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Motivation

After 70 years of analogous photogrammetry by means of ingenious
sophisti- cated optomechanical instruments and 20 years of analytical
photogrammetry based on automatic stereocomparators which were
controlled by fast electronic central processors and linked host compu-
ters, digital photogrammetry increasingly became the only method cur-
rently used. Digital photogrammetry – sometimes also called ‘‘Soft Copy
Photogrammetry’’ – processes digitized stereo images which are viewed
by special devices for spatial impression such as, for example, stereosco-
pes. Other possibilities are the ancient method of anaglyphic representa-
tion by means of red and green glasses or the currently used method of
shutter glasses controlled by an infrared transmitter synchronized with
the half linefrequency of the computer display and hence with the change
between left and right image.

All photogrammetric images of the analogous method were strictly
restricted to the use of metric (i.e. calibrated) cameras with well-defined
focal lengths and centered cartesian image coordinates achieved by means
of most accurately calibrated fiducial marks (\ interior orientation) in the
image. In ‘‘Analytical Plotters’’, in principle, arbitrary (analogous) images
can be used, but as the evaluation must be controlled visually by human
operators, the images must be taken with equal focal lengths and at



approximately equal scales. ‘‘Digital Photogrammetry’’ depends on an
accurate external digitizer, i.e. a drum or flat scanner with optimum
resolution and free of additional radiometric or geometric errors. All the
other photogrammetric tasks are performed on a fast micro computer
or – more conveniently – on a special graphical workstation. The opera-
ting programs are similar to those of analytical plotters, but as digital
images may be transformed projectively to any other direction of
exposure and any scale, they may have different focal lengths and do not
require image coordinates referred to the optical axis. Moreover, image
coordinates measured by the comparators of analytical plotters or by
means of scanners cannot be expected to be of cartesian type. In general,
they result from a measuring device with at least small obliquities between
the coordinate axes and small differences in scale along them. Hence, for
the purpose of simulating ideal conditions, i.e. cartesian image coordina-
tes, the measuring unit must be calibrated, too.

Very often it is more expedient to accept the fact that in reality all image
coordinates are oblique and heterometric, or in one word, affine. In this
case, the working methods of photogrammetry must be adapted to
coordinate systems which refer to object points defining a three-dimen-
sional affine space, and to corresponding plane affine coordinate systems
in the image, referring to the projections of those so-called basic points.
Therefore, the theoretical presuppositions are quite different to the ones
used in traditional analytical photogrammetry, which refer to strict
cartesian systems defined outside the model or image spaces, and they
should be distinguished in order to indicate their independence of all
prevailing postulations. The new name ‘‘algebro-projective’’ may be conside-
red somewhat complicated but it takes into account that all tasks of the
following developments can be solved rigorously by means of linear algebra
based on elements of projective geometry, in opposition to analytical photo-
grammetry, where nearly all calculations must use iterative procedures
due to the highly non-linear character of their basic relations.

1. Foundation of Algebro-Projective Photogrammetry

1.1. Projection from Space to Plane (Singular Projective Transformation)

By introducing a general affine coordinate system in a tridimensional
(vector) space V3 with inhomogeneous point coordinates yT\( y1, y2, y3),
the position of an image plane P2 can be defined by means of a center of
projection y0 and three points (y0]bj ), j\0, 1, 2, of the plane
(Fig. 1.1/1a). This definition is essentially more general than the usual
one based on center of projection X0, normal vector k and normal
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Fig. 1.1/1. Possibilities of imaging geometries

distance c (Fig. 1.1/1b) of analytic photogrammetry [15] with orthonor-
malized (cartesian) coordinates. In order to get the projection of any point
y of V3 onto P2, the vector z\y[y0 must be transformed into the
system of the three ‘‘base vectors’’ bj by introducing three numbers x j, so
that

z\x0 b0]x1b1]x2b2 (1.1.1)

or in matrix notation

C
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b01 b11 b21

b02 b12 b22 D C
x0

x1

x2D\B x (1.1.2)

[7]. x is the vector of affine coordinates related to the ‘‘base’’ bj and (1.1.1)
is the equation of reconstruction. The equation of projection

x\B*z

results from the inversion of B according to
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yielding with D\det(B), i\ j[1, k\ j]1, j\0, 1, 2, i and k cyclic
the row-vectors of B*

C
b

j

0

b
j

1

b
j

2
D\([1)j

D C
bk1bi2[bk2bi1

bk2bi0[bk0bi2

bk0bi1[bk1bi0 D\
([1) j

D C
bk0
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bk2
D]C

b i0

b i1

b i2
D

\
([1) j

D
bk]bi\b j (1.1.3)

which are the reciprocal vectors of the bj [6] and B* is the contravariant
tensor of the co-variant tensor B. These relations show, by the way, that
the cross product of two vectors is also significant in affine coordinate
systems.

Because of

bj ·b
j\1 and bj ·b

k\0

the x j follow from (1.1.1) as

x j\b j · z.

Thus they are the contravariant coordinates of z related to the base B(bj).
Referring to the following explanations, these relations are not very
essential, but they evidently show the connexion of algebro-projective
photogrammetry with linear algebra and projective geometry.

In the systems of the base the projection of the point y is obtained by
intersection of z and P2, yielding the spatial point lp\z (Fig. 1.1/2). Its
image coordinates in P2 arise by means of the basic points G0, G1, G2,
defining an affine system with the units

e1\(b1[b0) and e2\(b2[b0),

where the image point is fixed by the vector equation

p[b0\u1(b1[b0)]u2(b2[b0)

p\(1[u 1[u 2 )b0]u1b1]u 2b2

p\B C
1[u 1[u 2

u1

u2
D\B C

1 [1 [1
0 1 0
0 0 1 D C

1
u 1

u 2
D\B U u.

u contains the two inhomogeneous affine coordinates u1, u2 of the image
point, but shows the quality of a homogeneous vector. Vectors of this
kind will be called ‘‘quasihomogeneous’’.
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Fig. 1.1/2. Projection of a point by intersection of z with P2

The relations between z and u arise from

z\kp\kBUu\kPu,

(1.1.4)

P\BU\ [b0 (b1[b0) (b2[b0)].

yielding the equation of reconstruction, and from

ku\U*B*z\P*z\P*(y[y0) (1.1.5)

yielding the equation of projection wherein
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P* is the matrix of projection and its structure shows the connexion with
the components of the base vectors. Equation (1.1.5) may also be written
as

k C
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0 D\C[P*y0

0
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0T D C
1
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y3
D or ku\M*y (1.1.6)
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y now being a quasihomogeneous vector. M* is a four-dimensional
singular projective matrix, from which it follows that because of

M*y0\0, (1.1.7)

the center of projection may be calculated from a known matrix M* by
solving the simple system (1.1.7).

1.2. Determination of P*

In general, four points Gj ( j\0, 1, 2, 3) of the object space V3 can be
identified in order to establish an affine coordinate system of the model in
V3 (Fig. 1.2/1). In this case, they are the unit points of the system and
hence have the inhomogeneous coordinates

e
T
0 \[0 0 0], e

T
1 \[1 0 0], e

T
2 \[0 1 0], e

T
3 \ [0 0 1].

If these points are projected to P2, the images G @
j ( j\0, 1, 2) will define

the affine system of the image plane as shown in Fig. (1.1/2), where they
have the quasihomogeneous coordinates

e@T
0 \[1 1 0], e@T

1 \[1 1 0], e@T

2 \[1 0 1].

The fourth basic point G3 is projected into a general image point with
quasihomogeneous coordinates

e@T
3 \[1 u31 u 32].

Using this knowledge, the structure of P* can be derived from the
relations

k j e@j \P* (ej[y0) (1.2.1)

or in scalar terms without comments:
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Fig. 1.2/1. The affine system of V3 and the corresponding system in P2
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The projective matrix P* therefore reads

P*\C
k1[k0 k2[k0 k3[k0

k1 0 u 31k3

0 k2 u 32k3 D (1.2.2)

and the matrix M* of (1.1.6) regarding the results of j\0, is written

M*\C
k0 k1[k0 k2[k0 k3[k0

0 k1 0 u31k3

0 0 k2 u 32k3

0 0 0 0 D. (1.2.3)

Strictly speaking, this matrix represents the core of every singular
projective transformation because of its reference to the affine coordinate
systems defined by the basic points. Hence, general projective matrices
will contain components which depend on the affine relations between
arbitrary coordinate systems and the system of the basic points. The
comparatively simple structure of M* will enable a method of linear
relative orientation of projective bundles [2].

1.3. Properties of P*

From (1.1.5) or (1.1.6) it follows that division by one component of P*
merely influences the factor k, which, moreover, cancels out if the affine
coordinates ui are calculated by means of (1.1.6), that is

ui\
y ik i]y3u 3ik3

y0k0]y 1k1]y 2k2]y3k3

, i\1, 2, (1.3.1)

introducing y 0\1[y 1[y 2[y 3 and dividing by the first component.
By equating p00\k0\1, (1.2.2) can hence be written – without changing
the notation –

P*\C
k1[1 k2[1 k3[1

k1 0 k31k3

0 k2 u 32 k3
D , (1.3.2)

and M* can be defined analogously. If P* is regular because of

det (P*)\*\k1k2(k3[1)[u31 (k1[1)k2k3[u32 k1(k2[1)k3D0
(1.3.3)

the inverse form P (reconstruction) can also be specified by means of
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PP*\E (unit matrix) with the solution

P\
1
*C

[k2k3u 31 k2(k3[1)[(k2[1)k3u 32 (k2[1)k3u 31

[k1k3u 32 (k1[1)k3u32 k1(k3[1)[(k1[1)k3u31

k1k2 [(k1[1)k2 [k 1(k2[1) D
Insertion of the components of (1.3.2) into the linear equations of the
case j\0 of (1.2.1) yields the modified system

(k1[1) y01 ](k2[1) y 02 ](k3[1) y 03\[1
[k1 y 01 [u31k3 y03\0

[k2 y 02 [u32k3 y 03\0
(1.3.4)

from which the components of y0 result: The second and third equation
directly yield the relations

y01\[u31

k3

k1

y03, y02\[u32

k3

k2

y03 ,

and insertion of these terms into the first equation turns it to

y03G[u31(k1[1)
k3

k1

[u32(k2[1)
k 3

k2

](k2[1)H\
y03

k1k2

*\[1F

y 03\[
k1k2

*
.

Using this expression, the other components take the final form

y 02\u 32

k3k1

*
, y 01\u 31

k2k3

*
.

These results also may be obtained from (1.1.7) introducing (1.2.3) and
regarding k0\1.

