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Abstract 

This article focuses on a cluster-based parallel and distributed approach for large raster 

datasets in the context of Spatial Multicriteria Decision Analysis (S-MCDA). The research 

addresses a land-prioritization model with respect to conservation practices. The reliability 

of the model results is examined using a variance-based Spatially-Explicit Uncertainty and 

Sensitivity (SEUSA) framework. The original case study area to which we applied the model 

was located in southwest Michigan, USA, and incorporated millions of mapping units 

(pixels). As part of the model sensitivity analysis, several thousand intermediate raster 

datasets representing suitability surfaces are generated by means of a Monte Carlo 

Simulation (MCS). The creation of the suitability surfaces represents the most time-

consuming and memory-intensive step within the SEUSA framework. Sequential 

computational approaches to implementing SEUSA often have to accept a compromise 

with respect to problem size and the number of simulations, resulting in the low quality of 

the model sensitivity measures. This article presents the concept and implementation of a 

distributed and parallel solution based on the Python-Dask framework in order to improve 

the quality of SEUSA results for computationally-intensive spatial models.  

Keywords: 

parallel and distributed computing, Python Dask framework, Monte Carlo Simulation, 
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1 Introduction, Motivation and Problem Definition 

Multicriteria Decision Analysis (MCDA) methods and their applications in various spatial 

and non-spatial domains have been explored for decades (Hwang & Yoon (1981); 

Malczewski (1999); Malczewski (2006); Malczewski & Rinner (2015); Tzeng & Huang (2011); 

Penadés-Plà et al. (2016)). In this article, we propose a raster-based parallel and distributed 
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solution in the context of Spatial Multicriteria Decision Analysis (S-MCDA) that comprises 

the Spatially-Explicit Uncertainty and Sensitivity Analysis Framework (SEUSA-Framework) 

suggested by Ligmann-Zielinska & Jankowski (2008, 2014). The S-MCDA-related 

terminology used here is based on Malczewski (1999), who described the framework and the 

components embedded in its ‘Intelligence Phase’, ‘Design Phase’ and ‘Choice Phase’ (p. 96). 

S-MCDA can support experts during the decision-making process for application domains 

such as landscape assessment, hazard risk assessment, environmental protection, land-use 

planning and sustainable regional development. The majority of S-MCDA applications do 

not provide detailed information about the robustness of model results. Malczewski & 

Rinner (2015, p. 192) identify criterion scores and weights as the main sources of uncertainty 

in S-MCDA. Therefore, performing uncertainty and sensitivity analysis is an important step 

in S-MCDA towards improving the decision-aiding process. Within this research, uncertainty 

regarding the criterion weights is addressed in order to allow a comparison of the sequential 

SEUSA-Framework (Ligmann-Zielinska & Jankowski, 2008, 2014) and the parallel and 

distribution approach with respect to improved runtimes.  

The available sensitivity analysis methods can be broadly categorized as local and global 

methods (Wainright et al., 2014). Global Sensitivity Analysis (GSA) methods account for 

interdependencies among model input factors, in contrast to local sensitivity analysis 

methods that focus on first-order effects – one factor at a time in isolation from interactions 

with other factors. A disadvantage of GSA methods such as variance-based sensitivity 

analysis is that in order to obtain meaningful sensitivity values, a large number of weight 

samples need to be included to perform the time-consuming Monte Carlo Simulations 

(MCS). Additionally, the number of criterion maps, the aggregation methods and the size of 

the project area specified by the number of pixel locations influence the computational 

demand. Each location represents an alternative that has to be considered for a defined S-

MCDA use case. For example, large S-MCDA problems incorporate millions of alternatives 

and several hundred thousand simulations which are likely to be beyond the capacity of a 

single personal computer. Although there are powerful GPU (Graphic Processing Units) 

workstations that can process massive computations very fast, these workstations are 

subjected to limitations concerning data storage and data flow capacity, especially between 

the computer’s GPU and CPU. As an alternative to GPUs, parallel and distributed 

frameworks for computer clusters offer the possibility of spreading the workload among 

several cluster nodes. Hence, the main objective of this research is to develop a scalable and 

adaptable approach for performing parallel and distributed spatially-explicit uncertainty and 

sensitivity analysis. The findings represent a fundamental contribution to the development of 

a parallel and distributed SEUSA-Framework, answering the need for extensibility 

concerning various S-MCDA decision rules and sensitivity analysis methods that is suitable 

for various application domains.   
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2 Methodology, Concept and Implementation  

