modified best-fit 
path-search algorithm. Third, using a spline-fitting algorithm, they calculate a road centreline 
for each segment as a reference line for finding other lanes. Last but not least, they 
determine the number and position of lanes by using a hierarchical agglomerative clustering 
algorithm. Depending on the quality of the input data (GPS noise), this approach yields 
errors ranging from less than 5% to over 35% in the number of lanes detected. For their 
research project, high-precision differential GPS data was used, resulting in a better overall 
distribution and accuracy of the GPS trajectories. Uduwaragoda at al. (2013) used a 
probability density function for deriving lane geometries from GPS data. To do this, the 
Kernel Density Estimations (KDEs) of the GPS tracks are analysed at their intersection 
points with the perpendiculars and the positions with the highest density values were marked 
as lane centrelines. Since no reference data was available for error assessment, a visual 
interpretation of the quality was conducted, which showed good algorithm performance with 
a minimum input of 150 GNSS tracks.  

3 Methodology  

In most cases, those studies which aimed to extract both the numbers of lanes from GNSS 
tracks and their precise location used either simulated or enhanced input data with higher 
positional accuracy than standard GNSS receivers. Furthermore, the evaluation was often 
only conducted for one use case, most often for motorways. However, the methodology 
presented in this paper will be applied to the three different road-types: motorways, 
interurban roads and urban roads. 

Study areas and data set 

The input data for this project was collected in three different study areas (Figure 2) near 

the city of Graz, Austria, over a period of five months in 2015. The study areas include:  
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 A 3.4 km-long section of urban road with two lanes 

 An interurban road, about 12 km in length, with 2 lanes 

 A7 km section of motorway with 3 lanes, and a short 2-lane section 

The measurements in each study area were collected in both driving directions and can be 
thought of as Floating Car Data (FCD). FCD is collected by vehicles participating in real-
world traffic situations and can – in addition to positional and time information – also 
include other vehicle information (e.g. steering angle) when connected directly to the vehicle 
electronics (Krampe, 2007). FCD can be collected by various devices ranging from 
inexpensive common GNSS-loggers and smartphones to costly high-accuracy DGPS 
devices.  

For this project, different measuring devices, which varied in their spatial and temporal 
resolution, were used to obtain input GNSS trajectories for the algorithm. Among them was 
a high-precision GPS-ADMA (Automotive Dynamic Motion Analyser) system with a 100Hz 
measuring frequency and an average accuracy of <3 cm. Two systems from Racelogic® were 
also used: one with a 10Hz recording interval and a horizontal accuracy of about three 
meters; the second system with a 100Hz recording interval and a positional accuracy of 
approximately two metres. In addition to these, a GNSS-Logger from Qstarz® was used for 
measurements. With this logger, GNSS tracks were recorded partly with a measuring 
frequency of 5Hz and partly with a 1Hz measuring frequency, and an accuracy of about three 
meters. Additionally, a number of GNSS-logger applications were used on various common 
smartphones, including Sony Xperia Z3/S, Samsung Galaxy S2 and iPhones. Regarding the 
smartphone data, only the GNSS-Logger app that was used is known, but not the built-in 
GNSS chip. The GNSS quality of the different smartphones and apps varied regarding 
spatial accuracy, but was situated mostly within the range of <5m, with a measuring rate of 
1Hz over all devices. 

For better GNSS reception, all GNSS systems were placed on or near the centre of the 
measurement vehicle’s lateral axis, just behind the windscreen (except the ADMA system). 

A total of 583 GNSS tracks were recorded with the GNSS receivers for all road categories 
combined. The reference lane centrelines were derived from ADMA high-accuracy DGPS 
measurements. 

Algorithm for determining lane centrelines 

In order to successfully derive lane centrelines from the data set, some data pre-processing is 
necessary. In the first step, a heuristic error filter for finding and excluding potential flawed 
GNSS positions is applied by using threshold values for error identification, as described by 
Krampe et al. (2013). In the next step, the actual processing (Figure 3) begins by creating 
equidistant points (at a pre-set distance) along an OSM road network graph. Depending on 
the chosen distance, the final output will result in a more or less coarse lane geometry. 
Perpendiculars which have a total length of 20 m are dropped through these points. These 
20 m are divided equally by the road centreline of the input base graph. In a further step, the 
intersection points between the orthogonal lines created and the GNSS trajectories are 
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calculated and stored under their respective perpendicular line IDs. Hence, the lateral 
positions of all vehicle tracks every n metres are obtained. 

