Elementary Inequalities in Hypercomplex Numbers

By

K. Scheicher, R. F. Tichy, and K.W. Tomantschger

(Vorgelegt in der Sitzung der math.-nat. Klasse am 19. Juni 1997 durch das w. M. Edmund Hlawka)

Abstract

Es werden einige elementare Ungleichungen auf hyperkomplexe Systeme übertragen. Insbesondere werden Ungleichungen für Möbius-Transformationen in diesem allgemeinen Kontext gezeigt.

1. Introduction

In this paper we will extend some known inequalities for complex numbers to certain systems of hypercomplex numbers.

Let \mathbb{R}^{s} be the Euclidean space of vectors $x=\left(x_{0}, x_{1}, \ldots, x_{s-1}\right)=$ $x_{0} e_{0}+x_{1} e_{1}+\cdots+x_{s-1} e_{s-1}$. The vectors e_{0}, \ldots, e_{s-1} denote the standard basis of \mathbb{R}^{s}. Furthermore e_{0} is considered to be the real unit $e_{0}=1$ and e_{1}, \ldots, e_{s-1} are so-called hypercomplex units. x_{0} is called real part $\operatorname{Re}(x)$ and $\tilde{x}=\sum_{j=1}^{s-1} x_{j} e_{j}$ is called the imaginary part $\operatorname{Im}(x)$. The conjugate of x is defined by $\bar{x}=x_{0} e_{0}-\tilde{x}$, and we will further use the notation $\operatorname{Im}_{j}(x)=x_{j}$. Let $\langle x, y\rangle$ denote a bilinear product $\mathbb{R}^{s} \times \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$ such that $\left\langle e_{0}, e_{j}\right\rangle=e_{j}$ for $0 \leq j \leq s-1,\left\langle e_{j}, e_{j}\right\rangle=-e_{0}$ for $1 \leq j \leq s-1$ and $\left\langle e_{j}, e_{k}\right\rangle=-\left\langle e_{k}, e_{j}\right\rangle$ for $0 \leq j<k \leq s-1$. In this

[^0]way $H=\left(\mathbb{R}^{s},+,\langle\cdot, \cdot\rangle\right)$ becomes an antisymmetric hypercomplex system. One easily sees that $\langle x, \bar{x}\rangle=\langle\bar{x}, x\rangle=\sum_{j=0}^{s-1} x_{j}^{2}=|x|^{2}$, where $|x|$ is the Euclidean norm of x.

The set \mathbb{R} or \mathbb{C} can be identified with $s=1$ or $s=2$, respectively. For $s=4$ we obtain the quaternion algebra \mathbb{H} provided that $\left\langle e_{1}, e_{2}\right\rangle=e_{3}$, $\left\langle e_{2}, e_{3}\right\rangle=e_{1}$ and $\left\langle e_{3}, e_{1}\right\rangle=e_{2}$. Cayley's octaves \mathbb{O}, which are a special case of $s=8$, can be constructed from \mathbb{H} by the doubling method.

We set $r=|x|, w=|\tilde{x}|$ and $\varphi=\arctan \frac{w}{x_{0}}$. Defining the powers $x^{n}=\left\langle x, x^{n-1}\right\rangle, n \in \mathbb{N}$, the relations

$$
\begin{equation*}
\operatorname{Re}\left(x^{n}\right)=r^{n} \cos n \varphi, \quad \operatorname{Im}_{j}\left(x^{n}\right)=r^{n} \frac{x_{j}}{w} \sin n \varphi, \tag{1}
\end{equation*}
$$

hold for $1 \leq j \leq s-1, w \neq 0,($ see [6]). Taking these formulas with $n=1$ and defining the exponential function with hypercomplex values of x by

$$
e^{x}=\sum_{k \geq 0} \frac{x^{k}}{k!}
$$

we can prove the relation

$$
x=r \exp \left(\frac{\tilde{x}}{w} \varphi\right)=r\left(\cos \varphi+\frac{\tilde{x}}{w} \sin \varphi\right) .
$$