It is seen that y0 is determined by means of the known projective matrix
P*. However, the opposite possibility, that is solving the system (1.3.4)
with respect to k1, k2, k3, exists as well: equating u30\1[u31[u32 and
analogously

y00\1[y01[y02[y03\u30

k1k2k3

*
,

firstly from the sum of the equations results

and subsequently

k3\[
y 00

u30 y03

k2\
u32 y 00

u30 y 02

, k1\
u31 y 00

u30 y 01

. H (1.3.5)
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Insertion of these coefficients into (1.3.2) yields the form

P*\
y00

u30

u31

y01

[
u30

y00

u32

y02

[
u30

y00

[1
y03

[
u30

y00

u31

y01

0 [
u31

y03

0
u32

y02

[
u32

y03

(1.3.6)

of the matrix of projection which depends exclusively on y0 and u3 ! In
this case, the inverse form (matrix of reconstruction) reads

P\

[y01

y 01

u 31y 00

M y00(1[u32)
y 01

u32 y 00

(u32 y 00[u30 y 02)

]u 30( y 02] y 03)N

[y02

y02

u31 y00

(u31 y00[u30 y01)
y02

u32 y00

M y 00(1[u31)

]u 30( y 01] y03)N

[ y 03

y03

u31 y 00

(u31y 00[u30 y 01)
y 03

u32 y00

(u 32 y00[u30 y 02)

(1.3.7)

Hence, the choice of a suitable affine coordinate system in the model
space, the identification of its unit points as basic points in the image and
the knowledge of the coordinates of the center of projection determine
completely the projective matrix P* and, with exception of a common
scale factor, because of B\(UP*)~1 from (1.1.5) also the base

B\(B*)~1\(UP*)~1\PU*

All these relations depend on the regularity of P*. Therefore the validity
of *D0 is to be proved. In order to clearly understand the geometry, the
k j in (1.3.3) are substituted by the components of y0 as given by the
relations (1.3.5). This yields the expression

*\
[u 31u 32 y

2
00

u
2
30 y 01 y 02 y03

(1.3.8)

which shows two restrictions:

a) e@3 is not allowed to be collinear with e@1 and e@2, respectively, e3 is not
allowed to be coplanar with the planes G0–O[G1 and G0[O[G2 in
V3 because of the simultaneous conditions u31D0 and u32D0.
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b) In order to ensure y 00D0, the center of projection is not allowed to be
situated on the plane EFy1]y2]y3\1 passing through the basic
points G1, G2, G3.

(1.3.2) only represents the structure of P*, whereas the parameters k j

are still unknown. The determination of their numerical values from
additional informations will be the subject of the subsequent conside-
rations.

1.4. Connection with Orthonormalized Systems

Fig. 1.1/1b shows that in orthonormalized systems the base vectors take
the internal form b@Tj \(1, xj[xC , yj[yC), containing the unknown
coordinates xC, yC of the principal point, and the orthogonal matrix of
orientation of the image reads R\[k, i, j]. In order to get a simple
connexion to the affine systems used here, the symbols and the arrange-
ments do not fully agree with the known standards of notation of
analytical photogrammetry, but the dissimilarities are modest and easy to
understand. The base vectors related to the external (orthogonal) co-
ordinate system X1, X2, X3 result by these two elements from bj\Rb@

j .
Insertion of this expression into equation (1.1.3) yields

p\R M(1[u1[u2)b@
0]u1b@1]u2b@2N\R [b@0b@1 b@2 ] C

1[u1[u2

u 1

u 2 D
\R C

1 1 1
x0[xC x1[xC x2[xC

y0[yC y1[yC y2[yC D C
1 [1 [1
0 1 0
0 0 1 D C

1
u 1

u 2 D
\R C

1 0 0
x0[xC x1[xC x2[xC

y 0[yC y 1[yC y 2[yC D C
1
u 1

u 2 D\RAvu. (1.4.1)

Av is the matrix of the bidimensional homogeneous transformation v\
Avu from affine to rectangular coordinates vT\(1, x, y) in the plane P2.
p on the left side depends on the inhomogeneous model coordinates by

jp\(X[X0)

as known from analytic photogrammetry. Thus we obtain

j2\
(X[X0)

T(X[X0)
pTp

\
(X[X0)

T(X[X0 )
uTA

T
VAVu

, (1.4.2)
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which is the ratio of the distances from the center of projection to a point
of the model and its image point.

Quasihomogeneous affine coordinates y related to the spatial basic
points will be obtained from given quasihomogeneous coordinates
XT\(1, X1, X2, X3 ) of a cartesian object space V3 by the affine transfor-
mation

y\A
[1

X X. (1.4.3)

Its inverse matrix AX reads, similarily to Av ,

AX\

1 0 0 0
X0 X1[X0 X2[X0 X3[X0

Y0 Y1[Y0 Y2[Y0 Y 3[Y0

Z0 Z 1[Z 0 Z2[Z 0 Z 3[Z0

and the components result from the transformations

XGi\AXei (1.4.4)

of the homogeneous affine unit vectors ei of V3 into the system of
cartesian coordinates XGi of the basic points. Therefore, the projective
relation between the orthonormalized coordinate systems is given by

kv\AvM A
[1

X X, (1.4.5)

wherein M is the singular projective matrix (1.2.3) which refers to the
basic points. Thus, if the coordinates of V3 or of P2 do not refer to this
system, affine transformations must be applied, so that projective rela-
tions between general coordinates consist of a projective transformation
of type (1.2.3) and affine transformations in V3 and P2. Moreover, the
image coordinates do not have to be orthonormalized and centered but
can also have affine values vT\(1, v1, v2) from any measuring device, e.g.
comparator, digitizer, electronic transmitter system (analytical plotter) or
display cursor. Nevertheless, equation (1.4.5) will be satisfied without
calibration of rectangularity and scales.

From (1.4.3) it follows that

X[X0\AX(y[y0)\AXz

and by means of this relation we obtain the final expression for j with

j2\
zTA

T

XAXz

uTA
T
v A vu

.
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Fig. 1.5. Regular projective transformation V 3MP 3

By means of (1.4.1) the matrix of projection in equation (1.1.5) turns to

P*\A~1

v RT (1.4.6)

showing its composition of an inhomogeneous orthogonal spatial
rotation and a homogeneous plane affine transformation. This equation
makes it possible to formulate the normal case of projective images
(R\E) as a pure affine transformation in analogy to the similarity
transformation of the normal case of analytical photogrammetry.

1.5. Projection from Space to Space (Regular Projective Transformation)

If M* in (1.1.6) is regular, which means that at least one component of the
last row must be D0, it defines the projective transformation between
two tridimensional spaces V3]P3 (Fig. 1.5) and reads generally

ku\M*y\

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

1
y1

y2

y3

\

m
T
0 y

m
T
1 y

m
T
2 y

m
T
3 y

(1.5.1)

[9]. The basic points of the two systems have corresponding quasihomo-
geneous coordinates, that is

e
T
0 \(1, 0, 0, 0), e

T
1 \(1, 1, 0, 0), e

T
2 \(1, 0, 1, 0), e

T
3 \(1, 0, 0, 1),

Applying the same method as in subsection 1.2 by means of the vector
equations

kj e@j \M*ej , j\0, 1, 2, 3
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the structure of M* results in

M*\

k0 k1[k0 k2[k0 k3[k0

0 k1 0 0
0 0 k 2 0
0 0 0 k3

. (1.5.2)

representing the core of a regular projective transformation (cf. p. 6). A fifth
control point enables the calculation of the parameters ki from

k4u4\M*y4 (1.5.3)

or in scalar expressions

k0\k4

1[u1[u2[u3

1[y1[y2[y 3

\k4

u0

y0

k1\k4

u1

y1

; k2\k4

u2

y2

, k3\k4

u 3

y 3 H (1.5.4)

wherein k4 may have any value, because the inhomogeneous components
of u in equation (1.5.1) follow from

ui\
m

T
i y

m
T
0 y

\
k i y i

k0](k1[k0) y 1](k2[k0) y 2](k3[k0) y3

, i\1, 2, 3,

(1.5.5)

and k4 cancels out. As a general fact it is seen that the determination of the
parameters of regular projective transformations related to a vector space
Vn needs n]2 control points.

There will be two important applications of these tridimensional
projective transformations:

a) Reconstruction of a spatial model in affine or cartesian coordinates
from a projectively distorted model after relative orientation of
projective bundles,

b) Spatial optical projection of digital stereo pairs by means of an
optical projector, similar to the rectification of photograms of plane
objects [4]

The first application is directly based on the use of Eq. (1.5.2), the
second one results from the fact that ideal optical projection can be
represented by projective matrices. (1.5.1) defines the projective transfor-
mation of points. But also linear entities (in V3 planes in V2 lines) will be
transformed projectively. Generally, their homogeneous equation may be
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written in Vn as aTy\0, which is to be transformed to a linear entity

a@T u\a@TM*y\0

(1/k cancels out) in Pn. Thus we obtain the relations

aT\a@TM* or a\M*Ta@ (1.5.6)

and, if M represents the inverse of M*,

a@\MTa (1.5.7)

for the transformation of the coefficients a of Vn to coefficients a@ of Pn.
An identic procedure transforms the coefficients A of conics yTAy\0
from Vn to A@\MTAM in Pn, but entities of second degree will not be
used here.

1.6. Optical Projection

The optical projection from an object space V3 to an image space P3 or
vice versa may be defined by means of the projective matrices

Mf \ f

1 0 0 1/f

0 1 0 0
0 0 1 0
0 0 0 1

, M ~1
f \

1
f

1 0 0 [1/f

0 1 0 0
0 0 1 0
0 0 0 1

.

They refer to the orthogonal coordinate system of the optical axis of the
projecting device and yield the transformations (i\1, 2, 3)

V 3FP 3 qz@\Mfz (1.6.1)

z @
i \

f z i

f ]z 3

F i\3:
1
z @3

[
1
z 3

\
1
f

P3 FV3 z \q M~1

f z@ (1.6.2)

z i\
f z @

i

f [z @3
F i\3:

1
z 3

[
1

z 3@
\[

1
f

which, by the way, in scalar notation agree with the well-known classical
equation of geometric optics created by C. F. Gauss. The image scale of
the projection results from

m @\
z @

i

z i

\
f

f ]z 3

\
f [z @3

f
F

1
z @3

[
1
z 3

\
1
f
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Fig. 1.6/1. Optical projection and Scheimpflug condition

and again yields the Gauss equation. Elements in the infinity of
V3(z i\O or f [z @3\0) produce finite images in the plane
z @\ f (\focal plane of P3) and all linear entities which project to the
infinity of P3(z @

i \0 or f ]z 3\0) must be elements of the plane
z3\[ f (\focal plane of V3). In general, optical systems are composed
of several lenses and are hence represented by two principal planes H and
H@. But as the distance between them does not appear in the projective
equations, it may be neglected and the optical system may be represented
by one principal plane H only. With respect to the following considera-
tions, this plane is the [z1, z2]-plane, and the optical axis orthogonal to it
contains the z3-direction of the (cartesian) coordinate system in use
(Fig. 1.6/1).