The focus is on the conceptual development of the parallel and distributed approach to 

speed up the computationally- and memory-intensive steps of the SEUSA-Framework, and 

on the procedure for selecting a suitable parallel and distributed Python framework 

according to the requirement analysis. The study site is located in Southwest Michigan, USA 

and includes Allegan, Barry, Cass, Kalamazoo, St Joseph and Van Burren counties. The site 

was adopted from Şalap-Ayça and Jankowski (2016) because it represents an attractive area 

for testing the parallel and distributed approach with regard to large raster datasets.  

2.1 Experimental Setup  

Our focus was on a land-prioritization model that refers to the Environmental Benefit Index 

(EBI). The model represents a simple scoring procedure and comprises the criterion raster 

maps ‘Wildlife’, ‘Water Quality’, ‘Soil Erosion’, ‘Enduring Benefits’ and ‘Air Quality’. 

According to Hellerstein (2017), the EBI represents perhaps the most crucial design element 

for prioritizing agricultural land units with respect to greater environmental benefit. A more 

detailed description of the original case study and criteria can be found in Şalap-Ayça and 

Jankowski (2016, p. 114).  

Within the scope of this research, each criterion is represented by a raster map consisting of 

approximately 13 million pixels. The case study therefore presents a sound experimental 

setup for a parallel and distributed computing approach incorporating hundreds of 

thousands of simulations. Following the S-MCDA approach (Malczewski, 1999), each raster 

layer was standardized using the score range procedure (see Figure 1, which includes the 

formula).  

 

Figure 1: Standardizing the main criteria ‘Wildlife’, ‘Water Quality’, ‘Soil Erosion’, ‘Enduring Benefits’ and 

‘Air Quality’ by using the score range procedure (Malczewski, 1999, p. 118).  
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2.2 The SEUSA Framework   

For this research, a spatial variance-based sensitivity analysis approach that draws on 

Ligmann-Zielinska & Jankowski (2008, 2014) was used. The approach incorporates the 

following steps: 

(I) generation of the weight samples for the criteria of the S-MCDA model, carried out 

using SimLab 2.2 software, which incorporates the quasi-random radial sampling 

method proposed by Sobol’ (1993). The total number of simulation runs can be 

expressed by equation (2), where j is the number of criteria and N the number of 

weight samples: 

𝑅 = (𝑗 + 2) ∗ 𝑁                     (2) 

(II) running the Monte Carlo Simulation (MSC) incorporating the previously-generated 

weight samples and a specific decision rule such as the Simple Additive Weighting 

(SAW) or the Ideal Point (IP) method, resulting in the generation of suitability 

surfaces. As mentioned by Malczewski (1999, p. 199), the SAW method, also called 

the Weighted Linear Combination scoring procedure, is frequently used in the 

context of S-MCDA for its transparency and simplicity. Each standardized criterion 

value xij is multiplied by the associated weight value wj and followed by the product 

summation (Drobne & Lisec, 2009, p. 464), where the index i represents the specific 

pixel location within the study area, and the index j represents the specific 

standardized criterion map (see equation 3). In contrast, the IP decision rule 

calculates the relative closeness rci+ to the IP (see equation 4), where si+ denotes the 

IP and si- indicates the negative IP (Malczewski, 1999, p. 225). This decision rule is 

also known as the Technique for Order Preference by Similarity to the Ideal 

Solution (TOPSIS) and was originally introduced by Hwang and Yoon (1981). As 

stated by Malczewski (1999, p. 226), the IP method avoids some of the difficulties 

associated with the interdependence-among-attributes assumption. Several studies have 

integrated TOPSIS in the context of S-MCDA (Ligmann-Zielinska & Jankowski, 

2014; Feizizadeh et al., 2014; Şalap-Ayça & Jankowski, 2016; Erlacher et al., 2017).  

