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1. Introduction: Applications of General Results

In this paper wewant to continue our previous investigations on the local
distribution of power series transformations with respect to embeddabil-
ity (see [1] and [2]). By embeddability of a (formal) power series transfor-
mation Fwe mean the fact that this F can be embedded into an analytic
1-parameter group �Ft� t2C of such transformations so that F1 � F. As
we emphasized in [2] all informations about distribution of embeddable
(iterable) or noniterable power series transformations depend on how
much we know about the so called normal (i.e. semicanonical) forms of
these transformations.The ¢rst case in dimension n > 1we may thinkof
are the so called analytic contractions the normal forms of which are of
polynomial type (see [3] and [4]). In particular, the semicanonical forms
for n � 2 and n � 3 are rather well understood and they were used in [5]
to give the ¢rst examples of analytic contractions in C 3 which are not
embeddable. In [6] J. Schwaiger used these normal forms for contractions
inC 3 to characterize these contractionswhich are not iterable, andwewill
heavily depend on his results. Let me also note that if a contraction repre-
sents an analytic mapping (i.e. the series are convergent) then the results
above mentioned and to be presented in our paper make also sense for



analytic mappings instead only for automorphisms of the ring
C x1;x2;x3� �� � of formal series. This stems from the fact that both the
normal forms and the transformations to these forms converge in the case
of biholomorphic contractions (see [7]). Let me also mention that the
problem of the distribution of iterable and non iterable power series
transformations was the ¢rst time raised by Sternberg in [8].
For details about the notions and the basic resultswe refer the reader to

[2]. Here we will only recall the most important facts.
An automorphismus F : 7!Az�P�z� of the ring of formal series

C z1; . . . ; zn� �� � (which is continuous in theweak topology) is called a con-
traction if the eigenvalues �1; . . . ; �n of the matrix of its linear part
z 7!Az ful¢ll the condition

0 < j� ij < 1; i � 1; . . . n: �1�
By a suitable linear change of coordinates we may arrange the eigenvalues
such that

0 < j� nj � j� nÿ1j � � � � � j�1j < 1 �2�
holds which we will assume in the sequel. In [3] it was shown that the
normal (rather semicanonical) forms of contractions with respect to con-
jugation can be described as follows:
They have the structure

N�z� � Jz� n�z�; n�z� � n1�z�; . . . ; n n�z�� �
where J is theJordan canonical form ofAwhile nk�z� is a polynomial in
z � t z1; . . . ; zn� � such that amonomial z� 11 . . . z�nn �1 � �2 . . .� �� n� 2�
may have a non zero coe¤cient in nk�z� only if the relation

�k � �� 11 . . . �� kÿ1kÿ1 �3�
together with �k � � � � � � n � 0 holds.There is only a ¢nite set of rela-
tions of type (3) for k � 1; . . . ; n, this set clearly may be empty. As a con-
sequence the power series nk�z� reduce to polynomials, and as a
consequence of (2) and (3), to polynomials in z1; z2; . . . ; zkÿ1�k� 2,
for k � 1 there is always no relation (3)).
It iswell known that all contractions inC 1 andC 2 are iterable.The ¢rst

examples of a noniterable contractionwas constructed in [5] by E. Peschl
and the author, and later onJ. Schwaiger proved in [6] that these examples
covered already the general case of noniterable contractions in C 3. For
what follows we need to describe Schwaiger's result in some detail.
It is shown in [6] that the non iterable contractions in C 3 assumed in

normal form can be characterized in the following way. They have the
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representation
y1 � �1x1

y2 � �2x2

y3 � �3x3

X� 0=� 1� �

��0
a�x

� 0��� 1
1 x� 0ÿ�� 1

2

�4�

with three distinct eigenvalues �1; �2; �3; there is no relation
�2 � � l1�l � 2� for �2, but at least one relation of type

�
�� 1
2 � � �� 1

1 ; 1 < ��1 < ��1:

Among these relations there is exactly one with minimal ��1 � �1, we
will denote it by

�� 1
2 � �� 1

1 : �5�
Furthermore, let us assume that there are relations for �3, i.e. of type

�3 � � �� 0
1 �

��0
2 ; ��0; ��0� 0; ��0 � ��0� 2:

The set of all relations for �3 is then given by

�3 � �� 0��� 1
1 �� 0��� 1

2 ; � � 0; 1; . . . ; �0=�1� �; �6�
if we denote by �3 � �� 0

1 �
� 0
2 the unique relation of type (6) for

which ��0 � �0� � is minimal. The necessary and su¤cient conditions
on an analytic contraction in C 3 of form (4) (-all other Jordan normal
forms of linear parts lead to iterable mappings-) include two more pro-
perties. It is easy to see that under the assumptions made so far there
exist at least two di¡erent relations (6) which means relations where
�0 � k�1; �0 ÿ k�1� � 6� �0 � l�1; �0 ÿ l�1� �, and we have as a
further property that there are k; l; k 6� 1; 0� k; l � ��0=�1� for which
the coe¤cients ak; a l in (4) are not 0. In addition one has to require
conditions (A) of arithmetic type for �1; �2 which we will not use in
this paper (s. [6] for the complete description).
In this paper we will investigate the local distribution of iterable and

non iterable power series transformations in the neighbourhood of a ¢xed
analytic contraction F in C 3 which we will assume in its normal form.
This makes sense since our problem is invariant under conjugation (see
[1] or [2]). By neighbourhood we mean a neighbourhood of F with
respect to the weak (i.e. coe¤cientwise) topology which is introduced in
[1] and [2]. Let us recall that in this topology a sequence G �k�

ÿ �
k2N

of

power series transformationsG �k��x� � A �k�x�
X
�2N3

0
� 1�� 2�� 3 � 2

g �k�� x� tends
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toG�x� � Ax�
X
�2N 3

0
� 1�� 2�� 3 � 2

g�x
�, if for each � lim

k!1
g �k�� � g� , the coe¤-

cients g �k�� , g r being vectors in C 3.

Eventually we recall the contents of Theorem 1 andTheorem 2 in [2].
Theorem 1 says that in each neighbourhood of each power series trans-
formation F (here in C x1;x2;x3� �� �) there are iterable transformations,
i.e. for eachFwe can ¢nd a sequence G �k�

ÿ �
k2N

such thatG �k� is iterable
G �k� 6� G �l� if k 6� l, and such that

lim
k!1

G �k� � F:

In order to applyTheorem 2 we have to assume that the set of relations

�k � �� 11 �� 22 �� 33 ; �1 � � � � � � n� 2; k � 1; 2; 3 �7�
is ¢nite (or empty) for the eigenvalues �1; �2; �3 of the given F. This is
indeed true if F is a contraction. Furthermore we have to assume that F
is non iterable which means in our case of a contraction that the condi-
tions of J. Schwaiger are ful¢lled. ThenTheorem 2 says that all formal
power series transformations with the same linear part as F and lying in
a su¤ciently small neighbourhood ofF are also noniterable.Wewill now
summarize the implications of the general results of [2].

Theorem1.
a. In each neighbourhood of an analytic contraction F of C 3 there are

power series transformations G;G 6� F, which are iterable. These G
are analytic contractions if the neighbourhood is small enough.

b. If F is a non-iterable analytic contraction in C 3 then in each neigh-
bourhood of F there are non iterable analytic contractions G with
G 6� F.

c. LetF be an analytic contraction inC 3, letF�x� have the normal form
(4), and assume that the conditions of [6] (concerning noniterability)
on the eigenvalues �1; �2; �3 of F are ful¢lled, but that F is iterable
(i.e. only for one k ak may be di¡erent from 0).Then in each neigh-
bourhood of F there is an analytic contractionwhich is noniterable.

Proof:
a. We may assume that F is already in normal form.Thenwe know from

Theorem 1 in [2] that in each neighbourhood of F there is an iterable
G, G 6� F. It follows from the proof of this theorem that the eigenva-
lues �1; �2; �3 of Gmay be assumed to be algebraically independent
overQ.Now, if the neighbourhood ofF is small enough andwe take in
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the linear part ofG at each place 0 where a 0 stands in the linear part of
F (which is a Jordan canonical form) then necessarily also
0 < j� ij < 1; i � 1; 2; 3, and there are no relations (7) for �1; �2; �3
since they are algebraically independent over Q. So G is a contraction
and iterable.