The projection of an image plane

EFaTz\a0]a1z 1]a2z2]a3z3\0

in V3 by means of (1.6.1) will again produce a plane E @ in P3 represented
by the relation

E@Fa@Tz@\0
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where the coefficients a@ of E @ read because of (1.5.7),

a@T\aTM~1
f \[a0/f a1/f a2/ f ([a0/f ]a3)/f ].

By means of these coefficients the scalar equation of the plane E @ reads

E@F f a0] f a1z @1] f a2z @2]( f a3[a0)z @3\0.

It is easily seen that at the positions z 3\z @3\0 E and E@ convert to the
identic line equations

S Fa0]a1z1]a 2z2\0

S @F f a0] f a 1z @1] f a2z @2\0

of intersection with the principal plane H of the optical system (Fig. 1.6/
1). This line S{S @ is the geometric representation of the Scheimpflug
condition concerning the optical projection of planes: E and E @ must
intersect simultaneously with H in S. This condition was introduced to
optical rectification by Th. Scheimpflug but was generally formulated
much earlier by E. Abbe. Every optical projection of images should satisfy
this condition in order to achieve sharp focus over the whole screen area.

The intersection of E with the focal plane z3\[ f yields a line

V F(a0[ f a3)]a1z1]a2z2\0 . . . . . . . vanishing line in E (1.6.3)

and the intersection of E @ with the focal plane z @3\ f a line

V @F f a 3]a1z @1]a2z @2\0 . . . . . . . vanishing line in E @ or ‘‘horizon’’.
(1.6.4)

These two straight lines represent the images of the remote linear entities
in E and E@, they are parallel to S and S @ (Fig. 1.6/2), respectively, and are
important elements with respect to the orientation of the images to be
projected to a screen.

If the affine coordinate systems in E and E @ are defined by means of
the non-collinear basic points Gi and G @

i , the relation between the
contents of these planes is given by the regular projective matrices

M*\C
k0 k1[k0 k2[k0

0 k1 0
0 0 k2 D and M\C

1/k0 1/k1[1/k0 1/k2[1/k0

0 1/k1 0
0 0 1/k2 D

and the transformations are

ku@\M*u or u\kM u@. (1.6.5)
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Fig. 1.6/2. Optical projection V 3]P3 (rectification)

By equating to zero the first components of these two transformations we
obtain the images of linear entities at infinity. They read

in E : k0](k1[k0)u1](k2[k0)u2\gTu\0,

in E @: 1/k0](1/k1[1/k0)u@1](1/k2[1/k0)u@2\g@Tu@\0.

and must coincide with V of (1.6.3) and V@ of (1.6.4), respectively. Thus, if
the Scheimpflug condition is satisfied and this coincidence is achieved,
the projection of only one additional control point ensures the correct-
ness of the rectifying procedure. The lines S, S@ and V, V@ in screen
projections should be horizontal for an optimum stereo representation.

Very often the vanishing lines V of the images do not lie inside the
image fields. In such cases parallel lines to V may be used. The most
practicable parallels are those passing the origins G0 of the affine
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coordinate systems (Fig. 1.6/2). They read simply

in E : (k1[k0)u1](k2[k0)u2\g
T

0 u\0,
(1.6.6)

in E @: (1/k1[1/k0 ) u@1](1/k2[1/k0)u@2\g@T0 u@\0.

and correspond projectively because of

g@0\MT g0.

In E and E @ there also exist the so-called ‘‘principal normals’’ hp and
h@

p (Fig. 1.6/2) which include right angles with the vanishing lines and the
Scheimpflug line. Because of

h@
p\MT hp ,

they are also corresponding projective entities and, together with g0 and
g@

0, establish a kind of natural rectangular system of axes. If necessary, this
system may be used for rectangular representation of image contents after
projection. Moreover, in analogous projecting systems, such as rectifiers
or screen projectors, hp and h@

p must coincide with the lines of maximum
inclination of E and E @ passing through the optical axis. The ‘‘image
displacement’’ in traditional rectifiers must occur along these lines until
the vanishing lines coincide.

2. Image Correlation and Relative Orientation

2.1. Spatial Intersection and the Matrix of Correlation

The reconstruction of a spatial object from relatively oriented images P @
and P A is based on the spatial intersection

k@p@\d]kApA (2.1.1)

of the inhomogeneous vectors p@, pA from the two ends of a base
d\y @0[y @0 (Fig. 2.1). Knowing that in affine systems scalar and cross
products of vectors can also be applied, (2.1.1) yields, after vector
multiplication by d and scalar multiplication by pA, because of

(pA]d) · pA\0

the well-known condition of coplanarity

(p@]d) ·pA\0 (2.1.2)

The left part of this relation can also be written as

p@]d\p@T D\[ p @1 p @2 p @3 ] C
0 [d 3 d 2

d3 0 [d 1

[d2 d 1 0 D
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Fig. 2.1. Spatial intersection and epipolar entities

and according to (1.1.4) p\P u holds, so that (2.1.2) converts to

p@T D pA\u@T P @T D PAuA\u@T C uA\0. (2.1.3)

C is the matrix of image correlation [16], which contains the elements of
relative orientation [15]. By means of the column vectors pj ( j\0, 1, 2) of
P the more detailed structure

C\C
p@0
p@T1

p@T2
D C

0 [d3 d 2

d 3 0 [d 1

[d2 d1 0 D [pA0 pA1 pA2 ]

\C
(p@0]d)·pA0 (p@0]d) ·pA1 (p@0]d)·pA2
(p@1]d)·pA0 (p@1]d) ·pA1 (p@1]d)·pA2
(p@2]d)·pA0 (p@2]d) ·pA1 (p@2]d)·pA2 D (2.1.4)

results. The special qualities of C are:

1. det (C)\0 because of det (D)\0.
2. If

u@TC\hAT and C uA\h@, (2.1.5)
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the correlation matrix establishes the dual transformations [10]
u@]hA and uA]h@ yielding lines

h@Tu@\0 or hATuA\0

in the corresponding image.
3. The epipoles u0 arise from the projection k0u0\P*d and the

dual transformations of the u0 read because of P*P\E and
Dd\0

CuA0 \P @T D PAPA*d\0,

u@T0 C\dP @* P @T D PA\0.

Hence the coordinates of the epipoles can be calculated by means of
the known matrix C anlogously to (1.1.7) from

CTu@0\0 and C uA0 \0. (2.1.6)

[16]. The solutions are consistent because of rank (C)\2.
4. The dualistic transformation P @]PA produces the line hATuA\0.

The substitution of uA by uA0 yields

hAT uA0 \u@ T C uA0 \u@T 0{0

and shows the important fact, that the coordinates of the epipole
satisfy identically every straight line hA or, in other words, every
linear entity hATuA\0 contains the epipole uA0 and represents an
epipolar line. Thus, the known correlation matrix enables the direct
determination of the geometric loci of homologous points.

5. By means of (1.1.4) equation (2.1.1) turns to

k@ P@ u@\d]kAPAuA

and after multiplication from the left by D to

k@DP@u@\kADPAuA. (2.1.7)

This symmetric relation between the image coordinates may be
multiplied from the left successively by P@T and PAT. The resulting
equations

k@P @T DP @u@\kAPAT DPAuA\kAC uA\kAh@,

kAPAT DPAuA\k@PAT DP @u@\[k@CT u@\[k@h
(2.1.8)

(‘‘–’’ because of DT\[D) contain all elements of the projective
transformations V3]P@ and V3]PA but are unfortunately very
nonlinear. It will be a task of the following considerations to
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develop less complicated relations between the elements of orienta-
tion and the matrix of correlation.

The matrix products on the left of (2.1.8) as well as C must be singular of
rank two. In the following they will be called PTDP\K. Again introdu-
cing, analogously to (2.1.4), the column vectors pj of P, furthermore
D\det (P) and the row vectors pj of P*, the detailed structure

K\C
p

T

0

p
T

1

p
T

2
D C

0 [d3 d 2

d3 0 [d1

[d2 d1 0 D [p0 p1 p2 ]

\C
0 (p0]d)·p1 (p0]d)·p2

(p1]d)·p0 0 (p1]d) · p2

(p2]d)·p0 (p2]d) · p1 0 D
\C

0 [(p0]p1) ·d (p2]p0) ·d

(p0]p1) ·d 0 [(p1]p2) · d

[(p2]p0) ·d (p1]p2) · d 0 D
\

1
D C

0 [p2 ·d p1 ·d

p2 ·d 0 [p0 ·d

[p1 ·d p0 ·d 0 D\C
0 [k2 k1

k2 0 [k0

[k1 k0 0 D
(2.1.9)

is obtained in skewsymmetric form. It enables the introduction of the
dual relations

K@u@\(kA/k@)h@ or KAuA\[(k@/kA)hA (2.1.10)

between point u (i) and its epipolar line h(i) and additionally, because of

K(i) u
(i)
0 \0 (2.1.11)

the computation of the coordinates of the epipole in P(i) itself from

u
(i)
0 \

1
k

(i)
0 C

k
(i)
0

k
(i)
1

k
(i)
2
D . (2.1.12)
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Moreover there exist, referring to the basic points G
(i)
j (section 1.2),

because of (2.1.8) the simple relations

k@
j K @e@j \kA

j C eA
j

kA
j KAeA

j \[k@
j CT e @

j ,
(2.1.13)

between the components of K(i) and C, if the parameters k (i)
j of orientation

are known.

2.2. Determination and Utilization of the Correlation Matrix

CMcjkN ( j/k\0, 1, 2) consists of nine unknown components. With
regard to its homogeneity, C can be divided by one component, that is
z jk\cjk/c10, or more in detail

1
c10 C

c 00 c01 c02

c 10 c11 c12

c 20 c21 c22
D\C

z 00 z01 z02

1 z11 z12

z 20 z21 z22
DF C\ c10Z, (2.2.1)

so that eight unknowns are left to be determined. The dividing compo-
nent is not allowed to vanish and, for practical computations, it should be
the numerically largest one. Supposing quasi-homogeneous affine coordi-
nates u and the approximate normal case, c01 or c10 satisfy this requirement
[2], but in general it is not possible to predict definitely the most stable
component; thus it must be chosen by trial [8].