𝑠𝑖 =  ∑ 𝑤𝑗𝑥𝑖𝑗𝑗                   (3) 

𝑟𝑐𝑖+ =
𝑠𝑖−

𝑠𝑖++ 𝑠𝑖−
                                                                                   (4) 

(III) the maps (i.e. raster surfaces) for the uncertainty (standard deviation) and sensitivity 

indices are computed from the stack of suitability maps obtained in step II in order 

to identify criteria that cause the variability. A more detailed description of the 

SEUSA Workflow can be found in Ligmann-Zielinska & Jankowski (2014).   
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The most crucial part of the SEUSA-Framework concerning the computational demand and 

CPU memory requirements is the generation of the suitability surfaces incorporating the 

weight samples and the decision rule. Fehler! Verweisquelle konnte nicht gefunden 

werden. illustrates the steps for creating the suitability and uncertainty surfaces that are 

pertinent for the performance comparisons.  

 

Figure 2: Workflow for generating the suitability and uncertainty surfaces that are relevant for the 

performance comparison. 

2.3 Selection of a Parallel and Distributed Python Framework  

This section provides an overview of parallel and distributed computing relevant for the 

Python framework selection. For a comprehensive introduction to parallel and distributed 

computing, the reader is referred to Duncan (1990), Foster (1995), Yang et al. (2011), Rauber 

& Rünger (2013), Singh (2013), Rizvi (2016), Gu et al. (2017), and Trobec et al. (2018). The 

computational performance indicators identified by Desch (2018) (including load balancing, 

fault tolerance, debugging instruments and scalability) that are relevant for the selection of 

parallel and distributed Python framework selection were integrated into a simple 

multicriteria decision analysis model.  

Serial computations subdivide tasks into a discrete set of instructions and are executed by a 

single processor unit one after another. The original SEUSA-Framework proposed by 

Ligmann-Zielinska and Jankowski (2008, 2014) refers to the sequential Python approach, 
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which compromises between the number of pixel locations and the number of simulations. 

The studies conducted by Feizizadeh et al. (2014) and Şalap-Ayça and Jankowski (2016) also 

refer to the sequential SEUSA-Framework solution and are limited by computational 

capacity. In contrast to sequential computing, parallel computing carries out a set of 

instructions simultaneously by using multiple processor units (e.g. CPUs [Central Processing 

Units], and/or GPUs [Graphic Processing Units]). Erlacher et al. (2017) presented a GPU-

based concept (parallel computations) that achieved a respectable computational acceleration 

of the time-consuming MCS but was limited by the available memory capacity.  

According to Flynn’s Taxonomy (Flynn, 1972), multiprocessor units can be characterized by 

the dimensions of instructions (tasks) and data. The architectures for multiple instruction 

streams and multiple data streams represent the most common types of parallel computing 

nowadays and are applicable for clusters of workstations that incorporate multicore 

processors (nodes) (see Figure 3), grid computing, or supercomputers, for example. In this 

article, we refer to networked parallel computer clusters, where a specific control unit, 

known as a master scheduler, distributes the workload. A detailed description of the local 

cluster used can be found in section 2.5, ‘Design of the Performance Comparison’. 

 

Figure 3: Illustration of a parallel cluster: workstations (nodes) connected via a network.  

Nodes are connected via Ethernet. They communicate by passing messages incorporating 

the Message Passing Interface (MPI) standard and use guidelines for data exchange within 

local networks (e.g. Transmission Control Protocol). Challenges concerning parallel and 

distributed computing might arise because of communication constraints (network 

bandwidth and latency dependency), source code migration (from sequential solution to 

parallel solution), maintenance and debugging difficulties. For example, package inspection, 
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depending on the package size, can slow down communication within the local network. In 

order to select the most suitable parallel and distributed Python framework, the following 

indicators were considered: supported platforms (Windows, Linux, Unix) and hardware 

(CPU and GPU), applicable for local clusters; load balancing; support of NumPy data 

structure; fault tolerance (continue operating properly); scalability (ability to add nodes 

easily); debugging instruments; detailed documentation and support (e.g. learning materials, 

developer forum, user activity); installation; maintenance issues. A comprehensive 

explanation of all indicators, along with the parallel and distributed Python frameworks in 

the context of the multicriteria evaluation model, can be found in Desch (2018).  

2.4 Parallel and Distributed Approach based on Python-Dask 

The Python-based parallel and distributed solution selected in this research for generating 

the suitability and uncertainty surfaces incorporates the open source Dask-Framework, 

which outperformed the other frameworks investigated. The most important advantages of 

the Dask-Framework are the ease of installation and maintenance, the support of NumPy 

objects and diagnostic tools (e.g. real-time and responsive dashboard), the applicability for 

local clusters as well as their easy scalability, the moderate migration effort concerning 

decision rules, and its fault-tolerant behaviour. Furthermore, Dask also supports libraries 

including Pandas and Scikit-Learn (machine learning), and is being continually developed. A 

more detailed and very recent description of the advantages and examples of applications can 

be found in Daniel (forthcoming, July 2019).  