b. Aswe have already seen this is an immediate consequence of Theorem
2 in [2]. However, it follows also from Schwaiger's characterization of
non-iterable contractions inC 3.To show this we assume thatF is in its
normal form (4), and necessarily Schwaiger's conditions on the eigen-
values �1; �2; �3 and on the coe¤cients ak are ful¢lled. So let
ak 6� 0; a l 6� 0 for 0� k < l � �0=�1� �, and consider the sequence
G �k�
ÿ �

k2N
of contractions in their normal form

y1 � �1x1

y2 � �2x2

y3 � �3x3

X� 0=� 1� �

��0
a �k�� x� 0��� 1

1 x� 0ÿ�� 1
2

;

such that lim
m!1 a �m�� � a�.

Hence a �m�k 6� 0; a �m�l 6� 0 if m is large and we assume this for all
m� 1: All G �m� have the same linear part as F and are contractions
in normal form. Since each G �m� ful¢ls all of Schwaiger's conditions
it is noniterable. Since way may also suppose a �m�k 6� ak for all m we
haveG �m� 6� F;m� 1.Obviously lim

m 1G �m� � F, so that b. is proved.

c. We may assume that F is in normal form. Then this normal form is
of type (4) and ful¢ls Schwaiger's conditions on �1; �2; �3, but in
the normal form at most one coe¤cient ak 0 is not 0. Consider the
following sequence of analytic contractions G �m�

ÿ �
m� 1:

y1 � �1x
y2 � �2x

y3 � �3x
X� 0=� 1� �

��0
a �m�� x� 0��� 1

1 x� 0ÿ�� 1
2

where lim
m!1 a �m�� � a�; 0� �� �0=�1� �, but a �m�l 6� 0 for a ¢xed

l 6� k0 (so that a1 � 0). Then according to [6] each transformation
G �m� is non iterable but lim

m!1G �m� � G is iterable.
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2. Further Properties of Analytic Contractions in C 3 with Respect
to the Local Distribution of IterableTransformations

If we summarize brie£y the results of Theorem1 thenwe may say:

1. There are noniterable analytic contractions F in C 3 such that in each
neighbourhood of F there is also a noniterable contraction G (with
G 6� F�.

2. There are iterable analytic contraction in C 3 such that in each neigh-
bourhood of F there is an noniterable contraction (with G 6� F�.

3. In each neighbourhood of each analytic contractionF there is an itera-
ble analytic contraction G (with G 6� F�.

We will now investigate one more case which gives us examples of
(iterable) analytic contractions F in C 3 such that each su¤ciently small
neighbourhood of F contains only iterable contractions (in fact only
iterable power series transformations).We have to say that by this result
(Theorem 2) the investigation is not yet complete since the contractions
considered do not cover all possible conjugacy classes (normal forms) of
contractions. The proof of Theorem 2 again depends very much on
Schwaiger's characterization in [6] but does not involve the more general
results of [2].

Theorem 2.
Let F be an contraction

y1 � �1x1 � � � �
F : y2 � �2x2 � � � � �terms of degree at least 2)

y3 � �3x3 � � � �
where 0 < j�3j < j�2j < j�1j < 1. Let �1 � r1e2�i' 1 , �2 � r2e2�i' 2,
with r j > 0; 0�' j < 1 for j � 1; 2 and assume that

ln r2
ln r1

=2Q: �8�

Then there is a neighbourhood of F such that each contraction in this
neighbourhood is iterable.

Proof:
Firstly, we show thatF itself is iterable. Otherwise, according to [6], there
would exist a relation

�� 1
1 � �� 1

2 ; 1 < �1 < �1; �1; �1 2 N;
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and hence
�1ln r1 � �1ln r2

which is impossible since ln r 2
ln r 1

=2Q:
Assume, on the contrary, that there is a sequence Gm� �m2N of contrac-

tions such that lim
m!1Gm � F and each Gm is noniterable. Then clearly

Gm 6� F, since F is iterable. Denote by � �m�1 ; �
�m�
2 ; �

�m�
3 the eigenvalues

of the linear part A �m� of G �m� which tends to the linear part of F
which is A � diag �1; �2; �3� �. By assumption, the zeros �1; �2; �3 of
det Aÿ �E� � are distinct. Since lim

