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Abstract

Answering a question posed recently by Ludwig Reich, we give a description of solu-
tions to the functional equation

k f �x� y� k � k g�x� � h� y� k :
Unexpectedly, even in strictly convex spaces, this equation fails to be equivalent to the
Pexider functional equation.

1. Introduction

The aim of this paper is to answer a question posed by Professor Ludwig
Reich during my stay at the Karl-Franzens UniversitÌt (Graz, Austria,
Autumn1994): give a description of solutions to the functional equation

k f �x� y� k � k g�x� � h2 l� y� k : �1�
The case where f � g � h has extensively been studied by many authors,
see e.g. P. Fischer and G. Muszëly [5]. J. Dhombres [3], J. Aczël and
J. Dhombres [2] and R. Ger [6].The reasonwhy the functional equation

k f �x� y� k � k f �x� � f 2 l� y� k �F�
aroused so much interest is, on one side, the fact that it generalizes



conditional Cauchy functional equations of the type

f �x� y� n � � f �x� � f � y�� n
(widely investigated in sixties) and, on the other side, because of its links
with the theory of isometries; last but not least it leads to some character-
izations of strictly convex normed linear spaces as well as to some of their
generalizations. The main result from [6] states that any map f from a
(not necessarily commutative) group into a strictly convex space has to
be additive, i.e. to satisfy the Cauchy equation

f �x� y� � f �x� � f 2 l� y�: �C�
Surprisingly, in contrast to that, even in the case of strictly convex

ranges, equation (1) fails to be equivalent to the Pexider functional
equation

f �x� y� � g�x� � h2 l� y�: �P�
Indeed, let (X;�� be a groupoid and let �Y ; k � k � be a normed lin-

ear space with dim Y � 2. Fix arbitrarily a nonnegative number % and a
d 2 Y . Denoting by S�a; %� the sphere fu 2 Y : k u ÿ a k � %g, a 2 Y,
one can easily check that the triple � f ; g; d� yields a solution to (1) forquite
arbitrarymappings f : X ! S�0; %� and g : X ! S�ÿd ; %�.Therefore, in
general, equation (1) enjoys an abundance of solutions being far from
translations of an additive map which are the only ones satisfying the
Pexider equation (cf. J. Aczël [1] or M. Kuczma [7], for instance). As we
shall see later on such a phenomenon is caused by the lack of zeros of the
map f. If f vanishes at at least one point of its domain then all the triples
� f ; g; h� ful¢lling (1) may be expressed in terms of mappingsG ful¢lling
the equation

kG�xÿ y� k � kG�x� ÿ G2 l� y� k : �2�
We terminate this paper with a detailed discussion of solutions of this

equation.

2. Solutions Admitting Zeros

Assuming that either f or, equivalently, the two-place function
�x; y� ! g�x� � h2 l� y� vanishes at some point we shall reduce equation
(1) to (2). Namely we have the following

Theorem 1. Let �X;�� be a group (not necessarily commutative) and let
�Y ; k � k � be a (real or complex) normed linear space. Assume that functions f, g, h:
X ! Y satisfy thefunctional equation (1) forall x; y 2 X and f �x0� � 0 for some
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x0 2 X.Then there exists a solution G : X ! Y ofequation (2) and a vector a 2 Y
such that

g�x� � G�x� � a; x 2 X; �3�
h�x� � ÿG�x0 ÿ x� ÿ a; x 2 X; �4�

and f is a selection of the multifunction

X 3 x! S�0; kG�x� ÿ G�x0� k� � Y: �5�
Conversely, for every solution G : X ! Y of equation (2), for every vector

a 2 Y, for every point x0 2 X and for every selection f of the multifunction (5), the
triple (f, g, h) with g and h given by (3) and (4), respectively, yields a solution to (1)
with f �x0� � 0.

