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Abstract

On the example of Luttinger model and Schwinger model we consider
the observable algebra of interacting fermi systems in two-dimensional
space—time and construct field algebra related to it as a crossed product
with some automorphism group. Fermi statistics results for conveniently
chosen automorphisms. The extension of time evolution to the field
algebra and its asymptotic behaviour are treated. For the Luttinger model
time evolution is asymptotically anticommutative, while for the Schwin-
ger model we find a reformulation of confinement.
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1. Introduction

The Bose—Fermi duality in one space dimension has been successfully
used for solving various problems in (1 + 1)-dimensional field theories
and in 1-dimensional models in solid state physics. Starting from the
pioneering works by Jordan [1], Born [2], Mattis-Lieb [3], Klaiber [4],
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different aspects of this phenomenon and different approaches, both to
its technical realization and to its physical meaning have been considered.
However, consistent expressions exist so far only for fermion bilinears
(directly connected to the observables of the theory) while the explicit
reconstruction of fermions themselves back from the bosonic variables
is more subtle. This problem traces back to a question of principal
importance: whether and in which cases conclusions about the time
evolution of charged fields can be drawn from the knowledge of the time
evolution of the observables.

First rigorous results on the possible fermi behaviour of operators
acting on a bose field can be found in [5] on the example of the massless
Skyrme model. An important contribution to the solution of the problem
is done in [7] where local fermi fields are constructed as strong limits on
a dense set of states of specific bosonic models. In a series of papers [8]
further progress is achieved since these local fermi fields ate constructed
as ultrastrong limits of bosonic vatiables in all representations that are
locally Fock with respect to the ground state of the massless scalar field.
There, an appropriate framework for the construction of anticommuting
variables out of commuting ones is found to be provided by the
nonregular representations of (canonical extensions of ) CCR algebras [9].
However, the question about relation (if any) between charged and
non-charged field evolution still remains open.

In the present paper we propose a solution to this problem that makes
use of the construction of the field algebra as a crossed product of the
observable one by the a-action of Z, a being a not-inner automorphism
of the latter.

The relevance of the crossed product C*-algebra extensions for the
relation of the field algebra to the observable algebra is first pointed outin
[10] where the problem of constructing field groups is reformulated as
a problem of constructing extensions of the observable algebra by
a group dual. Also, they are discussed in the context of C* and W*-
dynamical systems in [6]. Explicitly, crossed products of C*-algebras
by semigroups of endomorphisms are introduced when proving the
existence of a compact global gauge group in particle physics given only
the local observables [11]. The problem of extension of automorphisms
from a unital C*-algebra to its crossed product by the action of a compact
group dual becomes important in the structural analysis of symmetries in
the algebraic setting of Quantum Field Theory [6], whete in the case of
a broken symmetry this allows for concrete conclusions about the
vacuum degeneracy [12].

We restrict ourselves to the more simple case of a crossed product
generated by the action of a not inner automorphism of the observable
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algebra with a discrete group and identify the resulting object with
a charged field algebra. The conditions under which space translations
can be extended from the observable to the field algebra make the algebra
extension essentially unique. This (noncanonical in the sense of [9])
extension of the observable algebra yields an extension of its states whose
properties are discussed. The question about the fermion evolution finds
here a natural answer, the crucial point being a compatibility relation
between the automorphism used in the crossed product and the time
evolution, i.e. a property taking place on the observable algebra. For its
realization the structure of the energy spectrum of the model under
consideration is essential. The gauge group and its action for a crossed
product field algebra are also defined.

In our approach we stay state independent and do not consider strong
limits. Thus we cannot get the CAR relations in the renormalized form
(W' (%), ¥ ()} = 20 (x — ), where the renormalization constant g goes
to zero in some limit. We rather take as characteristic of fermi fields their
asymptotic anticommutativity.

Another advantage of envisaging the fermionization as a crossed
product is the fact that the field algebra inherits in a natural way the net
structure of the observable algebra. Therefore it is evident that global
properties do not affect the construction of fermions in accordance with
the observation in [8].

On the other hand, the crossed product construction is not restrictive
enough to guarantee a statistic theorem. On the contrary, an interesting
feature of the algebra so obtained is the possibility, depending on the
particular choice of functions that determine the automorphism o, to
endow this algebra with a “zone” structure, where also fields with
fractional statistics are present. The specific conditions under which such
fields could be provided with a stable time evolution will be considered
elsewhere.