This implies De Moivre's Theorem

$$
\left[r\left(\cos \varphi+\frac{\tilde{x}}{w} \sin \varphi\right)\right]^{n}=r^{n}\left[\cos (n \varphi)+\frac{\tilde{x}}{w} \sin (n \varphi)\right]
$$

for any natural number n.
For $x \in H, x \neq 0$, we define the hypercomplex logarithm of x to be

$$
z_{n}=\log x=\log r+\frac{\tilde{x}}{w}(\varphi+2 n \pi), \quad n \in \mathbb{Z} .
$$

Thus, $\log x$ is an infinitely many-valued function; z_{0} we call the principal hypercomplex logarithm if $0 \leq \varphi<2 \pi$. Furthermore we can introduce logarithmic series, e.g.

$$
\log (1+x)=\log |1+x|+\frac{\tilde{x}}{w} \arg (1+x)=\sum_{n \geq 1}(-1)^{n-1} \frac{x^{n}}{n}, \quad|x|<1
$$

for which the derivation

$$
\frac{d}{d x} \log (1+x)=\frac{1}{1+x}=\sum_{n \geq 0}(-1)^{n} x^{n},|x|<1
$$

holds. We shall need the last two formulas later.

Let n be a positive integer, $a=\left(a_{0}, \ldots, a_{s-1}\right), s \geq 2$, a given hypercomplex number and consider the mapping defined by $a \mapsto x$:

$$
\begin{equation*}
x^{n}=a, \quad|x|=|a|=1 \tag{2}
\end{equation*}
$$

We shall try to find $x=\left(x_{0}, \ldots, x_{s-1}\right) \in H$ which satisfy (2). Using formula (1) we see that

$$
\begin{align*}
a_{0} & =\operatorname{Re}\left(x^{n}\right)=\cos n \varphi \tag{3}\\
a_{j} & =\operatorname{Im}_{j}\left(x^{n}\right)=\frac{x_{j}}{w(x)} \sin n \varphi, 1 \leq j \leq s-1, \text { where } \tag{4}\\
\varphi & =\arg x=\arctan \frac{w(x)}{x_{0}}, w(x) \neq 0 . \tag{5}
\end{align*}
$$

With these three equations, we obtain $x_{0}=w(x) \cos \left(\arccos a_{0} / n\right)$. Then, taking $w(x)=\sqrt{1-x_{0}^{2}}$ the last relation yields

$$
\begin{equation*}
x_{0}=\cos \left(\frac{\arccos a_{0}}{n}\right) \tag{6}
\end{equation*}
$$

$\operatorname{Using}(3)$, we can write (4) in the form $x_{j} / w(x)=a_{j} / w(a)$. Taking into account $w=\sqrt{1-x_{0}^{2}}$ and (6), this implies

$$
\begin{equation*}
x_{j}=\frac{a_{j}}{w(a)} \sin \left(\frac{\arccos a_{0}}{n}\right), \quad 1 \leq j \leq s-1, \quad s \geq 2 \tag{7}
\end{equation*}
$$

We thus have
Proposition 1.1. Let a and x be hypercomplex numbers of Euclidean norm 1 and let $n \in \mathbb{N}$. Then for any given $a \in H$ there exists a unique $x=\left(x_{0}, \ldots, x_{s-1}\right) \in H$ according (6) and (7) such that $x^{n}=a$ (We always take the principle values of the trigonometric functions).

2. A Special Analytic Inequality

Now we want to extend some specific inequalities to the hypercomplex numbers $x=\left(x_{0}, \ldots, x_{s-1}\right) \in H, s \geq 1$.