The procedure based on (2.1.3) using (2.2.1) requires measured coordi-
nates of eight homologous points of P @ and PA in opposition to relative
orientation of conventional photogrammetry, where only five homolo-
gous points are needed. The coordinates of every pair of such points must
satisfy the equation

[1 u @1 u @2 ]i C
z00 z01 z02

1 z11 z12

z20 z21 z22
D C

1
uA1
uA2 D\0 i\0. . . . . 7

and thus one row of the resulting 8]8-system A8z\a reads (without
index i )

z00]uA1 z01]uA2 z02]u@1uA1 z 11]u@1uA2 z 12]u@2z 20]u@2uA1 z 21

]u@2uA2 z 22\[u@1
with the solution z\A~1

8 a. Consequently, Z consists of the calculated
z jk and z10\1, but due to its homogeneity it can be used directly instead
of C in the calculation of the epipoles u0 according to (2.1.6) and of the
epipolar lines h according to (2.1.5). Considering three of the homolo-
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Table 2.2. Coefficients of the 8]8-system A8 in affine coordinates referred to the system
of the basic points

Row z00 z01 z02 z11 z12 z20 z21 z22 a

0 1 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 [1
2 1 0 1 0 0 1 0 1 0
3

1 uA1 uA2 u @1 uA1 u @1 uA2 u @2 u @2 uA1 u @2 uA2 [u @1
7

gous points as basic points Gj, the affine coordinates may be referred
again to the axes across them. In this way the first three rows of A8 contain
very simple coefficients (Table 2.2) and yield the relations

z00\0, z01\[1[z11, z02\[z20[z22, (2.2.2)

whereby three unknowns may be eliminated which indicate only relations
between the affine systems. The remaining five equations prove the
wellknown fact, that the intersection of five corresponding rays of the
two bundles of projection satisfies the relative orientation of the images
P @ and PA.

Again, if image coordinates vi are measured in a more general
affine system, the special coordinates ui arise according to (1.3.5)
from ui\Avi and the correlation related to the vi reads, analogously
to (1.3.6)

v@T A@TCAAvA\v@TC1 vA\0.

If the vi are centered cartesian image coordinates, C1 will agree with the
projective correlation matrix [14] or [16].

The use of affine coordinates referred to the basic points reduces the
number of components of Z because of (2.2.2) to five significant
parameters. Therefore the matrix now reads

Z\C
0 [1[z11 [z20[z 22

1 z11 z12

z20 z21 z22 D (2.2.3)
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and instead of an 8]8-system only a 5]5-system consisting of the
equations

uA1 (u @1[1)z11]u @1uA2 z12](u @2[uA2 )z20]u @2uA1 z 21

]uA2 (u @2[1)z22\uA1 [u @1 (2.2.4)

must be solved. By means of its solutions the coefficients h of the epipolar
lines result in

h@\C
0 [1[z11 [z 20[z22

1 z11 z12

z20 z21 z22 D C
1
uA1
uA2 D

\C
[(1]z11)uA1 [(z20]z22)uA2

1]z11uA1 ]z12uA2
z20]z21uA1 ]z22uA2 D

(2.2.5)

hA\C
0 1 z20

[1[z11 z11 z21

[z20[z22 z12 z22D C
1
u@1
u @2D

\C
u @1]z20u @2

[1[z11]z11u @1]z21u @2
[z20[z22]z12u @1]z22u @2D

and the coordinates of the epipoles result from linear equations, which
correspond with the components of hA (for u@0) and h@ (for uA0 ). Selecting
the equations of identic determinants

D\z11z22[z12z21

(second and third component of h(i) ), the coordinates are in P@

u @01\M[z22(1]z11)]z21(z20]z22)N/D

u @02\M[z11(z20]z22)]z12(1]z11)N/D
(2.2.6)

and in PA

uA01\(z22[z12z20)/D

uA02\(z11z20[z21)/D
(2.2.7)

Another possibility for the determination of the epipolar lines may be
derived from (2.1.10), that is in the image P(i) itself. Since their coefficients
h cannot be influenced by any common constant, the quotients of the k(i)
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may be omitted and the scalar notation becomes

C
0 [k2 k1

k2 0 [k0

[k1 k0 0 D C
1
u 1

u 2
D\C

0 u2 [u1

[u2 0 1
u 1 [1 0 D C

k0

k1

k2
D\C

h0

h1

h2
D (2.2.8)

yielding h if kT\(k0, k1, k2) is known. From (2.1.11) it is seen, that
k depends on the epipole u0 by the relation

C
0 u02 [u01

[u 02 0 1
u 01 [1 0 D C

k0

k1

k2
D\0.

This again results in (2.1.12), but in the sense of determining the kj from
the coordinates of the epipole with the exception of a common constant.
As the u0 result from CT or C, respectively, (2.2.8) converts to the
equation

C
h0

h1

h2
D\C

0 u 2 [u 1

[u 2 0 1
u 1 1 0 D C

1
u01

u02
D\C

0 [u 02 [u01

u 02 0 [1
[u 01 1 0 D C

1
u1

u2
D

\C
u2u 01[u1u 02

[u 2]u 02

u 1[u01
D (2.2.9)

which corresponds with the determination of the components of h from
the two given points u0 (epipole) and u (any other point in the image). The
epipolar entities and their relations to the components of the correlation
matrix will be significant elements of all subsequent considerations on
algebro-projective photogrammetric problems.

2.3. Critical Situations of Projective Image Correlation

The solution of the system a\A8z depends on the regularity of A8, that is
det (A8)D0. The components of this matrix are composed of image
coordinates which are connected with the object space V (y) by

ui\
yiki]y3u 3i k3

1]& (kj[1) y ji

\
m

T

i y

m
T

0 y
\

ni

d
, (i\1, 2, j\1, 2, 3) (2.3.1)
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corresponding to (1.3.1). Expressing them by these relations the determi-
nant of A8 reads

det (A8)\ K
1 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 0 0 1 0 1

F F F F F F F F

1
nA1k

d A
k

nA2k

d A
k

n @1k

d @
k

nA1k

d A
k

n @1k

d @
k

nA2k

d A
k

n @2k

d @
k

n @2k

d @
k

nA1k

d A
k

n @2k

d @
k

nA2k

d A
k

F F F F F F F F
K (2.3.2)

with k\3 . . . . . . 7 (index of spatial correlation points). The indices
k\0, 1, 2 belong to the basic points Gk (Fig. 1.2/1).

From (2.3.2) can be recognized that det (A8) corresponds with the
determinant of a matrix A7 where the first row and the first column of A8

are bordered. Thus the equivalence det (A8)\det (A7)\0 indicates
critical distributions of the points of correlation in the object space.
det (A7) can be expanded into two subdeterminants with respect to the two
components\1 of the second row. The resulting determinants still
contain the components of the third row of A8 with respect to which
a second expansion can be performed yielding six subdeterminants, now
exclusively composed by the coordinates of five general object points.
Symbolizing each partial determinant by only one row k, the complete
expansion of A8 to a 5]5[determinant reads

det (A7)\

K
n @1k nA1k

d @
kd A

k

n @1k nA2k

d @
kd A

k

n @2k

d @
k

n @2k nA1k

d @
kd A

k

n @2k nA2k

d @
kd A

k K[ K
nA2k

d A
k

n @1k nA1k

d @
kd A

k

n @1k nA2k

d @
k dAk

n @2knA1k

d @
kd A

k

n @2k nA2k

d @
kd A

k K
[ K

nA2k

d A
k

n @1k nA1k

d @
kd A

k

n @1k nA2k

d @
kd A

k

n @2k

d @
k

n @2k nA2k

d @
kd A

k K[ K
nA1k

d A
k

n @1k nA2k

d @
kd A

k

n @2k

d @
k

n @2knA1k

d @
kd A

k

n @2k nA2k

d @
kd A

k K
[ K

nA1k

d A
k

nA2k

d A
k

n @1k nA2k

d @
kd A

k

n @2k nA1k

d @
kd A

k

n @2k nA2k

d @
kd A

k K[ K
nA1k

d A
k

nA2k

d A
k

n @1knA2k

d @
kd A

k

n @2k

d @
k

n @2k nA1k

d @
kd A

k K
Regarding the detailed relations dk\1](k1[1) y 1k](k2[1) y2k]
(k3[1) y3k and nik\ yikki] y3ku3ik3 from (2.3.1), it is obvious that in the
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case of complete coplanarity ( y3k\0) all determinants will vanish simul-
taneously because of containing proportional columns of the kind
k@1kA2 y1k y2k/d @

kd A
k . Therefrom results that at least two of the correlation

points have to be situated outside the plane G0[G1[G2 representing
the basic point G3 in correspondence to the initial definition of the
coordinate system in the object space (subsection 1.2, Fig. 1.2/1) and an
additional point Px. Otherwise the projective relations refer to regular
projectivities between two- dimensional spaces according to rectification
(subsection 1.6).

Another possibility of reducing det (A7) to a 5]5-determinant det (A5)
is to subtract its first column from the third and its second column from
the fifth and seventh and expanding two times with respect to the first
columns. The result will be

det (A5)\ K
y

T

k mA1 (m@1[m@
0)T yk

y
T

k m@0mAT

0 yk

y
T

k m@1mA2 yk

y
T

k m@0mAT

0 yk

y
T

k (m@2mAT

0 [mA
2 m@T0 )yk

y
T

k m@0mAT

0 yk

y
T

k m@2mAT

1 yk

y
T

k m@0mAT

0 yk

y
T

k mA2 (m@2[m@
0)T yk

y
T

k m@0mAT

0 yk K
k\3

F
k\7

which corresponds with the determinant of a system composed by five
equations (2.2.4).

Equating det (A5)\0, the products y
T

k m@0mAT

0 yk in the denominators
cancel out and the remaining components represent quadratic functions
of the homogeneous coordinates yk. If one point, for example y7, is
considered to be a variable point and the determinant is expanded into
subdeterminants D1(1\1. . . . 5) with respect to this row k\7 ([15], pp.
422–427), that is

yTmA1 (m@1[m@
0 )T yD1[yTm@1mAT

2 yD2]yT (m@2mAT

0 [mA2 m@T0 )yD3

[yTm@2mAT

1 yD4]yTmA2 (m@2[m@0)
TyD5\0,

(2.3.3)

a quadratic function in the affine object space arises which may be
expressed by the usual short homogeneous matrix formula yTQy\0,
where Q contains the scalar results of the multiplications concerning mi

and Di1 in (2.3.3). The centers of projection, however, must be points of
this surface as well, because, according to (1.1.7), all products of the kind
mTy0 equal zero and therefore formula (2.3.3) is satisfied identically with
respect to y@0 or yA0 . Hence it follows that A5 becomes singular if the points
k\3. . . . 7 and the centers of projection belong simultaneously to
a (singly or doubly) rule quadric surface [11, 18], the well-known critical
surfaces of relative orientation (cylinder, cone, hyperbolic paraboloid).

Besides of this general critical surface, projective image correlation
becomes also singular if one of the columns of det (A5) vanishes. As each
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nominator of it represents a quadratic form y
T

k Qyk, it will be identically
zero by passing all five points and it is obvious that for every column an
individual critical surface exists. Because of mTy0\0, all of them must
contain also the centers of projection. It will be necessary to discuss
separately this manifold of critical situations in a special investigation on
singularities of projective image correlation.

