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Abstract

S.Yu [1] has shown that the phase difference between the quantum states
of two oscillators is quantized, even if it is restricted to the half open
interval [0, 27). In this note it shall be shown that the proper states of
the phase correspond to a beat of two oscillations. Such beats could be
realized within photon interferometry.

1. Introduction

Two bosonic oscillators with the circular frequencies wy and w;, the
creation and the annihilation operators ag, ag, a1 and 2, do not interact

[d,/’g/@] = [@hﬂg =0, [“j'?djg] - 6/'/6' (jv’é =1lor 2) (1)

The operators N; for the occupation numbers #; and the Hamiltonians
H; commute

N, =aja;, H;=(N;+1/2)hw;, N=N;+N,, H=H + H,.

(2)
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Thus they have a common base of proper states
iy m2) = (o) ™))" (a3)"2[0, 0) expli(mpr + maip)]
(1, m] = (m!m!) 170,004} a8? expl—i(mepr + meps)] (3)

with the orthogonality relations
(”117 ”/2 |”1 ) ”2> = ’”117ﬂ/2>1.|”1 ) ”2> = 6(m, ”/1)6(”27 ”12) (4)
The 6-sign is the Kronecker symbol, because all occupation numbers are
integers
m=0,1,2,..., m=0,1,2,..., n=m+m=0,1,2,....
The bare vacuum state |0, 0) has the properties

a,]0,0) =0, {0,0[a] =0, (0,0[0,0)=1. (j=1o0r2) (5)

The occupation numbers 7; and the energies W are the proper values of
the operators (2)

(Ny —m)|m,m) = (Hy — W1)|nm,m) =0, W= (m+1/2)bw;
(N2 - ﬂz)‘ﬂ1,ﬂ2> = (H2 — Wz)’ﬂ1,ﬂ2> = O, Wz = (ﬂz + 1/2)5(,()2
(N - ﬂ)|ﬂ1,%2> - (H - W)|ﬂ1,ﬂ2> - O, W = W] + Wz. (6)

The relations (1), (2), 4), (5) and (6) are invariant with respect to the trans-
formations

a; — a;exp(iy;), a; — ajexp(—ip;). (j=1o0r2)

Therefore, in the general case the state vectors (3) contain a phase factor
of modulus 1.

For an isolated oscillator the corresponding phase ¢, is not a mea-
surable quantity, because the spectrum of proper values

ﬂ}ﬂlj’m,ﬂz) = nj|m, m) (n; =0,1,2,...)
agaj|m,m) = (m+ V|m,m)  (n;+1=1,2,3,...)

is different for the operators cz} ajanda; a;- .Thus the operators z; and a} are
not unitary and the phase ¢; cannot be represented by a Hermite operator.
; and 7; are not canonically conjugate variables.

As the phase of an isolated oscillator is not a measurable quantity, in the
state vectors (4) the phase factors can be put equal to 1 for the occupation
numbers (n1,7,) = (0,7) and (#,0), if the total occupation number
7 = m + ny is kept constant. This means that the phase differences are
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reduced to a finite set of numbers

ﬂ§01:27T77f1, /771:0,1,2,...,77—1.

O, = 02— 1 = 27m/n

ﬂ(,02:27T77f2, /772:0,1,2,...,77—1.

m=my—m =0,1,2,....n—1. (7)

If all possible values » = 0,1,2,...and » = 0,1,2,...,7 — 1 are con-
sidered, then the quantity (©,,,/27) is any rational number /7 in the
interval [0, 1). Thus the proper values of the phase difference lie neither
discrete like the energies in bound states, nor continuously like the
energies of a free particle, but they lie dense. As Yu has pointed out, this
is a new type and a new set of proper values for an observable.

From Eqgs. (3) and (7) one gets # sets of orthogonal and normalized
state vectors

0 — ke, ks ) = [(n — BN RN () *(4))*]0, 0) exp(i£O,,)
(n—j, js mln — k, kym) = 6 (j,k=0,1,2,...,n) (8)
©,,, = 27tm/n. (m=0,1,2,...,n—1)

Each of the 7 sets is characterized by a certain phase ©,,,. In a special set
the » + 1 quantum states ate proper states of the operators Ny, N, and
N, but they are not proper states of the phase difference ;5. The phase
operator @, and the operator N are canonically conjugate variables.
n of the 7 + 1 states in the z-th set have to be added with the same amp-
litude, to get a proper state of the phase operator; but then the partial
occupation numbers are undefined.