Several steps were taken to adapt the sequential approach to the proposed parallel and 

distributed solution. Figure 4 highlights the workflow differences between the sequential and 

the parallel/distributed solutions. The Dask-Framework offers dynamic task-scheduling and 

provides schedulers for single-threaded, multi-threaded, multi-process and distributed 

execution (Rocklin, 2015, p.129). In our project, the distributed Dask scheduler was 

integrated for the performance of simulation runs. The workstations within the local cluster 

used in our research communicate with each other via TCP in a peer-to-peer data-sharing 

model. Each node has access to the input dataset over the Network File System (NFS), in 

order to minimize network communication. For the input dataset, the Hierarchical Data 

Format (HDF5) is used. This contains the criterion maps, with metadata such as the 

minimum and maximum criterion values. Both implementations (the sequential and the 

parallel solutions) use N-dimensional NumPy arrays for storing the input raster datasets, the 

intermediate suitability surfaces, and the uncertainty surfaces (average and standard deviation 

map). 

In contrast to the sequential implementation, the Dask-Framework creates dask.arrays that 

represent a parallel array library and comprise the NumPy interface (Rocklin, 2015, p.126). 

The dask.array submodule utilizes Dask Graphs, a Python dictionary that maps keys to tasks 

or values, by using all resources (e.g. cores and memory) of the local cluster, in order to 

operate on large-size datasets (Rocklin, 2015, p.127). The whole dask.array is shaped into 
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blocks (NumPy arrays) and incorporates a tuple of integer values, which have to be 

considered in respect of different simulation sizes. The first index indicates the criterion map 

and remains static, whereas the criterion maps’ indices for row and column are dynamically 

determined. The higher the number of model runs, the smaller the chunk sizes for row and 

column. Additionally, the decision rule used is a further important indicator for generating 

the blocks. Therefore, the total memory required for the whole computation has to be 

incorporated in order to avoid memory overload for a specific node. 

The nodes’ capabilities regarding the system’s memory and threads per core are further 

relevant aspects for defining the chunk sizes, which are important properties for the 

scheduler concerning a balanced distribution of the workload among the workers. Each task, 

such as the generation of the suitability surfaces (including various decision rules) and the 

creation of the average and standard deviation map, represents a Python function and is 

mapped across all blocks of the dask-array. The tasks are submitted on futures, which extends 

the concurrent.futures Python interface and tracks the status of the tasks among the various 

workers.  

The execution is triggered by calling the NumPy function asarray(). This function converts the 

dask.array into a NumPy array and stores the blocks (incorporating the suitability values) in 

the memory. Each block of the suitability surfaces consists of a three-dimensional array in 

which the first two indices indicate the subarea of the study site and the third represents the 

EBI values for each simulation run. These suitability values represent the input for 

calculating the average and standard deviation map, which is written to a new ASCII dataset.  

 

Figure 4: Comparison between the sequential processing workflow (top) and the Dask-Python-based 

parallel and distributed workflow (bottom). np.Arrays refers to NumPy arrays; da.Array refers to 

dask.array.  
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2.5 Design of the Performance Comparison 

The performance tests conducted referred to a local cluster that included 16 nodes and one 

master acting as scheduler. Each node (HP-Z420 Workstation) incorporated the Intel® 

Xeon® CPU E5-1603 v3 2.8 GHz processor (four cores and one thread per core), 16 GB 

CPU memory, an NVIDA® Quadro K2000 with 2 GB GPU memory, and ran on the 

Windows 10 (64-bit version) platform. The workstations were configured for GIS-based 

education and were frequently in use. Therefore, the performance tests were conducted 

during non-lecture periods only, especially during weekends, holidays and semester breaks, 

when the utilization rate of the local network was at its lowest. The GIS laboratory was 

equipped with 24 workstations, but for the final performance comparisons, we used a set of 

pre-selected workstations that demonstrated less runtime variability. For the performance 

comparison the following settings were defined: 

(I) fixed simulation size (2,464 model runs) and variable cluster size (1, 2, 4, 8, 12 and 

16 nodes).  