Proposition 2.1. Let x be a hypercomplex number such that $|x| \leq 1$, then

$$
\frac{|x|}{1+|x|} \leq|\log (1+x)| \leq|x| \frac{1+|x|}{|1+x|}
$$

Proof: The right-hand inequality can be shown as for complex numbers. For proving the left-hand inequality we take an arbitrary but fixed point x
on the hyper sphere $|x+1|=C, 0<C<2, C \in \mathbb{R}$, which extends from the real axis to the unit sphere. The function $|x| /(1+|x|)$ as well as $|\log (1+x)|$ (which is the principal value of the hypercomplex logarithm) are continuous along $|x+1|=C$, and differentiable for $|x+1|<C$. By introducing $\Phi=\arg (x+1)$ as independent variable, the cosine rule yields

$$
|x|^{2}=|x+1|^{2}+1-2|x+1| \cos \Phi \text { resp. } \left.|x| \frac{d|x|}{d \Phi}=|1+x| \sin \right\rvert\, \Phi
$$

The function

$$
\begin{array}{r}
\frac{d}{d \Phi}\left[|\log (1+x)|^{2}-\left(\frac{|x|}{1+|x|}\right)^{2}\right] \\
=2 \Phi-2 \frac{|x|}{(1+|x|)^{3}} \frac{d|x|}{d \Phi}=2 \Phi-2 \frac{|1+x|}{1+|x|^{3}} \sin \Phi
\end{array}
$$

does not vanish for $\Phi=0$. This is a contradiction because Rolle's theorem implies that the derivation must vanish somewhere in the interior. From this the result follows immediately.

3. Möbius-Transformations in Hypercomplex Number Systems

In this section we will study four types of Möbius-Transformations in quaternions \mathbb{H} or octaves \mathbb{O}. We will prove the following theorem.

Theorem 3.1. Let $|a|<1$. Then the Möbius-Transformations

$$
\begin{array}{ll}
T_{1}(x)=(x-a)(\bar{a} x-1)^{-1}, & T_{3}(x)=(\bar{a} x-1)^{-1}(x-a), \\
T_{2}(x)=(x-a)(x \bar{a}-1)^{-1}, & T_{4}(x)=(x \bar{a}-1)^{-1}(x-a)
\end{array}
$$

map the unit ball bijectively onto itself.
Proof: We will prove the statement only for the function $T_{1}(x)$ in \mathbb{D}. All other cases can be shown along the same lines. Let R be the boundary and I be the interior of the unit ball.
(i) $\quad T_{1}$ is invertible on $\mathrm{R} \cup I$:

Let $|y| \leq 1,|a|<1$ and $(x-a)(\bar{a} x-1)^{-1}=y$. From this it follows that

$$
x-y(\bar{a} x)=a-y .
$$

Each number $x \in \mathbb{D}$ can be considered as a vector $\vec{x} \in \mathbb{R}^{8}$. Let b be a fixed number. Then the functions $x \rightarrow b x$ and $x \rightarrow x b$ are
linear mappings from \mathbb{R}^{8} to \mathbb{R}^{8}. We will denote by $[b]_{l},[b]_{r} \in \mathbb{R}^{8 \times 8}$ the corresponding matrices. Using this matrix notation, the last equation can be written as

$$
\left(E-[y]_{l}[\bar{a}]_{l}\right) x=a-y,
$$

where E denotes the unit matrix. This equation can be solved uniquely, if and only if $\operatorname{det}\left(E-[y]_{l}[\bar{a}]_{l}\right) \neq 0$, i.e. if there is no eigenvalue 1 of $[y]_{l}[\bar{a}]_{\ell}$.
Consider that 1 is an eigenvalue and v be the corresponding eigenvector. From this follows $[y]_{l}[\bar{a}]_{l} v=v$, thus $y(\bar{a} v)=v$. We obtain $|y| \cdot|\bar{a}|=1$, which is a contradiction to $|y| \leq 1,|a|<1$.
(ii) T_{1} maps R onto R :

Let $|x|=1$. This implies

$$
\left|T_{1}(x)\right|=\left|\frac{x-a}{\bar{a} x-1}\right|=\left|\frac{x-a}{\bar{a}-\bar{x}}\right| \frac{1}{|x|}=1
$$

since $x^{-1}=\bar{x}$ for all $x \in R$.
(iii) T_{1}^{-1} maps R onto R :

