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Abstract

Ring-like partial algebras are studied that correspond to bounded lattices with an
involutory antiautomorphism and give rise to certain kinds of quantum logics.Various
extensions of the partial algebras to total algebras are investigated. Implications of
associativity and distributivity are discussed and relations to the structures of the
corresponding lattices are derived.

1. Introduction

Astudyof ring-like structureswhich are generalizations of Boolean rings
has been initiated in [2] and later developed in [1] and [5].The motivation
for this study is to ¢nd a most general framework for developing axi-
omatic quantum mechanics. It is well-known that usually orthomodular
lattices and generalizations of such lattices are used as models for quan-
tum logics. In the lattice-theoretical approach, however, only the lattice
meet and the complement have direct logical (and hence physical)
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interpretations; the lattice join cannot be interpreted directly (unlike
the join in Boolean algebras). Hence it was suggested in [2] to consider a
ring-theoretical approach to quantum logic, where the ring operations
correspond to meet (ring multiplication) and to symmetric di¡erence
� (ring addition in Boolean rings), respectively. The symmetric
di¡erence gives rise to a pseudometric by de¢ning

d�a; b� :� p�a� b�
for any subadditive measure p, which allows for a physical interpretation.
In the present study we will develop this idea further by starting with
partial generalized Boolean quasirings (pGBQRs) where only a partial
addition � with 0 and 1 is assumed (the latter corresponding to lattice
complement) and where the only total operation is multiplication (corre-
sponding to lattice meet).We showhow this partial algebraic operation�
can be extended to a total operation of addition � and we study various
possibilities of this extension (corresponding to various generalizations
of the operation of symmetric di¡erence).We give su¤cient and necessary
conditions for these operations to be associative and relate the associativ-
ity of our structures to the distributivity of the induced lattices. In partic-
ular, a simple characterization is derived for the case that the induced
lattice is a deMorgan algebra.Moreover,we introduce an operationwhich
gives rise to the notion of an implication in pGBQRs, and we study the
various kinds of distributivity due to the di¡erent operations that occur.
In [2] a generalized Boolean quasiring (GBQR) was introduced as an

algebra (R;�; �� of type (2,2) which contains two elements 0 and 1 such
that the following laws (1)^(8) hold:

x� y � y� x �1�
x� 0 � x �2�
�xy�z � x� yz� �3�

xy � yx �4�
xx � x �5�
x0 � 0 �6�
x1 � x �7�

1� �1� xy��1� x� � x �8�
It was shown in [2] that if one de¢nes inR x _ y :� 1� �1� x��1� y�,
x ^ y :� x � y and x 0 :� 1� x the algebra L�R� :� �R;_;^; 0 � is a
bounded lattice with an involutory antiautomorphism 0. On the other
hand, if one starts with a bounded lattice �L;_;^; 0 � with an involutory
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antiautomorphism 0 and de¢nes x� y :� �x _ y� ^ �x ^ y� 0 and xy :�
x ^ y, then R�L� :� �L;�; �� is a GBQR, though of a certain type: For
all x; y the equation

�1� �1� x��1� y���1� xy� � x� y �9�
is ful¢lled. In [1] a GBQRR in which equation (9) holds for all x; y;2 R
was called uniquely representable, because, as proved in [2] for GBQRs with
(9), R�L�R�� � R and L�R�L�� � L.
However, as wewill see this result is only a special case of a property of

partial GBQRs due to a certain extension of the partial operation�.
As far as uniquely representable GBQRs are concerned, in the follow-

ing we will make use of the two properties below (cf [1], [2]): For all
x; y 2 R;R a uniquely representable GBQR,

x� y � �1� x� � �1� y� �10�
x�x� y� � x�1� xy� � x� xy �11�

2. Partial GBQRs and Extensions

De¢nition 2.1. A partial algebra �R;�; �� of type (2,2) is called a partial
generalized Boolean quasiring (shortly, pGBQR) if there exist elements 0 and 1
of R such that� : f0; 1g � R! R and � : R� R! R and the follow-
ing hold:

0� x � x �2 0�
�xy�z � x� yz� �3 0�

xy � yx �4 0�
xx � x �5 0�
x0 � 0 �6 0�
x1 � x �7 0�

1� �1� xy��1� x� � x �8 0�
If we de¢ne for a pGBQR (R;�; ��

x _ y :� 1� �1� x��1� y�
x ^ y :� xy

x 0 :� 1� x

for all x; y 2 R and put L�R� :� �R;_;^; 0 ; 0; 1�, then one can show in
the very same way as for GBQRs (cf. [2]):
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Theorem 2.1. L�R� is a bounded lattice with an involutory antiautomorphism.
On the other hand, let L � �L;_;^; 0 ; 0; 1� be a bounded lattice with
an involutory antiautomorphism. If we now de¢ne

1� x :� x 0

0� x :� x

xy :� x ^ y

and put R�L� :� �L;�; ��, then one can prove by using the same
arguments as for GBQRs (cf. [2]):

Theorem 2.2. R�L� is a pGBQR.
Moreover, as for GBQRs we have

Theorem 2.3. L�R�L�� � L and R�L�R�� � R.

The proof of Theorem 2.3 follows the same lines as the respective proof
for GBQRs in [2].

De¢nition 2.2. Let �R;�; �) be a GBQR. The core of R is the partial
algebra �R;�; �� of type (2,2) de¢ned by

0� x :� x

1� x :� 1� x

Obviously, the core of everyGBQR is a pGBQR.Conversely, if (R;�; �) is
a pGBQR, thenwe can extend �R;�; �� to a GBQR �R;�; �� by de¢ning

0� x � x� 0 :� 0� x;

1� x � x� 1 :� 1� x; and

for x; y 2 Rnf0; 1g x� y � y� x 2 R:

Clearly, the core of �R;�; �� is exactly �R;�; ��.
In the following any extension � of � is always meant in the way
described above and x 0 will be short for 1� x � 1� x.

The canonical examples for extensions of� to a full operation� are

x�1 y :� 1� �1� x�1� y���1� �1� x� y� and
x�2 y :� �1� �1� x��1� y���1� xy�:

IfL�R� is a Boolean algebra, both�1 and�2 correspondend to the sym-
metric di¡erence 4. The operation �1 is suggested by the identity
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x4y � �x ^ y 0� _ �x 0 ^ y� � ��x ^ y 0� 0 ^ �x 0 ^ y� 0� 0 and �2 arises by
x4y � �x _ y� ^ �x 0 _ y 0� � �x 0 ^ y 0� 0 ^ �x ^ y� 0. The extension �2
yields a uniquely representable GBQR (as de¢ned in Section 1).

Next we discuss how �1, �2 and � in general are related to each other.
For this end we take into account that two important features of 4 are
x 04 y 0 � x4 y and x 0 ^ y4x4y4x _ y � �x 0 ^ y 0� 0 which give rise to
the assumptions

(i ) x 0 � y 0 � x� y and
(ii ) x 0y � x� y � �x 0y 0� 0

For pGBQRs andGBQRs x � y of course means xy � x. As one can see
easily (by calculations within the respective GBQRs or by means of the
underlying lattices L�R�� both assumptions are met by�1 and�2.

In the following we will frequently make use of the property that the
algebra L�R� associated with a GBQR is a lattice.The operations _ and
^ within results and proofs will always refer to this lattice. Moreover we
will take advantage of the relation x? y (x is orthogonal to y) as de¢ned for
lattices (namelyx? y, x � y 0 ).As for the commuting-relationxCy this
needs some care. LetRbe an arbitraryGBQRandx; y 2 R. According to
[1] we de¢ne that xcommuteswith y by

xCy :, y�1� x� � y� yx

Theorem 2.4. Let R be a GBQR that ful¢lls the assumptions (i) and (ii).Then
x�1 y � x� y � x�2 y for all x; y 2 R. Moreover, if there exist two elements
a; b 2 R with a 6� b such that a � a 0 and b � b 0 or ifthere exist elements c; d 2 R
with cd 0 � 0 that do not commute then�1 and�2 are not equal.