Till now, from computational experience it is known in accordance to
det(A7 )\0 that six points may be coplanar and hence at least two points
must be situated outside the plane G0-G1-G2. The distribution in the
ground-plan must be largely irregular because a regular raster correspon-
ding to the well-known Gruber distribution causes singularities too.
Nevertheless, with regard to practical computer algorithms it is necessary
to discover critical configurations automatically and to provide strategies
to improve the location of correlation points in order to avoid singular
situations of image correlation and relative stereo orientation.

2.4. Relative Orientation

Relative orientation is determined, if five homologous rays of the bundles
intersect in space. As in equation (1.2.1) four of them are already fixed by
definition of the basic points (Fig. 2.3), a fifth ray and a point of
intersection connected to it must be preassigned. This fifth ray is
represented by the epipolar axis and a spatial point can be assumed
everywhere on this entity, because all points of it project into the same
image points, the epipoles. Hence relative orientation will be derived here
from the results of correlation, especially from the coordinates of the
epipoles given by CTu@0\0 and CuA0 \0.

The projection of a point yA (Fig. 2.3) of the epipolar axis into the
images may be obtained by means of the scalar version of equation (1.1.6)
using M* corresponding to (1.2.3) and equating k0\1

yA0] yA1k1 ] yA2k2] yA3k3\kA

yA1k1 ] u31 yA3k3\kAu01

yA2k2] u32 yA3 k3\kAu02. H (2.3.0)

After elimination of kA by dividing the second and the third equation by
the first one, the following two equations

yA1(u01[1)k1] yA2u 01] yA3(u01[u31)k3\[u01 yA0

yA1u02k1] yA2(u02[1)k2] yA3(u02[u32)k3\[u02 yA0

(2.3.1)
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Fig. 2.3. Relative orientation of the two projective bundles P@ and PA

are obtained. They contain the three unknowns k1, k2, k3 and the
procedure to treat this underdefiniteness will depend on the position of
the bundle.

a) Left bundle P@
As five parameters are necessary for relative orientation, the left bundle
may be fixed by two parameters. Hence one k@ can be assumed, but in
order to get reasonable magnitudes the condition k@1\k@2 is introduced.
Thus, the two remaining parameters follow from symmetric equations

M yA1(u @01[1)] yA2u @01Nk@2] yA3(u @01[u @31)k@3\[u @01 yA0

M yA1u @02] yA2(u @02[1)Nk@2] yA3(u @02[u @32)k@3\[u @02 yA0

with the solutions

k@1\k@2\ yA0 yA3 (u @01u @32[u @02u @31)/D@

k@3\ yA0 ( yA1 u @02[ yA2u @01)/D @ (2.3.2)

D@\ yA1 yA3Mu @32(1[u @01)[u @02 (1[u @31)N

] yA2 yA3 M[u @31(1[u @02)]u @01 (1[u @32)N
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The procedure becomes singular if D@\0 or, in other words, if:

yA3\0, hence yA is not allowed to be situated in the plane [e1, e2 ] ;
yA1\yA2\0 simultaneously, therefore yA must be assumed outside
the e3-axis;
u0\u3, therefore G3 is not allowed to be a point of the epipolar axis.

The first restriction is trivial, the second one excludes y
T

A\(0, 0, yA3), the
third one does not concern the selection of yA but the choice of the fourth
basic point from the contents of the images, and in general it will not
bring about any difficulty. Thus the assumption of yA is not very critical
and an approximate knowledge about the relative position of the epipolar
axis against the object will ensure a suitable choice.

b) Right bundle PA
The coordinates y@0 of the left center of projection are functions of the
k@

j (subsection 1.3) and, in connexion with yA, define the direction of the
base (collinearity of y@0, yA, yA0 ). Thus the epipole in PA is the projection of
two known points, from which two pairs of equations (2.3.1) follow. The
second pair contains the coordinates y @0i, i\0, 1, 2, 3, instead of the
coordinates yAi. By means of their rearranged form they yield

yA1(uA01[1)k@1] yA2uA01kA2 \[uA01 yA0[ yA3(uA01[ukA
31)kA3

(2.3.3)
yA1uA02kA1 ] yA2(uA02[1)kA2 \[uA02 yA0[ yA3(uA02[ukA

32)kA3
and with DA\ yA1 yA2u00(u00\1[u01[u02) the interdependenes

kA1 (yA)\
1

yA1uA00

M yA3 [uA01(1[uA32)[uA31(1[uA02)]kA3 ] yA0uA01N,

kA2 (yA)\
1

yA2uA00

M yA3 [uA02(1[uA31)[uA32(1[uA01)]kA3 ] yA0uA02N,

kA1 (y0)\
1

y01uA00

M y03[uA01(1[uA32)[uA31(1[uA02)]kA3 ] y00 uA01N,

kA2 (y0)\
1

y02uA00

M y03[uA02(1[uA31)[uA32 (1[uA01)]kA3 ] y 00uA02N,

of kA1 and kA2 with kA3 . Again it is seen that yA and y@0 must be situated
outside the e3-axis, but moreover, the expression uA00\1[uA01[uA02 is not
allowed to vanish. In consequence of and in analogy to the restrictions
concerning (1.3.6), uA0 must avoid the line [uA1 [uA2 \[10 in the image,
and yA and y@0 are not allowed to coincide with the plane G1[OA[G2 in
space.
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By equating the expressions for kA1 and kA2 , uA00 cancels out and the two
equations

( y01 yA3[ y03 yA1) MuA01(1[uA32)[uA31(1[uA02)NkA3 \( y 00 yA1[ y01 yA0)uA01

( y02 yA3[ y03 yA2) MuA02(1[uA31)[uA32(1[uA01)NkA3 \( y 00 yA2[ y02 yA0)uA02

containing kA3 arise. The solutions are equivalent because of the equality

( y01 yA3[ y03 yA1)( y00 yA2[ y02 yA0) MuA01(1[uA32)[uA31(1[uA02)NuA02

\( y02 yA3[ y03 yA2) ( y 00 yA1[ y01 yA0)MkA02(1[uA31)[uA32(1[uA01)NuA01

and yield, by insertion into the explicit solutions of (2.2.3), the compo-
nents of PA or of yA0 (\second center of projection) corresponding to the
solutions of subsection 1.3.

c) Determination of the ‘‘relative’’ spatial model
By means of the five parameters k@2, k@3, kA1 , kA2 , kA2 , kA3 , of the relative
orientation a ‘‘relative’’ spatial model M (y6 ) may be reconstructed in the
system of the basic points. In comparison with the original object, this
reconstruction must be projectively distorted, because in general the
parameters k (i)

j will not agree with the parameters of the original projec-
tions to P@ and PA. The linear equations to be used for this purpose result
from (1.5.5) with

(u @
i m@0[m@

i)
T y6 \0 and (uAi mA0 [mA

i )Ty6 \0, i\1, 2, (2.3.4)

using M* of (1.2.3). These are, in analogy to the spatial intersection of
analytical photogrammetry, four equations for the three unknown inho-
mogeneous components of y6 . The detailed form of the coefficients is
given in Table 2.3. The transition to a usual cartesian object space is to be
performed by means of a general projective transformation based on five
control points. If these control points agree with the basic points, the
projective matrix will correspond with (1.5.2). Otherwise the affine-
projective arrangement of subsection 1.4 obviously must be used.

3. Transformation to the Normal Case

3.1. Principles

The idea to transform a general stereo pair to the normal case seems to
have been created for the first time by W. Kreiling [12] in order to
reconstruct digital spatial models from digitized metric photographic
stereo pairs. His transformation indirectly results from conventional
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Table 2.3. Coefficients of relative reconstruction

row y6 1 y6 2 y6 3

1 u @1(k@1[1)[k@1 u @1(k@2[1) u @1(k@3[1)[k@31 k@3 [u @1
2 u @2(k@1[1) u @2(k@2[1)[k@2 u @2(k@3[1)[k@32 k@3 [u @2
3 uA1 (kA1 [1)[kA1 uA1 (k@2[1) uA1 (kA3 [1)[kA31 kA3 [u @1
4 uA2 (kA1 [1) uA2 (kA2 [1)[kA2 uA2 (kA3 [1)[kA32 kA3 [uA2

tridimensional relative orientation in the coordinate system of the base
line. For the same purpose Haggren and Niini [8] derived a direct
bidimensional transformation from the components of the matrix of
correlation, using the condition of equal vertical coordinates of homolo-
gous points after transformation. The parameters of this normal case
transformation correspond to the parameters of relative orientation,
which may be extracted from the components of the matrix of correlation
[3].

If only an undisturbed spatial impression of the projected object is
required, there is no need for an absolute orientation. Hence the
transformations will result from the projective matrices P@ and PA of the
relative orientation of the projective bundles and from the subsequent
projections of every bundle into the image plane of the relative normal
case by means of its individual P*N. The formulation of this procedure may
be obtained from equation (1.1.4) by applying it for both images,
regarding z\y[y0 and substituting it into equation (1.1.5), that is

y\y@0]k@P@u@\yA0 ]kAPAuA

For one image (without superscripts) thus results

kNuN\P*
N(y[y0)\P*

N(y0]kPu[y0)

quN\P*
NPu\Tu, q\kN/k. (3.1.1)

T is composed of the matrix of reconstruction (1.3.7) related to the
original projective bundle and of the matrix of projection to the normal
case in correspondence with (1.3.6), replacing there u3 by uN3. After
laborious but elementary calculations, the multiplication of those two
matrices results in the surprisingly uncomplicated structure

T\C
1 q1[1 q2[1
0 q1 0
0 0 q2 D , qi\

u 30

uN30

uN3i

u 3i

, i\0, 1, 2, (3.1.2)
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which represents a pure and regular projective 2D-transformation. uN3 is
a corresponding point of the normal case with respect to a known point
u3 of the original image. The desired transformation therefore depends
exclusively on the fourth points u3 and uN3. The inhomogeneous coordi-
nates of the transformed image PN result by means of (3.1.2) from the
simple projective transformation

uNi\
qiui

1](q1[1)u1](q2[1)u2

, i\1, 2 (3.1.3)

and correspond to the transformations defined by (1.6.5), regarding
k0\1, k1\q1, k2\q2. This result may be explained by the fact that the
normal case plane PN intersects the same bundle as the original image
plane P did with respect to the same center of projection, and the relation
between the contents of those two planes must therefore be a regular
bidimensional projectivity.