2. The Crossed Product Algebra

We start with the CCR (Weyl) algebra .o/ (7,0) over the real symplectic
space ¥, with symplectic form o, generated by unitaries W/(®), with
®: = (f, 2)e?",, which satisfy

(@) W (@,) ="MW (@, + D,)
W (@)= W(—®) = W (D)~ 2.1)
The elements of .o7 ate of the form
A=Y OWD):=) W, eC, Y | < o0. (2.2)
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We can also consider its closure as C*-algebra. This algebra can be
enlarged to another CCR algebra by enlarging the space ¥ to a space ¥,
in a way that ¢ in (2.1) appeats to be the restriction on ¥, of the
symplectic form of #". This view point was taken in [8a]. There, with
appropriate ultrastrong limits it was shown that fermi field operators can
be obtained, so that the fermi algebra belongs to the weak closure of CCR
(77, 0) in appropriately taken representations [7, 8]. Instead of doing this
we will construct a new algebra & such that

CCR(¥) = F < CCR(¥")

without referring to representations and then show that & can be
considered as fermi field algebra.

For o a free [13] (so not inner) automorphism of CCR(¥,0) = o7/ we
can consider the crossed product

= XZ.

This corresponds (compare [14]) to adding a unitary operator U with all
its powers, so that one can formally write

=> AU,

with U implementing the automorphism o in .o7:
UAU ' = aA.

U should be thought of as charge creating operator and # is a minimal
extension.
The multiplication law in & is

Y AU BU =Y Aa'BU"* (2.3)
n £k nmk

and we take o to be
WD) = " COWD), o= og
O:=(fg)eV\V,, vV,

Crossed products are unitarily equivalent, i.e.
A XLroA XL
if 0°@ " is an inner automorphism of .. Therefore our algebra Z de-

pends only on the equivalence class {®} €7/, though for the explicit
calculations we will specify ®e¥"\¥". The automorphism « has to be
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free, so Z has trivial center like .. Since o is implemented by W(®) in
CCR(Y"), Z in a natural way (identifying U= /(D)) is a subalgebra of
CCR®Y").

By writing an element e as '=) A U", A €./, we see that it is
convenient to consider # as (infinite) vector space with U” as basic unit
vectors and 4, =:(F), the components of F'=:{4,}. The algebraic
structure of & is such that multiplication is not componentwise but (2.3)
says that

(F-G),=YExG,,
The algebra .o/ can be identified with the zero component in #, F is
actually a left .o/-module. In components we have

(U"), =0y,
(U*)fl = 5—1,17

so that the left action of Uis the shift.
Further, we can write

F=Y AU =Y WU =@ F. (2.4

The (non normalized) operator

F=Y WU

defines the U-orbit through I, so the last of Egs. (2.4) gives an orbit
decomposition of the elements of & .

There are two questions that naturally arise. Given an automorphism
on .27, can it be extended to & and how unique is this extension. In the
physical applications we are especially concerned with space translations
and time evolution. A similar question concerns the extension and its
uniqueness for given states on .o7.

We concentrate first on the extension p of an automorphism p of .o7.
Since all elements can be written as sums and products of A€.o/ and U i.e.
{6,,} and the action of § on 4 must coincide with p, we make the ansatz

ﬁ{51ﬂ} = {]7;()? 5
€7 requires I7)€.o/. Then { I’{)} will fix p. The consistency of p and

pn

P
p on the subalgebra o/ of Z requites

1=U-Ur=pU-pU* = {Z Vo Vf,;_“ﬂ} = {3y}
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This equation is satisfied by
(Vi ={1vo,), Vied 2.5)

pn
We refer to [21] for a discussion on the uniqueness of this choice.
Further, for We.o/, we have

PU-W) = pU-pW'= p(all-U)

and from (2.3), (2.5) follows
{ Vp<1> 51;1} {p Wé(}n} = {po{’ Wéﬂn} { Vp(l) 51;;}
so that
VPap W= pa(W)1 "
ot, equivalently,
VPapW T =y o, W= poll.
This can only be satisfied for some mee,szf , if the automorphism 7,

7, =poup” o (2.6)

is an inner automorphism of .&7. For example, o is easily seen to be
extendible to an automorphism also of 7, since the cortesponding y, is
the identity transformation, so that &/ = U. Since the CCR (¥") algebra
o/ has trivial center, the unitary operator that implements an automot-
phism is unique up to a phase factor.