 

Figure 2: Location of three study areas in and around Graz, Austria, with vehicle trajectories  shown 

for one driving direction. Background maps: Mapbox, basemap.at 

Those points are again pre-filtered for use in the next step by defining cut-off values for the 
X-coordinates at specific quantile values, thereby excluding tracks with distinctive systematic 
deviations from the distribution. 
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Figure 3: Main processing steps for deriving the lane-level road network graph 

In order to get a probability distribution of the lateral positions obtained, a KDE is 
performed on each ID set. The KDE is calculated as follows: 
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where K() is the kernel function and h is the bandwidth. Basically, the KDE works as 
follows: A Gaussian kernel function (in our case curved) is placed over every single input 
point. For each input point, the kernel function reaches its highest value at just that point 
and decreases in height (value) with increasing distance from it. By adding up the kernel 
function values of all data points, the density is estimated. The result of a KDE depends to a 
very high degree on the smoothing parameter value chosen for the kernel function, the so-
called bandwidth. Generally speaking, a small bandwidth leads to a more jagged KDE 
appearance, resulting from small bias and large variance, while a large bandwidth results in 
highly smoothed estimates due to high bias and small variance. There are many sophisticated 
data-driven methods available for choosing the ideal bandwidth. For this study, the “solve-
the-equation” plug-in approach developed by Sheather & Jones (1991) was used, which 
according to Cao & Cuevas (1994) and Jones et al. (1996) performs best on real data-set 
estimates. However, according to other authors (Bowman & Azzalini, 1997; Soh et al., 2013; 
Wand & Jones, 1994), the type of kernel function (Gaussian, Epanechnikov, Triangular, 
Biweight etc.) has little impact on the KDE result. 
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Once the computation of the KDEs for every set of intersection points is completed, the 
local maxima of the KDEs are identified through the first and second derivative tests. Based 
on the assumption that drivers tend to drive in the middle of a lane, it can be concluded that 
the probability of a vehicle’s position is highest along a lane centreline. Therefore, the density 
of a set of vehicle tracks along a road should be highest at lane centrelines, which manifest 
themselves as local KDE peaks.  

As a result, in the best of cases all peaks found in the KDE should correspond to actual road 
centrelines. Unfortunately, this is not always the case, since there can be systematically wrong 
GNSS trajectories within the input data set, caused for instance by bad satellite connection 
or generally bad GNSS accuracy. These “wrong” estimations are filtered out by means of a 
distance plausibility assessment. To carry this assessment out, a matrix for the distances 
between every element in the set of peaks found (PS) is calculated. The result is an n x n 
two-dimensional array with n x (n-1)/2 distinct values, where n is the number of elements in 
the PS. Using distance thresholds derived from the reference graph, the PS is filtered for 
implausible distance relations. Only one peak is allowed within one lane. The found road 
centrelines need to have a minimum distance between each other, yet must not exceed a 
maximum distance, which would locate them outside the road. The formula used for 
calculating the distance matrix is the great circle distance based on the Spherical Law of 
Cosines, defined as follows:  

𝑑 = arccos(sin(𝑙𝑎𝑡1) ∗ sin(𝑙𝑎𝑡2) + cos(𝑙𝑎𝑡1) ∗ cos(𝑙𝑎𝑡2) ∗ cos(𝑙𝑜𝑛𝑔2 − 𝑙𝑜𝑛𝑔1)) ∗ 𝑅 

Lat1 and long1 are the latitude and longitude coordinates of the first point, and lat2 and 
long2 are the coordinates of the second point given in the radian. R stands for the mean 
earth radius given in kilometres, which varies depending on the ellipsoid used – in this case, 
6,371 km for WGS84. 

The intersection points between the perpendicular lines and the input GNSS tracks are 
combined with a distance calculation to estimate the number of lanes at each intersection. 
Thus, the algorithm output is further improved by narrowing down the number of potential 
peaks that are found. This is necessary because (as mentioned before) in most cases the 
number of KDE peaks will not correspond to the exact number of lanes. 

In the final step, a graph showing separate-lane geometries is constructed by connecting the 
remaining adequate peaks of successive perpendiculars, using a shortest-distance algorithm. 
This final output graph is compared with the reference graph constructed from high-
accuracy DGPS measurements.  