3.2. The Normal Case

In systems of cartesian coordinates, the definition of the normal case is
a rather elementary task by means of parallel directions of exposure
perpendicular to the base [3]. But using affine coordinates related to basic
points, the concept of rectangularity becomes meaningless and another
definition must be introduced. Thus, instead of rectangularity and equal
focal lengths, the more general notions of ‘‘coincidence of the image
planes’’ (P @

N{P A
N{PN) and ‘‘parallelism of the common plane to the

base’’ must be applied. They are equivalent to the postulation of parallel
and identic epipolar lines (epipoles in infinity) in the plane PN of the new
images (Fig. 3.2/1). Therefore the coefficients hN1 and hN2 of the equa-
tions

h
T

N uN\hN0]hN1uN1]hN2uN2\0

of the epipolar lines have to be constant and hence mutually independent
of the coordinates of the other image. This condition is satisfied because
of equation (2.2.5), if and only if the components z11, z12, z21 and
z22 become zero. Thus the matrix of correlation takes the simple
skewsymmetric form

ZN\C
0 [1 [zN

1 0 0
zN 0 0 D , (3.2.1)
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Fig. 3.2/1. Sketch of the projective normal case

indicating in this way the normal case of algebroprojective photogram-
metry and justifying the choice of c10 in (2.2.1) as the probably largest
component of C. The vectors hN must now read symmetrically

h@
N\C

[uA
N1[zNuA

N2

1
zN

D , hA
N\C

[u @
N1]zNu @

N2

[1
[zN

D (3.2.2)

and hence the equations of the epipolar lines

u@N1]zNu@N2\uAN1]zNuAN2 (3.2.3)

uniformly for both images. Thus the expression

zN\[
u@N1[uAN1

u@N2[uAN2

for the only factor D0 or D1 of image correlation is obtained, by which
it may be computed from one additional pair of homologous points. But
as, for the present problem, the fourth point is not yet available, another
way of determining zN must be found.
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The parallelism of the epipolar lines is defined by uN01\uN02\O or,
projecting any point yA of the epipolar axis by means of equation (1.3.1),
by the equations

uN0 j\
yAj kj] yA3uN3 jk3

yA0] yA1k1] yA2k2 ] yA3k3

\O. j\1, 2. (3.2.4)

Since all quantities of the numerators are finite, this conditions are
satisfied if the common denominator vanishes, that is

yA0] yA1k1] yA2k2] yA3k3\0, (3.2.5)

or in other words, one of the four parameters of the normal case must be
a linear combination of the other three (k0\1!). Moreover, since in both
images this fact exists with reference to the very same point yA, the
projective parameters of P@

N and PA
N have to satisfy the conditions

k@
Ni\kA

Ni , thus indicating the typical characteristic of the algebro-projec-
tive normal case. By means of the substitutions (1.3.5) the relations

u@N31 y@00

u@N30 y@01

\
uAN31 yA00

uAN30 yA01

,
u@N32 y @00

u @
N30 y @02

\
uAN32 yA00

uA
N30 yA02

,
y @00

u @
N30 y @03

\
y A00

uA
N30 yA03

, (3.2.6)

between the coordinates of the centers of projection, or, since those
coordinates are already known from relative orientation, between the
coordinates of G @3 and GA3 in PN, are obtained.

Obviously, the postulation of parallelity to d can only define one
direction of the image plane P @

N and hence only one coordinate of G @3.
Therefore a suitable assumption of the other coordinate will have to fix
the second direction of the image plane. From Fig. 3.2/1 it can be seen
that the coordinate u @

N31, more or less in transversal direction to d, will be
the appropriate quantity and its most convenient value will be that from
the original image P@. In consequence, there can be introduced

u @
N31\u @31.

Necessarily, there now exists relation to the second coordinate u @
N32. It

arises from (3.2.5) by eliminating the k j by means of the terms (1.3.5) and
takes the form

A
yA1

y @01

y @00[ yA0Bu @
N31]A

yA2

y @02

y @00[ yA0Bu @
N32\

yA3

y @03

y @00[ yA0 , (3.2.7)

representing a condition between the two inhomogeneous components
of u@

N3. In this way the plane PN is uniquely defined and the coordinates
u @

N3 of G@3 related to the normal case P @
N are known. Based on the
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Fig. 3.2/2. Localisation of the epipole in a normal case image PN

conditions (3.3.6), the affine coordinates of GA3 may be calculated from

uA
N31\

y A01 y @03

y @01 y A03

u @
N31, uA

N32\
y A02 y @03

y @02 y A03

u @
N32, (3.2.8)

thus yielding the fourth point for the computation of zN.
However, zN can also be obtained directly by means of the homoge-

neous coordinates w@0 of the epipole in infinity, which read because of
(3.2.4)

w@0\C
w @00\0
w @01\ yA1k@1] yA3u @

N31k@3
w @02\ yA2k@2] yA3u @

N32k@3D .

The components w @01 and w @02 indicate the direction of the straight line
h@

N0 from the origin of the coordinate system to the epipole u@
N0 (Fig. 3.2/2).
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Thus they must satisfy the relation

h@T
N0w@0\[0 1 zN ] C

w @00

w @01

w @02D\w @01]zNw @02\0

resulting in the expression

zN\[
w @01

w @02

\[
yA1k@1] yA3u @

N31k@3
yA2k@2] yA3u @

N32k@3
\[

u @
N31 y @02( yA1 y @03[ y @01 yA3)

u @
N32 y @01( yA2 y @03[ y @02 yA3)

(3.2.9)

for the determination of this important indicator of parallelism of base
and image plane. If it is known there exists a second way of computing
uA

N3 of P A
N using (3.2.3) and (3.2.7) by means of the two linear equations

uA
N31]zNuA

N32\u @
N31]zNu @

N32

(3.2.10)

A
yA1

y A01

y A00[ yA0BuA
N31]A

yA2

y A02

y A00[ yA0BuA
N32\

yA3

y A03

y A00[ yA0 ,

containing the components of uA
N3.

Since both centers of projection are already known from relative
orientation, the kA

j of P A
N may be computed by means of the relations

(1.3.5) and must be equivalent with the k@
j . As a proof, the resulting values

must also satisfy the condition (3.2.9) with respect to P A
N.

In this way the components needed in (3.1.1) are given and the
transformation to the normal case may be performed. But as the product
of P*

N and P must result in T, it is more advantageous to determine its
components t jk directly according to (3.1.2). The necessary fourth points
of this shortcut are the images u@

N3 and uA
N3 of G3 resulting from the two

possibilites mentioned above. Because of the initial assumption
u @

N31\u @31, the value of q@1 must result in u30/uN30. As a final check of the
whole procedure the projective correlation from eight homologous
points of the transformed images P @

N and P A
N must again yield the matrix

ZN of (3.2.1).
All this clearly shows that the coordinates of the basic point G3 of the

model space are the determining parameters of orientation:

if the centers of projection are known, these coordinates influence the
parameters k of the matrix of projection in accordance with (1.3.5);
the procedure of relative orientation of subsection 2.3 obviously
depends on their measured values;
finally, they dominate the description of the normal case, or else, the
establishing of parallelism to the base of the image plane.
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Hence they replace, to some extent, the parameters of tip and tilt of
traditional photogrammetry, whereas the parameter of swing is included
more or less in the directions of the epipolar lines defined by zN

(Fig. 3.2/2). The dependences of tip and tilt on G3 clearly show the
inherent restriction that algebroprojective photogrammetry is only practi-
cable in connexion with evidently tridimensional models. This fact is also
well-known from analytic photogrammetry, where the method of autoca-
libration, i.e. the simultaneous determination of interior (focal length and
coordinates of the principal point) and exterior orientation cannot be
performed by means of flat models; and since the use of quasihomoge-
neous vectors, containing the homogenizing constant component ‘‘l’’
instead of the focal length ‘‘c’’, tacitly implies interior orientation, the
limitations must be identic

3.3. A Less Complicated Normal Case Transformation

As already stated, the pure normal case transformation may be reduced to
two bidimensioal projective transformations P @]P @

n and
P A]P A

n (Pn{P @
n{P A

n ), because the relations of these two projectivities
read with respect to (3.1.1)

q@u@
N\T@u@ and qAuA

N\TAuA. (3.3.1)

As the coplanarity condition of two normal case images must read

u@T
N ZNuA

N\0,

insertion of (3.3.1) yields

u@T T@T ZNTAuA\0 (3.3.2)

and hence a condition corresponding to (2.1.3). Therefrom results the
relation

Z\T@T ZNTA (3.3.3)

between the correlation matrix Z and the unknown projective matrices
T(i) to the right. The detailed evaluation produces

C
0 z01 z02

1 z11 z12

z20 z21 z22 D\C
1 0 0

q@1[1 q@1 0
q@2[1 0 q@2 D C

0 [1 [zn

1 0 0
zn 0 0 DC

1 qA1 [1 qA2 [1
0 qA1 0
0 0 qA2 D

\C
0 qA1 [qA2 zN

q@1 q@1(qA1 [1)[qA1 (q@1[1) q@1 (qA2 [1)[qA2 (q@1[1)zN

q@2zN q@2zN (qA1 [1)[qA1 (q@2[1) q@2 zN(qA2 [1)[qA2 (qA1 [1)zN
D

(3.3.4)
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wherefrom, by comparison of components (first row and first column),
the surprisingly simple relations

q@1\1, q@2\
z20

zN

, qA1 \[z01, qA2 \[
z 02

zN

(3.3.5)

are obtained. Inserting these relations, the other components yield the
following expressions:

a) from the principal diagonal (positions (1, 1) and (2, 2)) arise

z01\[1[z11, z 02\[z20[z22

in correspondence with (2.2.2);

b) the positions (1, 2) and (2, 1) produce two relations

zN\[
z02

1]z12

\
z 01z20

z01]z20]z21]z01z20

(3.3.6)

for the determination of zN. Their identity can be shown by means
of the conditions of item a and the basic condition of Z, that is

det(Z)\z01z12z20]z02z21[z20z11z 02[z12z01\0.

Elimination of zN in (3.3.4) by means of (3.3.5) furnishes the final
expressions

q@2 \
z01

z01]z 20]z21]z01 z20

, qA2 \
1

1]z12

(3.3.7)

so that all five parameters (zN, q@1, q@2, qA1 , qA2 ) of the projective transforma-
tion P (i)]P

(i)
N can be composed completely and in a most uncomplicated

way by the components of the matrix Z.
The procedure of this subsection and the somewhat more complicated

procedure of subsection 3.2 in connexion with the projective matrix
(3.1.2) will result in different solutions with respect to the normal case.
The difference is caused by the fact that in (3.1.2) the two parameters qi

result generally from qi\u30uN3 i/uN30u 3i and hence the position (1, 0) of
the matrix of correlation (3.3.4) in a component z8 10D1 (!), whereas the
present case corresponds with the method (1.5.4) of parameter determi-
nation, that is q@i \u@N3i/u@N3i and q@1\1 because of u@N31\u@31. Both
solutions are correct and select possible positions of the normal case
plane out of a simple infinite manifold, in particular, since the values of
the second solution arise from the first one by dividing all components by
z8 10. With respect to a pure normal case transformation, this method is
much shorter and therefore doubtlessly more expedient. The differences
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between those two solutions will be visible from the numerical example
of subsection 3.5.