Apart from the condition that pop~'oc~ " is inner no other conditions
have to be satisfied.

We should mention that the question of an automorphism of the
observable algebra can be extended to the field algebra is also treated [12]
in the context of the theory of [11] where the field algebra is obtained
as crossed product over a specially directed symmetric monoidal subcate-
gory End ./ of unital endomorphisms of .o/ as generalization of our
automorphism group o. There two conditions enter, one is the appropria-
te replacement of our demand that pop o~ has to be inner, the other is
a compatibility condition with the net structure. We do not have any
counterpart to this condition. It will turn out that in our case the net
structure of the field algebra is a consequence of the net structure of the
observable algebra and of the compatibility relation for o.

We return to our explicit chosen o. We consider p that are quasifree
automorphisms on CCR(¥"), which means that they ate of the form
pW(®) = W(®,). The inverse of the map ® - @, we denote by & > _,
and p has to preserve the symplectic structurein ¥, so that 6 (¥, @ _ ) =



A Fermi Field Algebra as Crossed Product 19

oY, ®). To start, this bijection is defined on 77,. We have
7, W(®) = 7@ ().
Assume that
o(@,0_) —¢(D,D)=0(¥,D)

for some We 7. Then, on one hand, we have enlarged p to a quasifree
automorphism on CCR(7") with ®,=® + ¥, on the other hand, 7,
satisfies our requirement with

IV, =W(W¥)=W@®,— e 2.7)

That the condition is satisfied for appropriately chosen @ if we consider
space translation and with some restriction on time evolution will be
discussed in Section 3. How this restriction is satisfied in physical models
and what are the physical consequences will be discussed in Section 4.

The second principal question concetns construction of states over Z .
Let w () be a state over the algebra .o/ and 7, the cyclic representation of
&/ associated with it through the GNS construction

o (W(®@)) = {o|r, (WD) |w) = {w|®)

where |} denotes the vacuum. Then the vectors |®)
generate H, the representation space of 7,,.
The representation 7, itself is given by

n(U(W(X)) (D w = €la(l’ql)/2|® + %>(U
and the scalar product is

o LD, =TV 2 (WD — 7).

>

=, (@)

(0]

The crossed product algebra acts in a larger Hilbert space A which may
be considered as a direct sum of charge—# subspaces (the justification for
this terminology will be given in Section 3), each of them being a repre-
sentation space cotresponding to the state w° o~ ". We can imbed ' into
A and denote now the vacuum by [Q), thus expressing the fact that we
consider it as a vector in #. Then U*|Q) can be denoted as

UtQ) =19,

and the vector space structure of F suggest that (Q,|Q > = ¢, with the
identification |Q) = |Q,>.
Then

|F©) = @)1, = UkaikW((Dt) 12>
_ e—iéo‘((i),q)[-) 1% D> = e—z'ktf@,@;)|(p(%>> (2.8)
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so that |F¥), varying over @, generate the charge—£ space #“ and
varying over £ we get the complete Hilbert space .

Arbitrary linear functionals built by vectors in #” considered as states
over .o/ read

CEPNWQIFSY = 8,56~ 0o (" W) = 8,00~ ™D oo (W),
(2.9)

On the other hand, given two states on ./, w, and w, a quantum
mechanical superposition of them to a state on # is only possible if the
same representation 7 is associated with both @, and @, °o* for some £ so
that the new state is constructed with a vector

ol + 0,107, ¢, €C

If we take into account that w is irreducible, o free and woa” not normal
with respect to @ we can conclude that the extension of the state over
2o/ to astate over Z is uniquely given by the expectation value with |Q,>
in this representation. With

F=Y W)U

we get
— N\~ 5 (®i,)/2  —inc(®,0;— D
W(F*F) =327 o) "2 7m0 0 (D, — D).
iyjyn
Therefore, the states over % inherit in a natural way the whole
structure and symmetry properties from the states over .o7.

3. The Crossed Product as Field Algebra

The important result in [11] is the theorem that the observable algebra
o/ together with the set of particle states (that form a DR-categotry) can be
enlarged to a field algebra on which a gauge group acts, that leaves the
observable algebra elementwise invariant.