Proof: Assume that functions f ; g; h : X ! Y satisfy (1) and f �x0� � 0.
Since, for every t 2 X we have

0 � k f �x0� k � k f ��x0 ÿ t� � t� k � k g�x0 ÿ t� � h�t� k
we infer that

h�t� � ÿg�x0 ÿ t� for all t 2 X:

Consequently, for all x; y 2 X one has

k f �x� y� k � k g�x� ÿ g�x0 ÿ y� k;
or, equivalently,

k f �xÿ y� x0� k � k g�x� ÿ g2 l� y� k:
Setting F�t� :� f �t � x0� and G�t� :� g�t� ÿ g�0�, t 2 X, we get the
relationship

kF�xÿ y� k � kG�x� ÿ G2 l� y� k ;
valid for every x; y 2 X. In particular, since obviously G�0� � 0, the
equality kF�x� k � kG�x� k holds true for all x 2 X , which implies
that

kG�xÿ y� k � kG�x� ÿ G2 l� y� k x; y 2 X;

i.e. equation (2) is satis¢ed. Putting a :� g�0� we get (4) by means of the
de¢nition of G and h�x� � ÿg�x0 ÿ x� � ÿG�x0 ÿ x� ÿ a for all
x 2 X, which proves the validity of (5). To ¢nish the necessity part of
the proof observe that

k f �x� k�kF�xÿ x0� k�kG�xÿ x0� k�kG�x� ÿ G�x0� k;x 2 X;
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which says that

f �x� 2 S�0; kG�x� ÿ G�x0� k �
for all x 2 X , as claimed.
To prove the converse, ¢x arbitrarily x; y 2 X.Then applying relation-

ships (5), (2), (3) and (4) subsequently, we arrive at

k f �x� y� k
� kG�x� y� ÿ G�x0� k � kG�x� y � x0� k � kG�xÿ �x0 ÿ y�� k
� kG�x� ÿ G�x0 ÿ y� k � k�G�x� � a� � �ÿG�x0 ÿ y� ÿ a� k
� k g�x� � h2 l� y� k;
which completes the proof.

Remark1. The assumption on f to possess a zero inXmay equivalently
be replaced by the requirement

hÿ1�ÿg�X�� 6� ; or gÿ1�ÿh�X�� 6� ;:
In particular, this is the case provided that at least one of the maps g and h
is surjective.

Proof: If, say � 2 hÿ1�ÿg�X��, then there exists a � 2 X such that
h��� � ÿg�u� whence by setting x0 :� u � � we get

k f �x0� k � k f �u � �� k � k g�u� � h��� k � 0:

Theorem 2. Under the assumptions of Theorem 1 if, additionally, the target space
�Y ; k � k � is strictly convex, functions f ; g; h : X ! Y satisfy equation (1),
f �x0� � 0 for some x0 2 X, and either the even part of g is constant or the function
X 3 x! h�x� x0� 2 y has constant even part, then there exists an additive map
G : X ! Y and constants a; b 2 Y such that

g�x� � G�x� � a; x 2 X; �3 0�
h�x� � G�x� � b; x 2 X; �4 0�

and f is a selection ofthemultifunction

X 3 x 7ÿ! S�0; kG�x� � a� b k � � Y : �5 0�
Conversely, for every additive function G : X ! Y , for every vectors a; b 2 Y and

for every selection f ofthemultifunction �5 0�, the triple (f, g, h) with g and h given by �3 0�
and �4 0�, respectively, yields a solution to (1).
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Proof: Only the `̀ if''part requires amotivation.On account of Theorem1,
there exists a solution G : X ! Y of equation (2) and a vector a 2 Y
such that relationships (3), (4) and (5) hold true.
Assume ¢rst that the even part of g is constant. Since each solution

G of (2) vanishes at zero we get const � g�x� � g�ÿx� �
G�x� � G�ÿx� � 2a � 2a which proves that G is odd. Consequently,
equation (2) assumes the form

kG�x� y� k � kG�x� � G� y� k
for all x; y 2 X. An appeal to [6,Theorem1] shows thatG has to be addi-
tive. Therefore relation (4) reduces itself to (4 0�with b :� ÿG�x0� ÿ a
and, similarly, the multifunction (5) is transformed into �5 0�.
Assuming now that the even part of the function X 3 x 7ÿ!

h�x� x0� 2 Y is constant we have to have

ÿ2a � 2h�x0� � h�x� x0� � h�ÿx� x0� � ÿ2aÿ �G�x� � G�ÿx��
which, again, shows thatG is odd. Repeating the last part of the previous
considerations completes the proof.