Proof: Since 0 is an involutory antiautomorphism x� y � x 0y implies
1� �x� y� � 1� x 0y and x� y � x 0 � y 0 � �x 0� 0 y 0 � xy 0 implies
1� �x� y� � 1� xy 0. Therefore 1� �x� y� � �1� x 0y��1� xy 0�,
hence x� y � x�1 y.
On the other hand x� y � 1� x 0y 0 and x� y � x 0 � y 0 � 1�
�x 0� 0�y 0� 0 yields x� y � �1� x 0y 0��1� xy� � x�2 y.
Now we assume that there exist a; b 2 R with a 6� b such that
a� a 0; b� b 0 and �1 ����2. Then a�1 b� 1��1� ab 0��1� a 0b� �
1� �1� ab� � ab and a�2 b � �1� a 0b 0��1� ab� � 1� ab.Therefore
ab � 1� ab � 1� a 0b 0, i.e. a ^ b � a _ b, hence a � b.

If there are c; d 2 R which do not commute such that cd 0 � 0 and
�1 � � � �2, then c�1 d � c�2 d implies 1� �1� cd 0��1� c 0d� �

On Ring-like Structures Occurring in Axiomatic QuantumMechanics 283



c 0d � �1� c 0d 0��1� cd�, wherefrom d�1� c� � dc 0d � d�1� c 0d 0�
�1� cd� � d�1� cd� � d � cd follows by (8) and (11). Therefore we
would have cCd, a contradiction. &

Figures 2.1 and 2.3 show examples of lattices L�R� of GBQRs R for
which �1 6� �2. For the GBQRRwhose lattice is illustrated in Fig. 2.2
the operations�1 and�2 coincide.

Theorem 2.5. For every pair of elements x, y of an arbitrary GBQR R
x�1 y � x�2 y. If x? y or if x � y equality holds. In particular, if L�R� is a
chain, then x�1 y � x�2 y forall x; y 2 R.

Proof: (8) implies x � 1� x 0y; y � 1� xy 0; x 0 � 1� xy 0, and y 0 �
1� x 0y. Therefore 1� xy � 1� �1� x 0y��1� xy 0� � x�1 y and
1� x 0y 0 � 1� �1� xy 0��1� x 0y� � x�1 y, wherefrom we can con-
clude x�2 y � �1� x 0y 0��1� xy� � x�1 y. If x? y then x � y 0 and
equivalently x 0 � y. Thus x�1 y � 1� �1� x��1� y� � �1� x 0y 0�
�1� xy� � x�2 y. If x � y then x�2 y � �1� y 0� �1� x� � yx 0
because of x 0 � y 0, and 1� �x�1 y� � �1� xy 0� �1� �x�2 y��.
Therefore 1� �x�1 y� � 1� �x�2 y�, hence x�1 y � x�2 y. &

3. Associativity of Addition

We now reduce our investigations to the case that � is either �1 or �2.
For other kinds of extensions of � similar results can be obtained (if �
ful¢ls appropriate assumptions). As for the associativity of �1 and �2 it
even su¤ces only to study�2, because

Lemma 3.1. For a pGBQR the extension �1 is associative i¡�2 is associative.
In this case�1 and�2 are equal.

Fig. 2.1 Fig. 2.2 Fig. 2.3
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Proof: For i; j 2 f1; 2g and i 6� j a 0 � i b 0 � a� i b and a� i b �
�a 0 � j b� 0. Therefore, if we assume � i to be associative, we obtain for
x; y; z 2 R:x � j � y� j z�� �x 0 � i � y 0 � i z� 0� 0� �x � i ��1 � i y�
� iz�� 0 � �1� i �x� i � y� i z��� 0 � x� i � y� i z�. From this we can
conclude x� j � y� j z� � �x� j y� � j z. Moreover, putting z � 0 in
x� j � y� j z� � x� i � y� i z� shows x� j y � x� i y. &

Lemma 3.2. Let �R;�2; �� be a GBQR such that�2 is associative.Then L�R�
must not contain one of the following sublattices fa; b; c; d ; eg illustrated in Fig. 3.1
and Fig.3.2 for which we assume d 0 � e.