2. 'The Operator for a Phase Difference

From the matrix element
(n—k+1,k—1;mlalarln — k, kym) = [(n— £+ 1)&]"? exp(i©,,)
one can see that the operator @1, is given by the equation
exp(ipn) = (alar)2alar(aba) (1 = 1,0)(n,0])
+ 1, = 1), 0l(a}an) " Patanln = 1,1) (1, 0], (9)

if the total occupation number 7 is fixed. In the more general case the
projection operators |z, 0)(n,0| and |0, #) (#, 0| have to be summed up
(n=0,1,2,...). Equation (9) takes into account that no phase factor can
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be determined from the relations
t _ o
ajas|n, 0y =0, (n,0|a}ar = 0.

With respect to their phase factors the quantum states |0, ) and |#, 0)
correspond to each other. Therefore, these two states have to be treated
separately. They give rise to two proper states of the phase.

In the proper states

n—1
10,) =7 P> =k ks my (m=0,1,2,...,0=1)  (10)

of the operator ¢y, to the proper values 0, the phase differences are
well-defined

[exp(z'gpu)ﬂ@,,m) = [eng@mﬂ)”@”m% (0 < @”m < 277) (11)

but the special occupation numbers 7 — £ and 4 are undefined. The state
vectors (10) form a set of orthogonal and normalized states

1 n—1 o
(©m|©,n) = - Z exp (27rzk i
=0 n

They ate proper states of the total occupation number
(N =)|©,,) =0,

but they are not proper states of the operators Ny, Ny, Hy, Hy and
H. Here only the expectation values are defined; they are given by the
following expressions

(NQ:%M+4L u%>:%@—1y Gi)z(%H%)%ﬁ

”):&mwy (12)

1 1
<H2> = 5%5&)2, <H> = 5745(&)1 + WZ) + Ewl for © = @”m. (13)
On the other hand, if the operator ¢y, is represented by the expression
exp(igr2) = (ajar) " ajar(ahar) 2 (1 = |1 = 1,1)(n = 1,1])
+10,2)(n = 1,1 (ay ar) ™2 a) an(ahan) ™ Pln = 2,2)(n = 1,1], (14)

then the proper states of the phase are given by the equations

mn Z ’ﬂ /é ’é 777 <(:)77ﬂ1’é”1/ﬂ> - 6mm’

[eij¢12]|@mﬂ> = [exp(z@m)ﬂ@,,m}. (15)
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In this case the expectation values

(Ny) = %(n— D, () = %(H 1), (H) = %ﬂb’tm

1 1
<H2> = (E”+ 1)5&)2, <H> = Enﬁ(m —i—wz) —i—sz for © = (“),,m.

(16)

are the same as the quantities (13), if the oscillators 1 and 2 are exchanged.
The generalization to more than two oscillators is possible. For
example, in the case of three oscillators the normalized quantum states

|1, 12, 135 m10, 31 ) = (”1!”2!”3!)71/2(51'5)771 (ﬂjé)”z(ﬂg)”}
X |0,0,0> eXp{(ZWi/ﬂ)(i?Z12ﬂ2 — 7’13/7731)} (17)
depend on the numbets 7, 1, 13, 7212 and 31, where

n=m+m+n, 0<n<n 0<m<n (j=12,3) (18)

If three integers s, m» and m3 are chosen in agreement with the
conditions (18), then the numbers

my = mp — m; ot myp —m;+ntor j=1,2,3
can be determined in such a way that the inequalities
0 < mp <n

are satisfied. In this way the numbers ;. are found unambiguously.
Only in such a case, where the numbers 7 and #; are even integers, there
the transition

m; — m;+nf2

does not change the phase factor exp(2min; m;/n). Therefore, there are
more possibilities for the numbers 72,

m i — (meg — m;) = 0,%n/2,n for even n and #,. (19)

This ambiguity has the consequence that the product of three phase
factors can become negative, too, if the corresponding operators are
transformed into each other by a cyclic permutation of the oscillator
numbers 1, 2 and 3. This can be shown, if in application to state vector
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|nj,n4), the operator (9) becomes generalized to the expression

exp(ip) = (4}4/)71/261_;%(42ﬂk)71/2(1 — |nj + ng, 0)(n; + 1, 0])
{1y 4 g — ) + g, 0] (alay) ™
X ajap|n; +ng —1,1)(n; + ng, 0] (20)