Remark 2. A particular selection

f �x� :� G�x� � a� b; x 2 X;

of the multifunction �5 0� inTheorem 2 leads to a solution � f ; g; h� of the
Pexider equation (P). However, in general,Theorem 2 shows that even in
the case of strictly convex ranges, a solution � f ; g; h� of (1) may still be far
from any triple solving (P) because of multitude of possible selections f.
Nevertheless, remarkable is the fact that functions g and h in any such
triple are exactly those occurring in solutions of th Pexider equation
(translations of an additive function).

3. Basic Equation and Additivity

Equation (2), it appears, happened to be basic while studying (1).
Obviously, each odd solution of (2) satis¢es (F) and every solution of (F)
is easily checked to be odd.Therefore

Remark 3. Equations (2) and (F) are equivalent in the class of odd func-
tions mapping a group into a normed linear space.

Replacing x by x� y in (2) we arrive at

kG�x� k � kG�x� y� ÿ G2 l� y� k ;

A Pexider-Type Equation in Normed Linear Spaces 295



which, in case of Abelian domains, is equivalent to

kG�x� y� ÿ G�x� k � kG2 l� y� k : �S�
Equally simple is the way back whence

Remark 4. Equations (2) and (S) are equivalent in the class of functions
mapping a commutative group into a normed linear space.
Equation (S) was examined by F. Skof [8] in the case where the

unknown functionG is de¢ned on a real linear space. Her principal goal
was to give su¤cient conditions for a solution of (S) to be additive. As we
shall see later on, the main results ([8,Theorems1and 2]) are special cases
of ourTheorem 3 (ii) and Corollary 2, respectively.

We proceed with the following

Theorem3. LetX;�� beanAbeliangroupandlet �Y ; k � k � beastrictly convex
normed linearspace. If g : X 7ÿ!Y is a solution to equation

kG�xÿ y� k � kG�x� ÿ G� y� k ; x; y 2 X; �2�
then thefollowing conditions arepairwise equivalent:

(i) G is additive;
(ii) G�X� � ÿG�X�;
(iii) G is odd;
(iv) kG�2x� k � 2 k �G�x� k for all x 2 X:

Proof: Implication (i)) (ii) results from the fact that anyadditive function
is odd.
To prove that (ii)) (iii) ¢x arbitrarily anx 2 X and choose a y 2 X to

have G� y� � ÿG�x�.Then, apply relation (2) twice to get
kG�x� y� � G�x� k � kG�x� k � kG�x� ÿ G�x� y� k �6�

implying that

kG�x� y� � G�x� k � kG�x� ÿ G�x� y� k
� 2 kG�x� k � k �G�x� y� � G�x�� � �G�x� ÿ G�x� y�� k :

Now, on account of the strict convexity ofY we derive the existence of a
nonnegative scalar ��x; y� such that

G�x� y� � G�x� � ��x; y��G�x� ÿ G�x� y��:
By means of (6) this shows that ��x; y� � 1 whenever G�x� 6� 0 and,
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consequently,

0 � kG� y� x� k � kG� yÿ �ÿx�� k � kG� y� ÿ G�ÿx�� k
� kG�x� � G�ÿx�� k :