(II) fixed cluster size (16 nodes) and variable simulation size (2,464; 4,928; 9,856; 19,712 

and 39,424 model runs).  

The same settings were applied for both decision rules, i.e. the weighted linear combination 

(WLC) and the IP methods. Each simulation setting was performed 30 times in order to 

retrieve meaningful runtime measurements.  

Simulation runs that were affected by node failure still generated correct suitability values, 

but were not included in the time measurements. Additional uncontrollable aspects like 

background process, virus scanning tools, firewall and package inspection should be 

considered uncertainties in the performance comparison. For the performance analysis, the 

speed-up and efficiency metrics (Rauber & Rünger 2013, pp. 180, 182; Trobec et al., 2018, 

p.10) were considered.  

3 Proof of Concept and Interpretation of the Performance 

Comparisons  

This section focuses on the results of the performance comparison for different cluster and 

simulation sizes, including both decision rules (IP and WLC). In order to carry out the 

comparisons, the scheduler on the master node has to be initialized via a command line; each 

worker node is allocated to the scheduler according to an Internet Protocol Address. The 

box plots in Figures 9–12 (see Appendix) illustrate the distributions of the measuring 

sequences for the performance comparison.  
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3.1 Fixed Simulation Size and variable Cluster Size 

The analysis setting is for a fixed simulation size of 2,464 model runs on cluster sizes of 1, 2, 

4, 8, 12 and 16 nodes. Thirty repetitions were conducted for each cluster size and decision 

rule. Figure 5 illustrates the measurement sequence for different numbers of nodes, where 

the runtime is given in seconds. Using the IP method, the runtime for one worker node 

running in parallel is approximately 18 minutes and 31 seconds; for the WLC method, it is 

approximately 7 minutes and 50 seconds. The runtime differences are due to the significantly 

higher computational complexity of the IP method. 

 

Figure 5: IP Dask measuring sequence for 2,464 model runs, with different numbers of nodes 

incorporated in the local cluster.  

Table 1 compares the performance metrics for runtime in seconds (T(n)), speed-up (S(n)) 

and efficiency (E(n)), for both the IPC and WLC decision rules, where n indicates the 

number of worker nodes. Figure  illustrates the speed-up for the IP decision rule for 

different cluster sizes: there is a linear increase in speed-up as the local cluster is increased in 

size. The speed-up and the efficiency are based on the comparison of one worker running 

the computations in parallel on the one hand, with other numbers of worker nodes which 

are also running the computations in parallel. The efficiency decreases to approximately 83% 

by expanding the local cluster to include 16 worker nodes. The speed-up for two nodes using 

the WLC method is marginally higher than expected, which might be caused by small 
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differences in the computational capacity of the nodes. It should be noted that the WLC 

method uses a simple aggregation technique with lower computational complexity. 

Consequently, reading and writing operations account for a greater proportion of the overall 

runtime.  

Table 1: Performance metrics for different numbers of worker nodes: T(n) – runtime in seconds 

(median), S(n) – speed up, and E(n) – efficiency, for the IP and WLC methods.   

 

 

Figure 6: Speed-up S(n) for the IP method using different cluster sizes and 2,464 model runs.  
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A direct comparison between the original SEUSA-Workflow and the parallel and distributed 

solutions was not possible: the number of simulations in conjunction with the number of 

locations and the method employed exceeded the combined memory capabilities of the 

workstations. When comparing one worker in parallel mode using four cores with one 

worker using just one core (Dask LocalCluster), speed-ups of approximately 2.54 (WLC 

method) and 1.63 (IP method) were achieved. It should be mentioned that the block sizes 

for the IP simulations are smaller than those for the WLC simulations. The IP requires more 

memory capacity because of generating the ideal and anti-ideal intermediate surfaces. 

Additionally, reading and writing operations, background processes of the operating system, 

and scheduling the computations within the local cluster detract from the parallelization 

gains. As stated by Rauber & Rünger (2013, p.182), the number of cores represents an upper 

bound concerning the theoretical speed-up. This speed-up is limited by the degree of 

parallelism and can be quantitatively captured by applying Amdahl’s law.  