In the case of (free) fermions in one dimension the algebra is built by
creation and annihilation operators a( ), a'(g), f, 26 L*(R). The obset-
vable algebra is built by monomials with the same number of creation and
annihilation operators

H a' (ﬁ)nd(&)- CRY)
i= J=
They are invariant under the automorphism group

wa(f)=e"a(f), ve[0,1) =S, 3-2)
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The observable algebra contains the current algebra built by ' (x) a(x),
invariant under the local gauge group a( f) = a(¢"“f(x). One still has to
check whether this algebra is well defined. From e.g. [3] we know that the
current algebra leads to CCR (") in appropriate representations.

However, if we consider as observable algebra the C*-algebra obtained
as a norm closure from (3.1) the passage to the CAR-algebra as crossed
product is not possible as it was shown in [15]. Therefore the closure has
to be taken with respect to some other topology. Consideration of
CCR(7",) as avon Neumann algebra would solve the problem, but we do
not favour it because we want to stay representation independent as much
as possible. On the other hand, we cannot ignore the representation
completely, because in the C*-norm CCR(¥") is not sepatrable whereas
the fermi observable algebra is. This is not really a problem: we are only
interested in states that are locally normal with respect to the vacuum.
Therefore we take the following view point: we consider CCR(77) as
a net of von Neumann algebras closed locally in some representations, so
that there is no contradiction with [15]. To be more precise, we consider
the local net

Ay {[[a'(f)alg), suppf geA}’,

of = \/&f A
A
The union is taken in norm and this algebra does coincide with

o/ =\/CCR(¥ ", A)"
A

where we have some freedom in choosing CCR(¥,A), eg.

(LOEY = (6 X €), suppf,g< A, where € is the space of test

functions that are infinitely differentiable and with compact support.
Our first step in the identification of # with a Fermi type algebra

\A{b(f),b' (9), suppf,ge A}

A

is to find the gauge automorphism, but this is trivial in the context of
crossed products. Defining

,yvUﬂ — €2nianﬂ '))‘HZ — HZ (33)
and with (2.4) taken into account, we get

,vai — Z€2nivn ‘LV[U’I — @6)271["/11?5”) (34)

n
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Evidently, F,”), the elements of .27 as subalgebra of # , are invariant under
the gauge automorphism (3.3)

VVF/(O) = VV{WZ'(S%} = {%5016} =FY

Also, 7y, commutes with the structural automorphism o, a°y, =y °0.
For the representation 7, discussed in Section 2 we observe (see (2.8))

2,(W(@)IQD) = e zm%{ W(®,) 6/en} Q) = ¢ W@)1,) (3.5

so that we really can interpret vectors | V) as belonging to the charge—£&
subspace. Thus, the (gauge invariant) state over o7, w(A), is extended to
a gauge invariant state over &

7o QULTY = QALY = 0, Q™™ 7)) = Q7).

The next task is to reconstruct the net character of the field algebra.
This means that we want to find subalgebras & , for which the following
relations take place

To show that this is really the case, we shall make use of two important
features of the crossed product algebras in question: first, the extendibility
of space translations to automorphisms of the field algebra, and
second, the unitary equivalence of crossed products with structural
automorphisms which differ by an inner automorphism of the observable
algebra .o7.

Let us consider the observable algebra for a given region A and choose

Oey "\ v, ®.— De?", such that
OC&)LQ/[\ = Zda //& < AL.)
where A’ is the causal complement of A. Then we define

Ol
Fo=oAd XLF.

Space translations act in F , as

o0.{4, ={0.A, U,
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with U implementing the (inner) automorphism ¢ 0§05 ". We then get,
in accordance with (2.3),

(0.4, U) (6.8,U%) = {z o A B U;@},
'3

which is exactly the multiplication law for the crossed product algebra
a. Xz
with
Oy, = 0,050
to )y =id, A A+
Therefore, we have
N

OF\=0 A\ XL=F,_.

The net structure of & appears as a consequence of the extendibility of
space translations to an automorphism in .# which requites for a choice
of the structural automorphism 63 that is consistent with the net structure

of /.

Finally, we have to verify compatibility of anticommutation relations
with the structure of the crossed product algebra & in order to ensute the
existence of odd elements in it. This will complete the identification of
Z with a fermi field algebra corresponding to the observable algebra .o7.