The reconstruction of the (projectively distorted) spatial model from
the projective normal case images of this subsection may be performed by
calculating the parameters kN of relative orientation according to subsec-
tion 2.3. Again, the equations (2.3.0) may be used for this purpose.
However, they are to be used in a modified way because the coordinates
of the epipoles approach infinity as stated in (3.2.4). Hence the first
equation of (2.3.0) equals 0, whereas the quotient of the other two
equations must approach the value of zN according to

lim
u
ÒÇ,uÒÈ

]= A
u01

u02B\
w01

w02

\[zN

because of (2.3.9). By dividing all explicit expressions for k of subsection
2.3 by u02 and performing the limiting process (3.3.7), that is, substituting
the qotients u01/u02 by [zN and ignoring all other values divided by
u02 except the value u02/u02\1, the following expressions will result:

a) left bundle

k@
N1\k@

N2\[ yA0 yA3(uN31]ZNuN32)/D @
N

k@
N3\ yA0( yA1]zN yA2)/D @

N (3.3.8)

D@
N\ yA3 M( yA1] yA2 )(uN31]z NuN32)[ yA1[z N yA2N

b) right bundle:

DA
N\ yA1 yA2(zN[1) because of lim

u
ÒÇ,uÒÈ

]=A
u00

u02B\z N[1

kA
N1(yA)\

1
yA1(zN[1)

M yA3 [uA
N31]z NuA

N32[z N ]kA
N3[z N yA0N,

kA
N2(yA)\

1
yA2(zN[1)

M yA3 [1[uA
N31[z NuA

N32]kA
N3] yA0N,

kA
N1(y0)\

1
y01(z N[1)

M y 03[uA
N31]z NuA

N32[zN ]kA
N 3[zN y 00N,

kA
N 2 (y0)\

1
y02(z N[1)

M y 03[1[uA
N 31[z NuA

N 32]kA
N 3] y 00N,

( y01 yA3[ yA1 y 03) (uA
N 31]z NuAN 32[zN) kA

N 3\[z N ( y 00 yA1[ y01 yA0 )
( y02 yA3[ yA2 y 03) (uA

N31]z NuA
N32[1) kA

N3\[( y 00 yA2[ y 02 yA0)
(3.3.9)
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Knowing all kN which have to satisfy the conditions k@
Ni\kA

Ni, the
reconstruction itself follows from the application of equations (2.3.4).
The transition to a cartesian system of representation will then be
achieved by a regular projective 3D-transformation corresponding to
(1.5.2).

3.4. Representation of Output Images

The transformations (3.3.1) with T according to (3.1.2) or (3.3.4) will
produce the numerical values of the affine normal case coordinates of
image points, but they cannot be plotted or displayed without positions of
the basic points G

(i)
Ni in the rectangular coordinate system of the output

device. To solve this problem, the already mentioned ‘‘natural’’ orthogo-
nal axes g0 and hp may be used, but as, in the normal case, all epipolar lines
are parallel, every hN is suitable for this purpose. Hence, a right-angled
image frame can be established in the oblique-angled affine coordinate
system of the images using selected members of the parallel line families

g
T

NuN\gN 0](q1[1)uN 1](q2[1)uN 2\0

and

h
T

NuN\hN 0]uN 1]z NuN 2\0

Those selected lines will be the epipolar lines hN 0, hN 1 passing through
GN 0 and GN 1 and the parallels to the vanishing line gN 0, gN 2 passing
through GN0 and GN2 (Fig. 4.2). They read:

h
T

N 0uN\uN 1]z NuN 2\0

h
T

N 1uN\uN 1]z NuN 2\1

g
T

N 0uN\(q1[1) uN 1](q2[1)uN 2\0

g
T

N 2uN\(q1[1) uN 1](q2[1)uN 2\(q2[1).

The coordinates of their four points of intersection may be gathered from
Table 3.4 where d\zN(q1[1)[(q2[1). They depend exclusively on
the projective parameters q1, q2, z N of the normal case transformation and
define the parameters of the affine transformation

x\AuN, A\C
1 0 0

a10 a11 a12

a20 a21 a22 D
from the oblique system of calculation to the rectangular but still affine
system of an output device. The transformation with respect to U0(0, 0)
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Fig. 3.4. Affine transformation from oblique to rectangular image coordinates

Table 3.4. Coordinates of the frame rectangle from intersections gNi[hNi

lines U0{origin U1 unit point U2

gN0[hN0 gN0[hN1 gN2[hN1 gN2[hN0

uN1 0 [(q2[1)/d (q2[1)(zN[1)/d zN(q2[1)/d
uN2 0 (q1[1)/d (q1[q2)/d [(q2[1)/d

(Fig. 3.4) will result in a10\a20\0 (no translation), the transformation
with respect to the other two points U1(1, 0) and U2(0, 1) yields

[(q2[1)a11](q1[1)a12\d
zN(q2[1)a11[(q2[1)a12\0HFa11\1, a12\zN

[(q2[1)a21](q1[1)a22\0
zN(q2[1)a21[(q2[1)a22\dHFa21\

q1[1
q2[1

, a22\1.
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The affine transformation to the output system reads therefore

C
1
x1

x2D\C
1 0 0
0 1 zN

0 (q1[1)/(q2[1) 1 D C
1

uN 1

uN 2D
\C

1
uN1]zNuN2

(q1[1)uN1/(q2[1)]uN2D (3.4.1)

and shows the important fact that the fundamental normal case condition
u @

N1
]zNu @

N2
\uA

N1
]zNu A

N2
will not be influenced by this necessary

conversion to rectangular coordinates. This condition of course means
x@1\xA1 and ensures the absence of vertical parallaxes after transforma-
tion. As a control, the transformation of the affine coordinates of the
‘‘unit point’’ results in xT\(1, 1, 1).

It must be pointed out clearly that the relation between horizontal and
vertical scale is not known due to the arbitrary introduction of U2 as a unit
point on the horizontal coordinate axis. But for a pure, undisturbed
spatial impression the horizontal scale does not have any significance, and
if the cartesian model is to be reconstructed, the elimination of this
additional affine distorsion will be included in the regular projective
transformation (1.5.2) based on five control points.

4. Numerical Examples

All initial coordinates of the following examples refer to an assumed
cartesian model [2]. They will be firstly transformed into the system of the
basic points and then to the normal case. After relative orientation for
both cases, a reconstruction will be calculated which can be compared
directly with the initial affine model coordinates.

a. Computation of the Spatial Model from Assumed Data

Cartesian coordinates [m] Affine coordinates

Nr. X Y Z y1 y2 y3

1 292.50 202.50 120.00 [0.0000000 [0.0000000 0.0000000
2 435.00 900.00 990.00 [0.0000000 0.0000000 1.0000000
3 660.00 1537.50 312.00 0.5756072 0.1487681 0.1279697
4 577.50 2295.00 91.50 1.0000000 0.0000000 0.0000000
5 1537.50 480.00 772.50 [0.0000000 1.0000000 0.0000000
6 1357.50 1057.50 138.00 0.4912043 0.8981410 [0.5693249
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Cartesian coordinates [m] Affine coordinates

Nr. X Y Z y1 y2 y3

7 1717.50 1695.00 247.50 0.7775096 1.0358235 [0.6048458
8 1462.50 2115.00 975.00 0.6654715 0.7355879 0.4528676
O@ 367.50 1261.50 3712.50 0.8871075 [0.2253355 4.2692516
OA 1612.50 1192.50 3987.00 0.9009221 0.8325803 3.7908794
11 300.00 225.00 142.50 0.0024264 0.0027341 0.0238910
12 532.50 999.00 517.50 0.2367270 0.0934168 0.3945888
13 1048.50 684.00 867.00 0.0088907 0.5544832 0.4430495
14 1359.00 1267.50 417.00 0.4805426 0.7720203 [0.2218940
15 1660.50 1509.00 799.50 0.4742924 0.9834730 0.0589669
16 1504.50 2068.50 648.00 0.7739665 0.7919375 0.0382975

b. Computation of Image Coordinates

Assumed matrices of orientation:

R @\C
0.99564508 [0.09007407 0.02403194
0.09096120 0.99509814 [0.03880383

[0.02041892 0.04082082 0.99895782 D ,

RA\C
0.99817506 0.05377542 [0.0274727873

[0.05336033 0.99845306 0.0156255137
0.02827056 [0.01413104 0.9995004198 D

By means of these orientations the cartesian coordinates of the spatial
model are projected to image planes P@, PA with respect to the two centers
of projection O@ and OA. The results are given below.

Cartesian coordinates [dm] Affine coordinates

Nr. x @ y @ xA yA u @1 u @2 uA1 uA2

1 [0.0451870 [0.6343754 [0.8130548 [0.6290877 0.0000000 0.0000000 0.0000000 0.0000000
2 0.0313810 [0.2265744 [0.9164214 [0.2281625 0.2718578 0.0577379 0.3094497 [0.2327183
3 0.1361022 0.3193167 [0.5609002 0.2279833 0.6355182 0.1372296 0.6442013 0.1043779
4 0.0202372 0.8297962 [0.5502266 0.6951777 1.0000000 0.0000000 1.0000000 1.0000000
5 0.9728948 [0.4654293 [0.0193972 [0.5909803 0.0000000 1.0000000 0.0000000 1.0000000
6 0.6377332 0.0178894 [0.1012696 [0.1176720 0.3708332 0.6469605 0.3638478 0.7763495
7 0.8799424 0.4959498 0.1567209 0.2924344 0.6721215 0.8655064 0.6670692 1.0009998
8 0.8702316 0.9690304 [0.0143426 0.7282690 0.9987487 0.8349783 1.0056120 0.6733496
O@ [9.9141575 1.0549357 1.6170618[12.0027987
OA [12.7287969 [0.3448844 1.6474603[12.5642098
11 [0.0413327 [0.6230778 [0.8125383 [0.6182340 0.0073336 0.0033146 0.0082560 [0.0020832
12 0.0866752 [0.09553180 [0.7102699 [0.1357322 0.3558592 0.1066519 0.3723722 0.0061928
13 0.5743628 [0.3492243 [0.4033963 [0.4207995 0.1254647 0.6004836 0.1438029 0.4685434
14 0.6849534 0.1691064 [0.1055003 0.0228084 0.4694911 0.6870021 0.4711043 0.7354998
15 1.0209872 0.4074610 0.1195522 0.2066799 0.5951289 1.0089939 0.6030505 0.9753681
16 0.8075429 0.8400414 0.0231421 0.6175757 0.9171517 0.7796466 0.9198471 0.7489819
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c. Result of Correlation with Affine Coordinates (points 1 to 8)