From $|y|=1$ follows

$$
|x-a|^{2}=|\bar{a} x-1|^{2}
$$

Thus

$$
(x-a)(\bar{x}-\bar{a})=(\bar{a} x-1)(\bar{x} a-1)
$$

A simple computation verifies the identity

$$
\begin{equation*}
\bar{a} x-a \bar{x}+\bar{x} a-x \bar{a}=0 \tag{8}
\end{equation*}
$$

for all x and a. Thus we obtain

$$
\left(1-|x|^{2}\right)\left(1-|a|^{2}\right)=0
$$

The second factor of this product is $\neq 0$, thus $|x|=1$.
(iv) T_{1} maps I into I : From (8) we derive

$$
1-\frac{|x-a|^{2}}{|\bar{a} x-1|^{2}}=\frac{\left(1-|a|^{2}\right)\left(1-|x|^{2}\right)}{|\bar{a} x-1|^{2}}
$$

and

$$
1-\left(\frac{|x| \pm|a|}{1 \pm|a||x|}\right)^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|x|^{2}\right)}{(1 \pm|a||x|)^{2}}
$$

In the last equation either the upper or the lower sign is true. Applying the triangle inequality

$$
1-|a||x| \leq|1-\bar{a} x| \leq 1+|a||x|
$$

to the upper relations we obtain

$$
1-\left(\frac{|x|-|a|}{1-|x||a|}\right)^{2} \geq 1-\left|T_{1}(x)\right|^{2} \geq 1-\left(\frac{|x|+|a|}{1+|x||a|}\right)^{2}
$$

From this we derive

$$
\left(\frac{|x|-|a|}{1-|x||a|}\right)^{2} \leq\left|T_{1}(x)\right|^{2} \leq\left(\frac{|x|+|a|}{1+|x||a|}\right)^{2}<1
$$

(v) T_{1}^{-1} maps I into I :

Consider, there is an $x=T_{1}^{-1}(y)$ with $y \in I, x \notin I$. Let $y_{0}=0 \in I$, then we have $x_{0}=T^{-1}\left(y_{0}\right)=a \in I$. We consider the straight line $\overline{y_{0} y} \subset I$. Since T_{1}^{-1} is continuous, there must exist a $\tilde{y} \in \overline{y_{0} y}$ with $T_{1}^{-1}(\tilde{y})=\tilde{x} \in R$. From this we obtain $\tilde{y}=T_{1}(\tilde{x}) \in R$, which is a contradiction to $\tilde{y} \in \overline{y_{0} y} \subset I$.

From the steps (i)-(v) we conclude the theorem.

4. Further Analytic Inequalities

Recall that we have introduced the exponential function by the power series which converges absolutely for all $x \in \mathbb{H}$. An alternative definition of the exponential function is

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} .
$$

It can be expanded by the binomial theorem and the convergence proof can be carried through as in the usual case.

For a natural number n and any hypercomplex number $x \neq 0$ the following result can be shown by induction:

$$
\left|e^{x}-\left(1+\frac{x}{n}\right)^{n}\right|<\left|e^{|x|}-\left(1+\frac{|x|}{n}\right)^{n}\right|<e^{|x|} \frac{|x|^{2}}{2 n}
$$

Proposition 4.1. Suppose that $a_{n} \in H$ with $a_{n}=\mathbf{O}\left(\frac{1}{n!}\right)$. Then the estimate

$$
\left|\sum_{k=0}^{\infty}\left\langle a_{k}, x^{k}\right\rangle-\left(a_{0}+\left\langle a_{1}, x\right\rangle+\cdots+\left\langle a_{n}, x^{n}\right\rangle\right)\right| \leq N|x|^{n+1} e^{|x|}
$$

holds for any natural number n and $x \in H$.