{0,,}, the elementin Z , that implements 03, is an odd elementin # , if

ax{éln}.{alﬂ} + {51n}'0-;\~{51ﬂ} =0 lel > |A| (36)
With (2.3), (2.5) this means
{ W((T)x - &)) 51;1} . {5111} + {5117} : { W(&)x - q)) 51/1}
={W (@, —D)J,,} + {0 W (D@, — D)5,,}
= {1+ "M WD, — D)3,,} =0
Thus, Eq. (3.6) is satisfied if for |x| > |A]
em@,&)’r&)) =1
that is if the following relation holds

o(®,0) =2k + 1)m, kinteger. (3.7)
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This is exactly the normalization condition used in [8] to choose an
appropriate @ for the construction of the fermion creation operator. It
reads
lim o(@®,®,) =+ (g(00) —3(—0))[/(x)dx= 2k + 1),
x— + oo

but the limit is already attained for |x| > |A| because supp f,g < A.
Then, for the r~th class elements in % it follows:

0. {0,1{0,} =W,@,—®)d,.= (=1 {3,}0.{,} (38

so that for r=2n the elements commute and for r=2r+1 they
anticommute, thus providing a graded structure of Z.

_ Here, the sensitivity of the crossed product to the particular choice of
® shows up. If the pair @ is scaled to AD, so that ¢ is scaled to A’c,
condition (3.6) in general fails. Instead, we get

UX{51?1} {51/1} = 671‘/‘.2<2k+1>n{51rx} ax'{51r1}9 (39)

which can be interpreted as a fractional statistics and therefore describes
an essentially different physical system.

However, it might happen that elements obeying fractional statistics
are naturally present in the algebra 7. In fact, this is exactly the situation,
if the first odd element of Z is not {0,,} but some {J;,}, i.e. if

O—x{aﬁﬂ} {5;?/1} + {5¢7n} O’x{aﬁﬂ} = {(%(&)A - (5) + aﬁ %(&)A - (i)) 52;},/6}
= {1+ 7NN WD, — B)0,,} =0

so, instead of (3.6) we have the relation

2k+1
TT.

2
n

c(®0)=

The graded structure is still present, with 2£&#-classes being commuting
and (24 + 1) #-classes anticommuting ones. The elements in the classes
with numbers »€Z/Z;are characterized by fractional statistics, satisfying
a relation in formal analogy to (3.9):

GX {5//”1} {5”/)7} =e¢ i(’”/2)2(2k+ R {5f7/ﬂ} O’x{émﬂ} .

This offers an alternative approach to construct models with fractional
statistics.

Finally we note that .o/ is a subalgebra of F for the gauge group
J =]0,1) while it is a subalgebra of CAR for the gauge group 7 @ R.
Thus the crossed product algebra # being really a Fermi algebra, does
not coincide with CAR but is only contained in it.
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4. Examples

We are now going to discuss two typical examples which demonstrate the
sensitivity of the construction described above to the physical content of
the models. These two examples are Luttinger model [16] and Schwinger
model [17]. It is not our aim here to give an overview on the enormous
literature on these models or to enter in detail the far going conclusions
drawn on their basis. What is important from the point of view of the
crossed product algebra construction is the essential difference between
the interactions they describe. The Luttinger model is an example of
a one-dimensional interacting fermionic system which is nevertheless
realistic enough (recently it has become even more popular in connection
with the “Luttinger liquid” behaviour of normal metals [18]). The
Schwinger model gives an example of confinement, being equivalent to
a free massive scalar field theory in (1 + 1)-dimensional space-time.
The models in question are described by the the following Lagrangians:

L= —iF F" + i)y" (0, — ieA)Y (4.12)
L, =i — [/ Ve —2)j,00dy (4.1b)

where I7(x —y) is an even smooth function, Y (x) is a two-component
spinor, satisfying
W, 9,0)} = 0,0(x—) (+2)
all other anticommutators vanishing, A4, (x) is the vector potential,
Fﬂ" = auAv - av/l;n H,v= 0:1

and currents j, (x) are defined as

569 =697 )
Jol®) =W (9

Jr () =30 ) £/ () (4.3)
with the two-dimensional y-matrices
Vo=01, V1= 10, )5 =) =05