Then the product I(1, 2, 3) has the proper values +1

1(1,2,3) = [exp(ip1z)][exp(ipas)][exp(ips1)]
1(1, 2, 3)’”1,”2, 735 7112, 7%31>

= {exp[(2mi/n)(n12 + maz + m31) | Y, oy n3; 12, 2231

= £|m, m, n3; m12, m131). (21)

The negative sign implies the condition that the number 7 = + n, + 73
and thus at least one of the three numbers 7y, 7, and 73 are even integers.
S.Yu has given a general proof for the proper values £1 of the operator
I(1,2,3) [1]. This operator contains projection operators; it is idem-
potent (I =1?=1°=...). Therefore, any power of I again has
the proper values 1.

3. Photon States

Now the general relations for quantum states shall be applied to photon
interferometry. For the sake of simplicity #» photons with the same polar-
ization are considered. They are moving in the positive g-direction. The
scalar potential vanishes. The vector potential A and the electric field
strength E, both shall have only x-components 4, and E,. Then the
magnetic induction B and the Poynting vector § only have a non-trivial
J-component B, and a 3-component S, respectively

. 9 L
Bo=—dAy By=5-A. So=pu EbB, (22)
X ‘

to is the induction constant. The energy density w is given by the
equation

2upc’w = E + CZB)Z,, po = 47107 Vs/Am. (23)

c is the velocity of light. If the plane waves exp[iw(z/c — #)] are normal-
ized to the volume 1y, then the operators for the electromagnetic observ-
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ables are given by the following expressions

Ay = c(op/210)' 3wy expliwy(z/c = 1)] + b}
Ey = ic(poB)217)"? Zq;/z{a/- expliw;(z/c — #)] — h.c.}

B, = iu05/2V0)" 2 3w Hay expliw;(x/c — 1] — e}

5. —(EC/ZVO){Z@}/zaJ expliw;(z/c — #)] — h.c.}

w=—(5/21,) {Zw}/zﬂj expliw;(z/c — #)] - h.c.} (24)

where the Hermite conjugate part (h.c) contains the corresponding crea-
tion operators a}. In general, the sum goes over all circular frequencies w;.
If these quantities are restricted to the values wy and wy, then the expecta-
tion values can be evaluated with respect to a proper state of the phase

2
) =100) =372 13— ko) =187 2{()
£=0
+3'2(a}) ab exp(2mim/3) + 3'7 4} (ab)? exp(4mim/3)}|0,0)
(25)
for a total occupation number » = 3. Especially for the component .. of

the Poynting vector and for the energy density » one gets the expectation
values

($2) =c(w) = (EC/ZVO){SM + 3w,

#3043 ) eos (e =) (S-1) + 2]}
(29

The classical oscillator frequencies wy and w, do not appear as separated
quantities. The time-dependence of the expectation value (20) is deter-
mined by the beat frequency |w, — w; |. The sign of the difference
wy — wy does not enter. The phases of the plane waves in the sums (24)
vanish at ¢ = 0 for # = 0. For the superposition (25) of quantum states
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this position is shifted by the length
2 =2mmc/w for w=ws —w; >0and » =0,1,2.
If the difference between the circular frequencies is very small
4 | 2
($2) = c(w) = 72/7001{1 +g(2 + 31/2) cos [w(% - z‘) + ;m] }
for w < wy, (27)

then the ratio between the maximum and the minimum value of the
energy flux density and of the energy density is given by the number

() mas 1 1/2
maX — _—(35+12-3 = 4.2911.
<w>min 13 ( + )
This ratio should be measurable at positions whitin the wave-length
27c
A, = — 28
b= (28)

of the beat. The time-dependence of the expectation values (26) or (27) is
specific for the proper states (25) of the phase difference, whereas in a
proper state

[2,1) = 27%(a})’a3/0,0)
of the special occupation numbers 7; and 7, the beat vanishes
(2,1]5,12,1) = (5c/217) (5wr + 3ws),
although the other contributions are the same as in the expressions
(13) and (26).
Finally, the phase difference ©,,, is a measurable quantity, because the

maximum intensity can appear » times within the wave-length A}, of the
beat

max — ¢t =1 —=m/mAy. (m=1,2,3,...,n) (29)
The relation (21) can be interpreted in such a way that further maxima of
the intensity can appear within the wave-length A}, for an even occupation

number 7
Zmax — €t = (1/2 —m/m)Ny. (2m <n)
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