4 Results and Discussion 

The method described was tested with data measured on three different road types: urban, 
interurban and motorway. As Figure 4 illustrates, the methodology can successfully be used 
for modelling lanes from common GNSS receivers in all of the three environments. The 
respective KDEs show three peaks for the motorway and two peaks for both the urban and 
the interurban roads. The methodology thus successfully depicted the right number of lanes. 
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Furthermore, the KDE peaks manifested themselves not only in correct number, but also in 
correct position. The X-coordinates of the peaks detected by the algorithm and shown in red 
are very close to the actual road centrelines represented by the X-coordinates of the 
reference graph, where they are shown as green line. This test case proves the accuracy with 
which the methodology developed is able to find the lane positions. The impression is 
confirmed if the output graph is compared with an orthoimage and the reference graph (see 
Figure 4). 

 

Figure 4: Examples for three road types for which lane centrelines were modelled with high accuracy. 

Background map: basemap.at 
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The box plot in Figure 5 shows the distance distribution between the estimated centrelines 
and the reference graph over the complete length of one road for each road type. The result 
is promising, with median distances of 17 cm for the urban road, 20 cm for the interurban 
road, and approximately 18 cm for the motorway. Despite this promising result, many 
distances tend to have higher values, reaching about 1.5 m for the urban and 1.9 m for the 
interurban road. The greatest distance on the motorway extends to about 1.6 m. Taking into 
account that lanes are generally between 2.75 m and 3.75 m wide, the algorithm will be able 
to reliably model the lanes, though with some limits to the absolute accuracy. 

 
Figure 5: Box plot showing distribution of distance deviations between modelled and reference lane 

centrelines for the three road types 

On the other hand, it could be demonstrated that the quality of the output results is highly 
dependent on the positional precision of the input GNSS trajectories.  

In this context, the GNSS tracks are to some degree a representation of driving behaviour. 
How far they mirror driving behaviour can best be seen if we look at the ADMA GPS 
trajectories. The distance deviation between the reference graph and the various ADMA 
measurements can be as much as 60 cm. Since the ADMA system is highly accurate (<3 cm), 
these disparities are due to differences in driving behaviour: as the measuring car is about 1.8 
m wide and a lane on average 3.5 m, the driver can navigate 1 m in either direction of the 
lane centreline without leaving the lane. 

Such systematic distortions lead to wrong peak estimations when using the KDE. This is due 
to the change in the distribution of the trajectories on the road, which can lead to wrong 
clustering manifesting itself in the KDEs as incorrect peaks. Positionally inaccurate GNSS 
tracks can also blur correct bundling of tracks, thus leading to an underestimation in the 
number of detected lanes. All these cases would violate the assumption that the highest 
density of vehicle tracks can be found at the lane centrelines, affecting the positional and 
geometrical accuracy of the methodology.  
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It should be pointed out, however, that the level of spatial accuracy required also depends on 
the network graph’s use case. The level of accuracy required ranges from just a few 
centimetres for lane-keeping and autonomous driving applications, to several metres for 
lane-level traffic information and navigation (EDMap Consortium, 2004; Wilson et al., 1998). 
Further research could be conducted regarding both the data pre-processing steps and the 
algorithm itself. Presumably, the most important information needed in order to construct 
the geometry successfully is the number of lanes. If this parameter could reliably be derived 
from the data itself, it would greatly improve the search for the correct peaks within the 
KDE and prevent the algorithm from detecting too many peaks. Moreover, it appears likely 
that this would allow the selection of smaller bandwidth values, leading to more variance in 
the KDE through which less pronounced, but correct, bundling of trajectories could be 
considered. As the data pre-processing is almost as important as the road centreline 
detection algorithm, one step which could be undertaken is the selective thinning of GNSS 
tracks with high offset. This could lead to more peak manifestations in KDEs where too 
high a homogeneity of the input data leads to over-smoothing. 

Although the testing of the performance of the different devices is outside the scope of this 
paper, the author is aware of the potential impact on the analysis results. However, it can be 
assumed that the algorithm’s performance varies according to the quality of the input data. 
Because of this, determining a lane’s centreline will work better the higher the spatial 
accuracy of the GNSS tracks, and thus the lower the spread of the data. Defining quality 
specifications for the input data could also be the subject of further research.  

Moreover, research is required regarding the applicability of the algorithm developed in this 
context for complex street settings like road junctions. 
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