0, being the Pauli matrices.
Hamiltonian densities have the form

H ()= 0000 ) = 5[ U) +/e@x =31 G0) +/n 0D
(4.42)

H0) = (27,00 () + 4] /o) Vi =) 7. (0) (4.4D)
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with j, (x) and j,(x) — left and right current respectively. Therefore, for
a direct comparison of the results it is convenient to generalize (4.1b)
(hence, (4.4b)) to the more realistic type of two-body interaction

J U +7.69) Vix =) GrO) +/.0) dy (+5)

which does not affect solvability of the model but only causes minor
changes in the spectrum of excitations.
Now, in the momentum space Hamiltonians are

ZOC

Hy=H,+ I[p1<p>+pz<p>] 5100(=p) + po(—p)ldp

Hy=H,+ g PD10(D) + P[Py (=1) + po(—Pldp  (46)

where /4 is the free Hamiltonian and the following notation is used:
pi(p) = [dkal (k+p)a(k),  p>0,
p(—p) =[dkal (R)a(k+p), p>0 4.7)
with «,(£), a] (k) being the Fourier transformed of ,(x), /] (2):

() = e"a(p)d)
Vi) ﬂf (p)dp
{al@,4(p)} = 0,0(—9)
The semiboundedness of the free Hamiltonian /, is achieved after

a Bogolyubov transformation of ’s and 4"s, which effectively describes
the negative energy states filling (filling of the Dirac sea),

a,(B) = b(R) O (k) + & (B O(— &)
a,(B) = b(R)O(— k) + (RO (L. (4.8)

The new creation and annihilation operators b, Ve satisfy canonical
anticommutation relations, but the vacuum is already defined as

b(E)|0> = c(£)|0> = 0. (4.9)

This procedure results in the appearance of an anomalous term in the
commutator of cutrrents (4.7), which otherwise commuted

[0:1(2), pr(P)] = pO(p — P)
[0,(0), p2(P)] = — po(p — p') (4.10)

It is Eqs. (4.10) that justify the so-called bosonization of the two-
dimensional models with fermions. The calculation of the anomalies is
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done usually in this new vacuum, but this is not essential. In [20] the same
result was also obtained in temperature states. This is not surprising. It is
an algebraic relation, so it has to be state independent, provided the
densities are well defined, i.e. smearing over p gives an (unbounded)
operator. This only works in the new, Dirac vacuum and in all states that
are locally normal with respect to it. It is one of the achievements of our
approach that we can find the observable algebra as local net, so
restricting the permitted states only on a local basis. From this local basis
we come back to the field algebra and there is no need to check the
anomalies in every state (that has not to be globally normal, i.e. permits
temperature). In this sense we interpret the appearance of anomalies as
a local effect.
For the corresponding spectra we get

o, (p) = pl(1— T (p)"? (4.11)

w(p) = pl 1+KZ 1/2, m=—. (4.12)
p)=1pP 7 ﬁ

The CCR algebra o7 (7,,0) in both cases is generated by the unitaries

W(®@):= W/, = exp {Z’f [/ p4(x) +2()pr()] dX}

(JLQEV = (€5 X 61),
PAR) = Pi(x) = o), 1) = 1 () + Pa(x)
which satisfy
W(D,) W(®@,) = " P22 (@, + D,),
0 (@,0,) =0 ((f12), (h2) = [(f18 —/28)dx. (4.13)

The field algebra & may be constructed, following the procedure
described in Sections 1-3, with the help of an automorphism o

o= W(D) = OV (D), Dev,,
O:=(f,5)eV =0 "6 x07'C)
(a function f(x) belongs to 07 '€, f(x)€0™ '€ if f(x)€E). There-
fore, the functions £, ¢ have bounded Fourier components at p =0
[fedx~FO) <o V/f(x)ebs (4.14)

while for functions £, g, as well as for their space- and time-translated this
components might diverge and only their boundary values at 4 o0 are
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related through
[0£(x) dx = f(00) — f(— 00) = Mz < 0. (4.15)

The space translations as automorphism can be extended from the
obsetvable algebra .o/ (4.13) to the field algebra

— A XZ 4.16)

if, according to (2.7), condition (4.14) is satisfied for the functions
f_x _jT= ji" gx_g=<é\x
ie. if(i) (]A;,g)e(gw for finite x.
This is easily seen to be the case. Note, however, that due to (4.8) space
translations ate generated by P= exp {z|p|x} which restricts the Fourier
transforms of all test functions to the subspace of even functions. Then

the invariance of symplectic form ¢ under shifts in x determines the
Fourier decompositions:

£ = jgf T dp

8() = e~ g(p)dp.