Thus G�ÿx� � ÿG�x� which, obviously, holds true also in the case
whereG�x� � 0 (put y � ÿx in (S)).
Assuming (iii) and setting y � ÿx in (2) we get (iv).
The task is now to show that (iv)) (i). Replacing ybyÿy in (2)we infer

that

kG�x� y� k � kG�x� ÿ G�ÿy� k ; x; y 2 X: �7�
In particular, kG� y� k � kG�ÿy� k , y 2 X, for G�0� � 0 whence, for
every x 2 X, one has

kG�x� k � k ÿ G�ÿx� k � 2 kG�x� k � kG�2x� k
� kG�x� � �ÿG�ÿx�� k

because of (6) applied for y � x. Now, by means of the strict convexity of
Y, for every x 2 X there exists a nonnegative number ��x� such that
ÿG�ÿx� � ��x�G�x�.Therefore, an appeal to (7) shows that

kG�x� y� k � kG�x� � �2 l� y�G2 l� y� k ; x; y 2 X: �8�
Putting here x � 0 gives the equality

kG2 l� y� k � �2 l� y� kG2 l� y� k
valid for every y 2 Y, which implies that �2 l� y� � 1 provided that
G� y� 6� 0. Consequently, by virtue of (8), for all x; y 2 X , we get

kG�x� y� k � kG�x� � G2 l� y� k
whenever G� y� 6� 0. However, the latter equation is satis¢ed also in the
case where G� y� � 0, since then G�ÿy� � 0 as well and (2) proves that
kG�x� y� k � kG�x� � G�ÿy� k � kG�x� k for allx 2 X.Thus,G
satis¢es equation (F) and it remains to apply Theorem 1 from [6] once
again to show that G is also a solution to the Cauchy equation (C).This
¢nishes the proof.

Remark 5. The commutativityof �X;��was used exclusively to show that
(ii)) (iii). Even in this case the relationship

kG�x� y� k � kG� y� x� k ; x; y 2 X; �9�
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is su¤cient to conduct the part of the proofof Theorem3. Indeed, having
(9) we replace y by yÿ x to get

kG� y� k � kG�x� yÿ x� k � kG�x� y� ÿ G�x� k
and that is what was really needed.The questionwhether or not equation
(2) implies (9) in non-Abelian groups remains open.

Remark 6. Unlike (F) equation (2) always admits nonadditive solutions
(nomatter whether or not the target space is strictly convex) provided that
the domain constitutes a group possessing subgroups of index 2. If that is
the case, �K;�� is a subgroup of index 2 of the group �X;�� and c 6� 0 is
an arbitrarily ¢xed vector of the normed linear space �Y ; k � k �, then
any function G : X ! Y given by the formula

G�x� � 0 if x 2 K
c if x 2 XnK

�
�10�

yields a nonadditive solution of equation (2). Indeed, G being even and
nonzero cannot be additive since, otherwise, it would be odd.To check
that it satis¢es equation (2) ¢x arbitrarily a pair (x; y� 2 X 2.The follow-
ing three possibilities have to be distinguished:
(a) x; y 2 K: then so does xÿ y and both sides of (2) are equal to 0;
(b) x; y 2 XnK: then xÿ y is in K and we have the equalities

G�xÿ y� � 0 � cÿ c � G�x� ÿ G� y�;
(c) exactlyone of the argumentsx; y is inK: thenxÿ y 2 XnKwhence

G�xÿ y� � c andG�x� ÿ G2 l� y� 2 fÿc; cg; thus (2) is satis¢ed aswell.

Remark 7. Functions of the form (10) are, jointly with the additive solu-
tions, the only ones that satisfy Mikusi�nski's functional equation

G�x� y� 6� 0 implies G�x� y� � G�x� � G� y�: �M�
(cf. L. Dubikajtis, C. Ferens, R. Ger&M.Kuczma [4] orM. Kuczma [7]).
Therefore, in the light ofRemark 6, each solution of equation (M) satis¢es
the basic equation (2). In the next section we shall show, among others,
that the converse is true in the case of real functionals on groups.