Z\C
0.00000000 [0.97340074 [0.13114018
1.00000000 [0.02659926 0.07973035
0.13112327 [0.08096187 0.00001691 D ,

det (Z)\0.0000000000

Epipoles:

in P@ from ZTu@0\0 : u @01\1, 64746, u @02\[12.56421

in PA from ZuA0 \0 : uA01\1.61706, uA02\[12.00280

d. Relative Orientation of the Two Projective Bundles

Assumption of one point at the epipolar axis: y
T

A\([1.0, 0.5, 3.5).
Projective parameters of P@ from Eq. (3.2.2):

k@0\1.0 k@1\k@2\0.6898293 k@3\0.6591033

Center of projection according to subsection 1.3:

y @01\[1.0679613 y @02\[0.2268166 y @03\4.1115155

Projective parameters of PA according to (3.2.4) and (3.2.3):

kA0 \1.0 kA1 \0.7086797 kA2 \0.6897404 kA3 \0.6803561

Center of projection:

yA01\[0.9762202 yA02\0.7543148 yA03\3.2860293

e. Projectively Distorted Model from Relatively Oriented Images
and Projective Transformation

Relative model M1 Transformation M1 ]M

Nr. y6 1 y6 2 y6 3 y1 y2 y 3

1 [0.0000000 [0.0000000 0.0000000 [0.0000000 [0.0000000 0.0000000
2 [0.0000000 0.0000000 1.0000000 [0.0000000 0.0000000 1.0000000
3 0.6355543 0.1373416 0.1130328 0.5756072 0.1487681 0.1279697
4 1.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000
5 [0.0000000 1.0000000 0.0000000 [0.0000000 1.0000000 0.0000000
6 0.5455624 0.7504735 [0.5058402 0.4912043 0.8081410 [0.5693249
7 0.7668908 0.8542391 [0.4772471 0.7775096 1.0358235 [0.6048458
8 0.6366276 0.5883781 0.3465757 0.6654715 0.7355879 0.4528676
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Relative model M1 Transformation M1 ]M

Nr. y6 1 y6 2 y6 3 y1 y2 y 3

11 0.0034507 0.0032510 0.0271793 0.0024264 0.0027341 0.0238910
12 0.2876072 0.0948949 0.3835020 0.2367270 0.0934168 0.3945888
13 0.0108103 0.5637081 0.4309463 0.0088907 0.5544832 0.4430495
14 0.5183431 0.6962739 [0.1914705 0.4805426 0.7720203 [0.2218940
15 0.4828822 0.8371888 0.0480258 0.4742924 0.9834730 0.0589669
16 0.7413441 0.6342413 0.0293453 0.7739665 0.7919375 0.0382975

Matrix of transformation M1 ]M (basic points 1-4-5-2, fifth point 13)

M\C
1.175435236 [0.353003193 [0.191800001 [0.147350009
0.000000000 0.822432042 0.000000000 0.000000000
0.000000000 0.000000000 0.983635234 0.000000000
0.000000000 0.000000000 0.000000000 1.028085227 D
f. First Transformation to the Normal Case (subsection 3.2)

Coordinates of G @3(\point 2):

u @
N31\0.2718578 u @

N32\0.0619863

Center of projection of P @
N (equal to P @) :

y @01\[1.0679613 y @02\[0.2268166 y @03\4.1115155

Projective parameters of P @
N according to (1.3.5):

k@N0\1.0 k@N1\0.6942287 k@N2\0.7453105 k@N3\0.6633067

Computation of zN :

w01\[0.0630909 w02\0.5165610 FzN\0.1221364

Coordinates of G @3 from (3.3.8):

uAN31\0.3109314 uAN32\[0.2579313

Center of projection of P@
N (equal to P A) :

y A01\[0.9762202 yA02\0.7543148 yA03\3.2860293

Projective parameters of PA
N according to (1.3.5):

kAN0\1.0 kAN1\0.6942287 kAN2\0.7453105 kAN3\0.6633067
The values of the kN satisfy the condition of the normal case, that is
k@

Ni\kA
Ni !
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g. Transformed Affine Coordinates

Matrices of projective normal case transformation

T @\C
1.0000000 0.0063775 0.0804274
0.0000000 1.0063775 0.0000000
0.0000000 0.0000000 1.0804274 D ,

TA\C
1.0000000 [0.0203914 0.0805667
0.0000000 0.9796086 0.0000000
0.0000000 0.0000000 1.0805667 D

Nr. u @N1 u @N2 uAN1 uAN2

1 0.00000000 0.00000000 0.00000000 0.00000000
2 0.27185777 0.06198631 0.31093136 [0.25793130
3 0.63006349 0.14606252 0.63406219 0.11332295
4 1.00000000 [0.00000000 1.00000000 [0.00000000
5 [0.00000000 1.00000000 [0.00000000 1.00000000
6 0.35394418 0.66293147 0.33780566 0.79506665
7 0.62986306 0.87076971 0.61240793 1.01368482
8 0.93627862 0.84034725 0.95295006 0.70384877
11 0.00737807 0.00358002 0.00809035 [0.00225186
12 0.35428572 0.11399317 0.36738529 0.00673955
13 0.12035589 0.61841740 0.13613094 0.48925808
14 0.44647879 0.70140071 0.43966816 0.75716320
15 0.55203140 1.00479146 0.55402949 0.98843197
16 0.86384988 0.78735789 0.86511348 0.77701207

Control: matrix of normal case correlation (points 1 to 8):

ZN\C
0.0000000 [1.0000000 [0.1221364
1.0000000 0.0000000 0.0000000
0.1221364 0.0000000 0.0000000 D
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h. Reconstruction of M1 from Normal Case

Nr. y6 1 y6 2 y6 3 Nr. y6 1 y6 2 y6 3

1 [0.00000000[0.0000000 0.0000000 8 0.6366276 0.5883781 0.3465757
2 [0.00000000 0.0000000 1.0000000 11 0.0034507 0.0032510 0.0271793
3 0.6355543 0.1373416 0.1130328 12 0.2876072 0.0948949 0.3835020
4 1.0000000 0.0000000 0.0000000 13 0.0108103 0.5637081 0.4309463
5 [0.0000000 1.0000000 0.0000000 14 0.5183431 0.6962739 [0.1914705
6 0.5455624 0.7504735 [0.5058402 15 0.4828822 0.8371888 0.0480258
7 0.7668908 0.8542391 [0.4772471 16 0.7413441 0.6342413 0.0293453

The projectively distorted coordinates are exactly equivalent to those of direct reconstruction.

i. Second Normal Case Transformation (subsection 3.3)

From Z of item c) the projective parameters zN\0.12145642,
q@1\1, q@2\1.07959100, qA1 \0.97340080 and qA2 \1.07973000 were
calculated using (3.3.5), (3.3.6) and (3.31.7). The projective matrices
according to (3.3.3) read

T @\C
1.00000000 0.00000000 0.07959116
0.00000000 1.00000000 0.00000000
0.00000000 0.00000000 1.07959100 D ,

TA\C
1.00000000 [0.02659926 0.07973035
0.00000000 0.97340080 0.00000000
0.00000000 0.00000000 1.07973000 D

and the results of the transformations (3.3.1) are the affine normal
case coordinates u@N, uAN to the left of the following table. The centers
of projection and the projective parameters result from (3.3.8) and (3.3.9)
in

k@N1\0.6952050
y @01\[1.1281689
kAN1\0.6952050
y A01\[0.9505164

k@N2\0.6952050
y @02\[0.2586740
kAN2\0.6952050
y A02\0.7929098

k@N3\0.67074357
y @03\4.3209568
kAN3\0.67074358
y A03\3.1830439
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Fig. 3.5. Upper part: original ‘‘images’’ with coordinates of item b), lower part: normal
case representation

The matrices of the affine transformations to rectangular image coordina-
tes read

A@\C
1 0 0
0 1 0.121456
0 0 1 D , AA\C

1 0 0
0 1 0.121456
0 [0.333615 1 D

and the resulting values, adapted in scale to a 512]512 pixel image field,
can be seen to the right of the Table. Its last column contains the
horizontal parallaxes. The transformed image points are mapped in the
lower part of Fig. 3.5 with additively modificated xA2 -coordinates
(*xA2 \45.4) in order to get reasonable horizontal parallaxes. Everybody
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who is able to connect the images of a stereo pair without stereoscopic
glasses will get a spatial impression of the point distribution.

5. Final Remarks

In comparison with traditional photogrammetry, the application of
algebroprojective methods has its advantages and drawbacks. The major
advantages are:

F complete linearity of all projective relations and

F no need for knowledge about interior orientation;

The drawbacks, on the other hand, are:

F unusual affine geometry with more unknowns and

F the need for more control points with respect to absolute orientation.

But regarding the power of modern calculational and measuring
techniques, however, advantages and drawbacks will be in equilibrium
and the decision between analytical and/or algebroprojective methods
should depend on the character of the respective photogrammetric
problem to be solved.

Obviously, in the preceeding considerations, several additional prob-
lems remain to be investigated. An incomplete list of them should
contain:

F relative orientation of stereo images of a plane object
F how to derive relative orientation from the projective relations of the

normal case transformation according to subsection 3.3
F multiple correlation and relative orientation in connexion with image

triangulation
F algebroprojective error calculation and propagation
F critical configurations with respect to image correlation (subsection

2.3)
F how to introduce optical distortion and other deformations of the

projective bundles
F sensitivity and stability of numerical solutions.

Theoretical research in these extremely interesting topics presupposes
a proper ability of geometric imagination and a certain patience for
somewhat complicated derivations. But the majority of the resulting
relations, however, is very uncomplicated, and this gratifying simplicity
will justify all preceding efforts.

108 G. Brandstätter



References

[1] Brandstätter, G.: On the Importance of Projective Geometry for Analytical and
Digital Photogrammetric Restitution. Symp. ISPRS Comm. VI, Int. Arch. of Ph.
& R. S., Vol. 28, Part. 6, Rhodos 1990, pp. 187–193

[2] Brandstätter, G.: Zur relativen Orientierung projektiver Bündel. Zeitschrift für
Photogrammetrie und Fernerkundung, 59. Jg. Heft 6, Karlsruhe 1991, pp. 199–212

[3] Brandstätter, G.: Notes on the projective transformation of general stereo pairs into
the rigorous normal case by image correlation. XVII ISPRS Congress, Comm. III,
Washington 1992, pp. 701–706

[4] Brandstätter, G.: Transformation to the Normal Case of General Non-Calibrated
Projective Stereo Pairs. 2/$ Conf. on Optical 3-D Meas. Techn., Zürich 1993, Verl.
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