This gives for the zero modes

o0 [oe] ~
V LOVdy=2e? f «r—vaps=-ioio
— o0 0 ® 3

== x[ofO)d =- xu7< O, 4.17)

according to (4.15), similatly for g. Eq. (4.17) also means that the
singularity of the zero mode of £, gis of the type 1/p. For example, we can
choose for (f, g) appropriately smeared 0—functions:

0

J& =[Fe=000)dr= | Fxe=)dp

2 =[ G000 =[ Clx—)d
with 7, Gbeing % -functions, so that for the Fourier components we get
ﬁwr{f?i F(0) finite. .18)

&
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Since the space translations can be extended to the field algebra, we can
discuss the asymptotic statistical behaviour of its elements. In particular,
the existence of anticommuting variables, due to Eq. (3.6), imposes some
restrictions on the functions, defining the structural automorphism og.
For the algebra (4.106) this requirements reads

¢(@,®) =+ [3(0) —Z(— 0[S 0=k + 1)1, for |x|>A,
(4.19)

or
T M; Mz= (2k+ 1)7, £k integer.

This is exactly the condition used in [8] to choose the appropriate @ for
the construction of the fermionic creation and annihilation operators,
apart from the difference in the symplectic form, hence, in the choice of
V= (6 x 07'%y) there. The finite quantities A%, M, then may be
given a meaning of charges.

In momentum representation condition (4.19) reads

lim i || FAADZ (1) "7 = e 77 dp

= FRG(=p |
= tm [ g e
= 2k + )= £ 21F(0) G(0). (4.20)

5. Extension of the Time Evolution to the Field Algebra

The success to consider the observable algebra as Weyl algebra stems
from the fact that the time evolution of interacting fermi systems can be
described as quasifree evolution of the Weyl algebra. To see how the
extension procedure works we have to be more explicit:

W5 =W (fg) =W "fe"y)
whete 4 is the one-patticle Hamiltonian. In our models ¢
@y . According to (2.7),

V,=W(/,—/&—2
and extendibility of time evolution asks that both f— /g —Z must

belong to the space €. If time evolution commutes with space transla-
tion, we better work in momentum space, so that we have to consider

=D (B, = DEE) G5.1)

" maps € into
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According to (4.18) /() does not stay bounded for p—0 but has
a singularity of the type 1/(p — 7).

Extendibility of the time evolution from the observable to the crossed
product field algebra then depends on the structure of the spectrum @ (p).
If relation

)

=0

=M, < o0 (.2)

holds, this is enough to cure the singularities of £, g, so that V,e.o/.

Let us now look at the models described in Section 4. For reasonable
potentials the spectrum of the Luttinger models (4.11) satisfies condition
(5.2), while for the spectrum (4.1.2) this is not the case: there, an
additional singularity is present, corresponding to the appearance of
a massive scalar particle that does not allow extension of the time
evolution as an automorphism on # .

Since the functions f, g are defined with some additional restrictions,
following from the requirement for {d,,} to be an odd element of
a question arises about the importance of this additional condition (4.19)
for the asymptotic statistical behaviour of the time evolution. This means,
we are interested in the limit behaviour

lim lpl70PDEPD 1 = ¢~ p

11—+ o0

with w (p) satisfying (5.2) so that we have to consider integrals of the type

EHY) e f HoT(g)  ¢"dg
lim 7} e = e T Ao @)

with H(x) being an % -function. These integrals have exactly the same
singularities (due to (5.2)) as those in (4.20). Then, together with (4.19), an
analogous relation takes place also for time-shifted ®-pair

=~ 0

lim ¢(®@,®) =&+ )7, kinteger,

1>+

so that

{60,}7,8,,) + 7.{8,,}-{0,,} =0.