Proof: Let � be �2. If L�R� contains a sublattice isomorphic to that in
Fig. 3.1 then

�a� b� � c � �e _ c� ^ �e 0 _ c 0� � e ^ c 0 � c 0 6� a 0 � e ^ a 0 �
� �a _ e� ^ �a 0 _ e 0� � a� �b� c�:

If L�R� contains a sublattice isomorphic to that in Fig. 3.2 then
�a� c� � b � �e _ b� ^ �e 0 _ b 0� � e ^ b 0 � b 0 6� a 0 � e ^ a 0 �

� �a _ e� ^ �a 0 _ e 0� � a� �c� b�:
&

Conjecture 3.1. Associativity of�2 in a GBQR �R;�2; �� implies distri-
butivity of L�R�.

To the end of this section we will assume L�R� to be distributive, i.e.
L�R� is a de Morgan algebra. (In this case a normal form system for the
polynomials overL�R� is known,which canbe used to prove the equality
of terms (cf. [3]).) Moreover,� will always be assumed to be�2.

Lemma 3.3. Let R be a uniquely representable GBQR such that L�R�
is distributive: Then � is associative i¡ �1� y� � z � 1� � y� z� for all

Fig. 3.1 Fig. 3.2
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y; z 2 R, which, in terms of lattice operationsmeans

� y 0 _ z� ^ � y _ z 0� � � y 0 ^ z 0� _ � y ^ z�: �12�
Proof: If equation (12) holds

�x� y� � z � ���x _ y� ^ �x 0 _ y 0�� _ z � ^ ��x _ y� ^ �x ^ y� 0 ^ z � 0 �
� �x _ y _ z� ^ �x 0 _ y 0 _ z� ^ ���x 0 ^ y 0� _ �x ^ y�� _ z 0� �
� �x _ y _ z� ^ �x 0 _ y 0 _ z� ^ �x 0 _ y _ z 0� ^ �x _ y 0 _ z 0�:

x� � y� z� is obtained by interchanging x and z within the last expres-
sion which exactly yields the same terms. Hence �x� y� � z � x�
� y� z�. &

Lemma 3.4. Let R be a uniquely representable GBQR such that L�R� is distribu-
tive.Then �1� y� � z � 1� � y� z� for all y; z 2 R i¡ yy 0 ? zz 0 for every y
and z.

Proof: �1� y� � z � 1� � y� z� is equivalent to (12). From (12) it
follows

y ^ y 0 � � y 0 _ z� ^ � y _ z 0� � � y 0 ^ z 0� _ � y ^ z� � z _ z 0:
Conversely, if y ^ y 0? z ^ z 0 for all y, z the inequalities y ^ y 0 � z _ z 0
and z ^ z 0 � y _ y 0 imply
� y 0 _ z� ^ � y _ z 0� � � y 0 ^ y� _ � y 0 ^ z 0� _ �z ^ y� _ �z ^ z 0� �

� � y 0 _ y� ^ � y 0 _ z� ^ �z 0 _ y� ^ �z 0 _ z�
� � y 0 ^ z 0� _ � y ^ z�

whence (12) follows. &

De¢nition 3.1. LetLbe a lattice with an involutory antiautomorphism 0
and OK�L� :� fx ^ x 0jx 2 Lg.Then - as can be seen easily - OK�L� is
an order ideal which can also be characterized by OK�L� �
fx 2 Ljx?xg.ThereforeOK�L�will be called the orthogonalkernel ofL .

Moreover, if for a subsetA of La? b for all distinct a; b 2 A;A will be
called orthogonal.

Theorem 3.1. LetR bea uniquely representableGBQR such that L�R� is distribu-
tive.Then thefollowing are equivalent:

(i)�1 is associative.
(ii)�2 is associative.
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(iii)�1 equals�2.
(iv) OK�L�R�� is orthogonal.

Proof: The equivalence of (i), (ii) and (iii) is due to Lemmata 3.1 and 3.3
(dual form of (12)) and that (ii) and (iv) are equivalent follows byLemmata
3.3 and 3.4. &

4. Distributivity in GBQRs

De¢nition 4.1. An (arbitrary) GBQR �R;�; �� is called distributive, if � is
distributive with respect to�.