3.2 Fixed Cluster Size and variable Simulation Size 

In order to test the influence of the number of simulation runs on the performance 

indicators, a fixed cluster size of 16 nodes was used. The increasing simulation sizes ranged 

from 2,464 through 4,928, 9,856, 19,172 to 39,424 runs. Fehler! Verweisquelle konnte 

nicht gefunden werden. shows the runtimes for both decision rules. In comparison to the 

IP method, when the number of model runs is increased the computational demand for the 

WLC method indicates a more linear relationship. Figure clearly illustrates the trend of the 

non-linear relationship between the runtime and the number of model runs for the IP 

method. The runtimes for the IP simulations incorporating 78,848 and 157,696 model runs 

were almost 2 and 7.5 hours respectively. It should be noted that for both simulation runs 

(see the red dots in Figure) only a few iterations were conducted. The runtimes achieved 

should therefore be treated as approximate values only.   
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Figure 7: Computation times for the IP and the WLC methods for different numbers of model runs (x-

axis).   

 

Figure 8: Non-linear relationship with respect to runtime (y-axis) for the IP method, achieved by 

increasing the number of model runs (x-axis). The red dots indicate the runtimes for 78,846 and 157,696 

runs respectively.  
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4 Summary, Discussion and Future Prospects  

This paper has presented a Python-based parallel and distributed approach for Spatial 

Multicriteria Decision Analysis (S-MCDA) for a use case that focused on land prioritization 

in an area of southwest Michigan (US), the map for which incorporated almost 13 million 

pixels. The research addresses a variance-based Spatially-Explicit Uncertainty and Sensitivity 

Analysis Framework (SEUSA-Framework) based on Ligmann-Zielinska & Jankowski (2008, 

2014) and emphasizes the conceptual and computational performance differences between 

the sequential approach on the one hand, and the parallel and distributed approach on the 

other. A notable acceleration was achieved for the parallel and distributed solution based on 

the Dask-Framework. For example, the performance comparison between the distributed 

cluster including 16 worker nodes and the local cluster utilizing one core of a worker node 

revealed significant speed-ups for the former configuration, of 21.66 and 34.12 for the IP 

and WLC methods respectively for 2,464 model runs. The direct comparison between the 

sequential SEUSA-Framework, the GPU-based solution proposed by Erlacher et al. (2017), 

and the parallel and distributed solution presented in this paper requires additional coding 

effort to standardize the comparison bases.  

The proposed parallel and distributed approach represents a runnable solution for large 

raster datasets that incorporate thousands of simulations. This parallel and distributed 

SEUSA approach can be used for different raster-based S-MCDA problems that incorporate 

multiple benefit and cost criteria as well as multiple competing objectives and interests 

(various stakeholder views). The concept of the parallel and distributed solution is currently 

limited to global S-MCDA techniques and will have to be adapted in order to incorporate 

local weight changes within neighbourhoods, a requirement that could be addressed by 

further development of the approach we have presented here.  

Additionally, the approach can be extended by the integration of further decision rules, such 

as Ordered Weighted Averaging, to allow trade-off and comparative risk levels to be dealt 

with. Furthermore, an S-MCDA problem that includes alternatives presented in a vector-

based format (e.g. points, polylines and polygons), where columns express the criteria, can be 

converted to multidimensional NumPy array objects.  

The approach can be further developed to more effectively accommodate the generation of 

sensitivity surfaces (first-order and total-order sensitivity maps), by adding an additional task 

to the dask.array. Additionally, in the parallel and distributed approach proposed here, the 

use of worker nodes equipped with higher-end GPUs is expected to result in performance 

gains.  

In summary, the proposed parallel and distributed approach offers a simple and scalable 

means to increase the applicability of the original SEUSA framework. Furthermore, this 

Dask-based approach is an appropriate solution for existing clusters within local networks, 

common in academic institutions and private companies, because it does not disturb ongoing 

operations and does not cause conflicts with regard to software installation dependencies. 
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Appendix 

The box plots below illustrate the distribution of the measuring sequences for both 

performance comparison settings (fixed simulation size and variable node size). 
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Figure 9: Box plots for 2,464 IP simulation runs and variable node sizes.  

 
Figure 10: Box plots for 2,464 WLC simulation runs and variable cluster sizes. 
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Figure 11: Box plots for a 16-node cluster and a variable IP simulation size. 

 
Figure 12: Box plots for a 16-node cluster and variable WLC simulation size. 

 