Therefore, when an extension of the time evolution as automorphism
from observable to the field algebra is possible, the asymptotic anticom-
mutativity of space translations on the odd subalgebra of # provides
asymptotic anti-Abelianess of the time evolution there (compare com-
ments in [0], p. 228).
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We want to emphasize that it is by far not evident that asymptotic
behaviour of time and space translations is the same. For example, in the
XY-model new features appear [14, 21].

Finally, we wonder how time evolution can be interpreted if (5.2) is
violated, e.g. in the Schwinger model. In [9] the view point is taken that
the algebra is enlarged even more to CCR(7”) where ¥~ = {| |, ®@,u 7" }.
" is always a linear space and we have already obsetved that A®, 4 real,
with varying 4 leads to a larger algebra than the desired fermi field algebra
(fractional statistics). We prefer to take the view point that we do not want
to enlarge the algebra but are satisfied to have a well defined time
evolution of states since we have found the possibility to extend any state
on ./ to a gauge invariant state of # (Section 2). Accordingly, any gauge
invariant state on # has a well defined time evolution. Especially, time
invariant state on ./ induces a time invatiant state on & . Properties of
such states also for finite temperature are discussed in [19].

We consider the state (2.10)

CFOImW ) |FO) =L@ W) |D).
They evolve in the course of time to
CEPImW)IFOY = L Dm (ot W) | D)
={O|rot,o1_ 0 T, WD),

As we have already mentioned, two states, , and w,, over a gauge
invariant algebra can be combined in a not gauge invariant state iff the
representations 7, and 7,° 0 are equivalent for some 4. In the course of
time w, and w, evolve to states, corresponding to the representations
7,°7, and 7,°t,. Since 7, by assumption is equivalent to 7,00 ¥, we
demand that

ToT, AT, o0

£ £

TR foofta T,

and this only holds if o*7,0 ~*t_, is an automorphism of (.«7)", which is

not the case in the Schwinger model. Therefore states that are not gauge
invariant have no well defined time evolution, so that they are not
physically acceptable and we have screening of the charge (confinement).

To summarize, the time evolution on the fermionic field algebra can be
obtained as a naturally extended automorphism from the time evolution
of the observable fields only in cases when short range interactions
determine the behaviour of the system. Existence of long range forces,
typical example being the Schwinger model, appears to be an obstacle to
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this. Of course, the fermionic field algebra is still well defined but we can
only consider the time evolution of gauge-invariant, hence, not charged
fermionic structures (consisting of equal number fermions and antifer-
mions). This nonextensibility of the time evolution may be viewed as
another manifestation of the confinement, which takes place in the
Schwinger model.

6. Concluding Remarks

We have demonstrated on simple examples the possibility to construct
fermionic field algebra as a crossed product of the observable algebra by
a proper o-action of the group of integer numbers Z. o has to be a free
(not-inner) automorphism of the observable algebra .o/ which is a simpli-
fication for dimension 2 as compared to the specially directed monoidal
category of endomorphisms for 4 dimensions in [12] but still provides an
analysis of various models. The field algebra so obtained has a local net
structure, the ingredients being von Neumann algebras. The extension of
automorphisms from observable to the field algebra is shown to be
possible under a compatibility condition between the automorphism in
question and the structural one used in the crossed product. As a direct
consequence of this compatibility relation for the special case of space
translations and of the net structure of the observable algebra appears the
net structure also of the field algebra so that no further restrictions on
o have to be imposed to guarantee the latter. Also, the states are shown to
be extendible to the field algebra, inheriting the structure and propeties of
the state over the algebra of observables.

In the two cases of automorphisms or patticular interest—space trans-
lation and time erolution, we have the following situation: the conditions
to be fulfilled in order to have space translations extended to the field
algebra and to have anticommuting fields present in it, are enough to
specify the automorphism o (D) by fixing @. Then, time evolution appears
to be extendible only in the case of short range interactions but then it is
also asymptotically anti-Abelian for the anticommuting fields, so that
space translations and time evolution have the same asymptotic statistical
behaviour. In the cases when long range forces prevent consistent
extension of time evolution from observable to the field algebra, a well
defined time evolution is shown to exist for gauge invariant states on the
latter. In this context, charge screening (or confinement) in the Schwinger
model may be understood as an absence of well defined time evolution
for charged states.

The crossed product field algebra allows also for fractional statistics in
one space dimension. This interesting possibility as well as the description
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of vacuum degeneracy in gauge models in the crossed product scheme
will be considered separately.
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