4. Solutions withValues in Inner-Product Spaces

Except fotTheorem 4 below, in the present sectionwe deal with solutions
to the basic equation (2) which map a given group into an inner-product
space. So, we replace the assumption of strict convexity upon the target
space by a stronger requirement: the norm comes from an inner-product
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structure. In particular, every odd solution in the class spoken of is nesse-
carily additive (seeTheorem 3). It turns out that under the 2-divisibility
assumption upon the domain the even solutions are just the trivial ones
regardless of the kind of norm considered.

Theorem 4. Let �X;�� be a 2-divisible group (not necessarily commutative) and let
�Y ; � k � k � bea normed linearspace (real orcomplex).Then any even solution ofequation
(2), mapping X intoY vanishes identically on X.

Proof: Let G : X ! Y be an even solution of (2). Replacing y by ÿy
in (2) leads to

kG�x� y� k � kG�x� ÿ G� y� k ; x; y 2 X;

whence, by putting here y � x we obtain the equality

G�2x� � 0

valid for all x 2 X. An appeal to the 2-divisibility assumption on X
completes the proof.

Remark 8. In view of Remark 4 the divisibility assumption is essential
because each function of the form (10) is even.

Theorme 5. Let �X;�� be an arbitrary group (not necessarily commutative) and let
�Y ; ��j��� be an inner-product space (real or complex).Then G : X ! Y is a solution
ofthe equation

kG�xÿ y� k � kG�x� ÿ G2 l� y� k ; x; y 2 X; �2�
ifand only if

kG�x� � G2 l� y� k 2 � kG�x� y� k 2 � 4Re�G�x�jGe2 l� y�� �11�
forall, x; y 2 X, where Ge stands for the even part of G.

Proof: LetG : X ! Y be a solution of (2). Fix arbitrarily x; y 2 X.Then

kG�x� y� k 2 � kG�x� ÿ G�ÿy� k 2 � kG�x� k 2

� kG2 l� y� k 2 ÿ 2Re�G�x�jG�ÿy��
and, similarly,

kG�xÿ y� k 2 � kG�x� ÿ G2 l� y� k 2 � kG�x� k 2

� kG2 l� y� k 2 ÿ 2Re�G�x�jG2 l� y��
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whence, by means of the parallelogram property of the norm

kG�x� y� k 2 � kG�xÿ y� k 2 � 2 kG�x� k 2 � 2 kG2 l� y� k 2

ÿ 4Re�G�x�jGe2 l� y��
� kG�x� � G2 l� y� k 2 � kG�x� ÿ G2 l� y� k 2 ÿ 4Re�G�x�jGe2 l� y��:

Now, applying equation (2) once again, we get (11).
Conversely, assume the validity of (11) for all x; y 2 X. Observe ¢rst

that G�0� � 0 which can easily be derived by setting x � y � 0 in (11).
Now, setting y � ÿx in (11), we obtain the equalities

kG�x� � G�ÿx� k 2 � 4Re�G�x�jGe�x�� � 2 kG�x� k 2

� 2Re�G�x�jG�ÿx��
and, consequently,

kG�ÿx� k � kG�x� k ; x 2 X:

Equation (11) says now that

kG�x� k2 ÿ 2Re�G�x�jG�ÿy�� � kG�ÿy� k2 � kG�x� y� k2
or, equivalently,

kG�x� ÿ G�ÿy� k � kG�xÿ �ÿy�� k
holds true for all x; y 2 X , which, evidently, says nothing else but (2) and
the proof has been completed.

Theorem 6. Let �X;�� be a commutativegroup and let �Y ; ��j��� be a real inner-
productspace.Then equation (2) is equivalentto the system

kG�x��G2 l� y� k2� kG�x�y� k2�kG�x��G2 l� y�ÿG�x�y� k2
kG�x� � G2 l� y� ÿ G�x� y� k2 � 4�G�x�jGe2 l� y��

assumed forall x; y 2 X.