Lemma 4.1. Let � be an arbitraty extension of the operation � of a pGBQR
�R;�; �). If y�1� x� � y� xy forall x; y 2 R thenL�R� is a Boolean algebra.

Proof: Assume y�1� x� � y� xy for any x; y 2 R, which means that
xCy for all x; y 2 R. Then �1� xy� � �x� xy� � �1� xy��
x�1� xy� � �1� xy��1� x� � 1� x by (8). Substituting 1� xy for x
in

�1� xy� � �x� xy� � 1� x �13�
and again applying (13) we obtain that �1� �y� xy�� � ��1� xy��
� y� xy�� � �1� � y� xy�� � �1� y� equals 1� �1� xy� � xy. Thus,
if we putx � 0we infer �1� y� � �1� y� � 0 for every y 2 R. From this
we can conclude thatR is of characteristic 2, i.e. x� x � 0 for all x 2 R.
x� x � 0 implies x�1� x� � xx 0 � x ^ x 0 � 0 and x _ x 0 � 1�
xx 0 � 1. Therefore L�R� is an ortholattice. Moreover, x � y yields
x _ � y ^ x 0��1� �1� x��1� yx 0��1� �x 0 � yx 0� � 1� x 0�1� y�
� 1� y 0 � y, which shows thatL�R� is orthomodular. SincexCy implies
y ^ x 0 � y ^ � y 0 _ x 0�;L�R� is a Boolean algebra (cf. [4]). &

Theorem 4.1. Let R be an arbitrary GBQR �R;�; �� such that � ful¢ls the
assumptions (i) x 0 � y 0 � x� y and (ii) x 0y � x� y � 1� x 0y 0.Then R is
distributive i¡ L�R� is a Boolean algebra, in which case R is a Boolean ring and
� � �1 � �2.

Proof: If � is distributive with respect to �; y�1� x� � y� xy for all
x; y 2 R, hence L�R� is a Boolean algebra by Lemma 4.1.
Conversely, assume L�R� is a Boolean algebra. Then according to
Theorem 2.4 (i) and (ii) imply x�1 y � x�2 y: Since L�R� is a Boolean
algebra, we obtain x�1 y � x� y � x�2 y: Because x� x � 0 for all
x 2 R,R is a Boolean quasiring (in the sense of [2]), and as shown in [2],
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Boolean quasirings for which L�R� is a Boolean algebra are Boolean
rings. &

Let �R;�; �) be a pGBQR. We de¢ne on R a new binary operation,
denoted by �, as follows:

x � y :� 1� x�1� y�
for all x; y 2 R. This operation in L�R� is equivalent to x � y �
�x ^ y 0� 0 � x 0 _ y and is also denoted by x! y (the operation of
implication).

De¢nition 4.2. We say that �R;�; �� is �-distributive if � is left-distributive
with respect to �, i.e.

x � � yz� � �x � y��x � z�
for all x; y; z 2 R.

We have the following theorem:

Theorem 4.2. AGBQRR is �-distributive i¡ L�R� is distributive.

Proof: For all x; y; z 2 R we have

x � � yz� � x 0 _ � y ^ z�
�x � y��x � z� � �x 0 _ y� ^ �x 0 _ z�

&

The operation � is in some sense dual to � since for all x; y 2 R we
have

x � y � 1� x�1� y� � �xy 0� 0
xy � 1� �x � �1� y�� � �x � y 0� 0

Interchanging �with � does not violate the identity.

Let us point out that the operation � seemsmore natural to be used in the
theory of GBQRs than the operation_ (lattice join) because x � y can be
interpreted as implication x! ywhich has some meaning whenwe pass
to quantum logic whereas the operation_ has no direct interpretation in
the framework of quantum logic. In quantum logic, �-distributivity can
be naturally interpreted as

p! �q ^ r� , � p! q� ^ � p! r�
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whereas lattice distributivity has no direct quantum logic interpretation
(though both properties are equivalent in GBQRs).
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