Proof: We have

$$
\begin{aligned}
& \left|\sum_{k=0}^{\infty}\left\langle a_{k}, x^{k}\right\rangle-\left(a_{0}+\left\langle a_{1}, x\right\rangle+\cdots+\left\langle a_{n}, x^{n}\right\rangle\right)\right|=\left|\sum_{k=n+1}^{\infty} a_{k} x^{k}\right| \\
& \quad \leq M_{1} \frac{|x|^{n+1}}{(n+1)!} \sum_{k=0}^{\infty} \frac{|x|^{k}}{k!}=M|x|^{n+1} e^{|x|}, \quad M \in \mathbb{R}^{+}
\end{aligned}
$$

In the following we list a few inequalities for elementary functions in hypercomplex variables $x=x_{0} e_{0}+\tilde{x} \in H$. We use the definition of bypercomplex sine and cosine functions by Taylor series or by the generalized Euler formula

$$
e^{\left(\frac{\tilde{x}}{w} \varphi\right)}=\cos \varphi+\frac{\tilde{x}}{w} \sin \varphi
$$

which links the exponential function with the trigonometric functions:

$$
\begin{aligned}
& \sin x=\sum_{k \geq 0} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}, \quad \cos x=\sum_{k \geq 0} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \\
& \sin x=-\frac{\tilde{x}}{2 w}\left(e^{\frac{\tilde{\alpha}}{\bar{w}} x} e^{-\frac{\tilde{\alpha}}{w} x}\right), \quad \cos x=\frac{1}{2}\left(e^{\frac{\tilde{\alpha}}{w} x}+e^{-\frac{\tilde{\tilde{x}}}{\bar{w}} x}\right)
\end{aligned}
$$

Similarly, the bypercomplex byperbolic functions are given by

$$
\begin{aligned}
& \sinh x=\sum_{k \geq 0} \frac{x^{2 k+1}}{(2 k+1)!}, \quad \cosh x=\sum_{k \geq 0} \frac{x^{2 k}}{(2 k)!} \\
& \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right), \quad \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)
\end{aligned}
$$

With these obvious definitions most of the familiar real- and complex valued trigonometric resp. hyperbolic inequalities can be extended to the hypercomplex system H (For details we refer to [5]).

Proposition 4.2. If $|x|<1$, then

$$
\begin{aligned}
& |\sin x| \leq \frac{|x|}{2}\left(e-\frac{1}{e}\right), \quad|\cos x|<\frac{1}{2}\left(e+\frac{1}{e}\right) \\
& |\sinh x| \leq \frac{|x|}{2}\left(e-\frac{1}{e}\right), \quad|\cosh x|<\frac{1}{2}\left(e+\frac{1}{e}\right) \\
& \text { and } \quad(3-e)|x| \leq\left|e^{x}-1\right| \leq(e-1)|x|
\end{aligned}
$$

References

[1] F. Brackx, R. DeLanghe, and F. Sommen. Cliford Analysis. Pitman Advanced Publishing Program, Boston, London, Melburne, 1982.
[2] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, A. Prestel and R. Remmert, Zablen. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
[3] K. Gürlebeck and W. Sprössig: Quaternionic Analssis and Elliptic Boundary Value Problems, ISNM 89, Birkhäuser-Verlag, Basel, Boston, Berlin, 1990.
[4] I. L. Kantor and A. S. Solodovnikov. Hypercomplex Numbers - An Elementry Introductionto Algebras. Springer-Verlag, Berlin, Heidelberg, New York, 1989.
[5] D. S. Mitrinović: Analytic Inequalities, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
[6] R. F. Tichy: Some Inequalities for Hypercomplex Numbers, Sitzungsber., Abt. II, Österr. Akad. Wiss., Math.-Naturwiss. Kl. 199, Heft 4-7 (1990), 83-89.

Authors'address: Dr. K. Scheicher, Institut für Mathematik 501/A, Technische Universität Graz, Steyrergasse 30/II, A-8010 Graz, Austria.

[^0]: * This paper was supported by the "Jubiläumsfonds der Österr. Nationalbank" project 4995 .