Proof: Let G : X ! Y be a solution of (2).With the aid of Theorem 5
we get (11) and, therefore, it su¤ces to check the validity of the ¢rst
equation of the system considered. To this end, note that for every
x; y 2 X one has

kG2 l� y� k2� kG�x� ÿ G�xÿ y� k2�kG�x� k2
ÿ 2�G�x�jG�xÿ y�� � kG�xÿ y� k2
�2 kG�x� k2ÿ2�G�x�jG�xÿy��G2 l� y���kG2 l� y� k 2;
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i.e.
kG�x� k 2 � �G�x�jG�xÿ y� � G2 l� y��:

This clearly forces

0 � �G�x�jG�xÿ y� � G2 l� y� ÿ G�x��
� 1
4
� kG�xÿ y� � G2 l� y� k2 ÿ k 2G�x� ÿ G�xÿ y� ÿ G2 l� y� k2�

and, in consequence, the equality

kG�xÿ y� � G2 l� y� k � k 2G�x� ÿ G�xÿ y� ÿ G2 l� y� k
is satis¢ed for all x; y 2 X. Finally, replacing herex by x� y, with the aid
of the parallelogram property, we conclude that

kG�x� � G2 l� y� k2 �k 2G�x�y�ÿG�x�ÿG2 l� y� k2
�kG�x�y���G�x�y�ÿG�x�ÿG2 l� y��k2
�2 kG�x�y� k2�2 kG�x�y�ÿG�x�ÿG� y� k2
ÿ kG�x� � G2 l� y� k2

holds true for every x; y 2 X, which is our claim.
Conversely, assuming that the system is satis¢ed for all pairs of argu-

ments �x; y� 2 X 2, we immediately derive the relationship (11) which, by
virtue of Theorem 5, implies the validity of equation (2). This ends the
proof.

Corollary 1. Under the assumptions of Theorem 6 every solution G : X ! Y of
equation (2) has the following property:

Go�x�?Ge2 l� y� for every x; y 2 X:

where Go and Ge stand for the odd and even part of G, respectively. In particular, if
the set fG0�x� : x 2 Xg is total thenG is additive.

Proof:

kG�x� � G2 l� y� k2 � kG�x� y� k2 � 4�G�x�jGe2 l� y��
for all x; y 2 X. Interchanging the roles ofx and y, due to the commuta-
tivity of �X;�� we get also

kG�x� � G2 l� y� k 2 � kG�x� y� k 2 � 4�G2 l� y�jGe�x��
whence

�G�x�jGe2 l� y� � �G2 l� y�jGe�x��
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for all x; y 2 X. Plainly, we have

�G�ÿx�jGe2 l� y� � �G2 l� y�jGe�x��; x; y 2 X;

which, by subtracting these two equalities, leads to the desired conclu-
sion.
Recall that a subset A of an inner product space �Y; ��j��� is termed

total provided that the zero vector in Y is the only one being perpendi-
cular to every member of the set A. Therefore, assuming that the set
fGo�x� : x 2 Xg is total we infer that Ge has to vanish identically on
X. Thus G itself is an odd function and it remains to applyTheorem 3
(iii) to ¢nish the proof.

Theorem 7. Let �X;�� be a commutative group.Then a function G : X ! R
satis¢es the equation

jG�xÿ y�j � jG�x� ÿ G2 l� y�j; x; y 2 X; �12�
ifand only if G is a solution toMikusi�nski's equation

G�x� y��G�x� y� ÿ G�x� ÿ G2 l� y�� � 0; x; y 2 X: �13�

Proof: Let G : X ! R be a solution of (12). An appeal toTheorem 6
shows that

G�x� y�?G�x� y� ÿ G�x� ÿ G2 l� y�
for all x; y 2 X which, in the real case, states nothing else but (13).
As to the converse Remark 7 may directly be applied. This ends the

proof.

Remark 7 jointly withTheorem 7 immediately imply the following

Corollary 2. If �X;�� is a commutative group with no subgroups of index 2, then a
function G : X ! R satis¢es equation (12) ifand only if G is additive.
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