m!1A �k� � A, the discriminant of

each polynomial det A �m� ÿ �Eÿ �
is di¡erent from 0 if we substitute

the eigenvalues � �m�1 ; �
�m�
2 ; �

�m�
3 for m�m0, and moreover we may

arrange the eigenvalues such that lim �
�m�
j � � j; j � 1; 2; 3, and that for

m�m0 0 < j� �m�3 j < j� �m�2 j < j� �m�1 j < 1. This is a consequence of the
continuous dependence of the roots of det�Bÿ �E� on the martix B
if B is close enough to A since the discriminant of det�Aÿ �E� is
not 0 at �1; �2; �3 (see [8], p. 148 or [9], p. 48). In particular we may
assume that each G �m� is a contraction if we neglect a ¢nite number
of transformationsG ���; � < m0. Now, according to the characterization
of noniterable contractions in C 3 in [6] for eachm there is a relation

�
�m�� �m�1
1 � � �m��

�m�
1

2 �9�
with 1 < �

�m�
1 < �

�m�
1 , where � �m�1 is minimal, and there is a ¢nite set of

relations

�
�m�
3 � � �m��

�m�
0 �k� �m�1

1 �
�m�� �m�0 ÿk� �m�1
2

0 � k � �
�m�
0 =�

�m�
1

h i ; �10�

with cardinality at least 2, where

0�� �m�0 � k� �m�1 ; �
�m�
0 ÿ k� �m�1 ;

2� �
�m�
0 � k� �m�1

� �
� �

�m�
0 ÿ k� �m�1

� �
for 0� k� �

�m�
0 =�

�m�
1

h i
. From (9) we get, if �

�m�
j

��� ��� � r �m�j ,

0 < r �m�j < 1; � �m�1 ln r �m�1 � � �m�1 ln r �m�2 , for all m. Since � �m�j ÿ!m!1 � j,
we ¢nd

lim
m!1

ln r �m�1

ln r �m�2

� lim
m!1

�m
1

�
�m�
1

� ln r1
ln r2

�11�
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or, for each " > 0

ln r1
ln r2

ÿ �
�m�
1

�
�m�
2

�����
����� < " �12�

if m > M0�"�. By assumption ln r 1
ln r 2
62 Q, and

�
�m�
1

�
�m�
1

2 Q.

From (10) we get

ln r �m�3 � �
�m�
0 � k� �m�1

� �
ln r �m�1 � �

�m�
0 ÿ k� �m�1

� �
ln r �m�2 �13�

for allm.

Since lim
m!1 r �m�j � r j; j � 1; 2; 3; ln r �m�j < 0; ln r j < 0, there exist �1,

�2, �3 > 0 such that

�3 > �
�m�
0 � k��m�1

� �
�1 � �

�m�
0 ÿ k� �m�1

� �
�2:

for m > M1. Hence there exists a C > 0. Such that

0�� �m�0 � k� �m�1 ; �
�m�
0 ÿ k� �m�1 < C

for all m, 0� k� �
�m�
0 =�

�m�
1

h i
.This shows that there are altogether only

¢nitely many possibilities for � �m�0 ; �
�m�
1 ; �

�m�
0 � k� �m�1 . From (11) we

deduce that there is aD > 0 such that

�
�m�
1

�
�m�
1

< D; for all m;

and since we have only ¢nitely many possibilities for � �m�1 ��D1� we get
0 < �

�m�
1 �DD1 � D2 for all m. So (12) can be ful¢lled for each " > 0

and all m > M0�"�, but ln r 1
ln r 2
62 Q, and the rational numbers

�
�m�
1

�
�m�
1

form

a ¢nite set.This is a contradiction.Therefore, a sequence G �m�
ÿ �

m2N
of

noniterable contractions such that lim
m!1F �m� � F cannot exist, and

Theorem 2 is proved.We notice that only part of the characterizing
conditions of [6] was needed in the proof. Examples of the same type
are also given by the following results.
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Theorem 3.
Let F be an contraction of the form

y1 � �1x1 � � � �
y2 � �2x2 � � � � �terms of degree at least 2�
y3 � �3x3 � � � �

where 0 < j�1j < j�2j < j�3j < 1. Suppose that ln r3 is not contained
in the subgroup generated by ln r1 and ln r2 in �R;��.Then there exists
a neighbourhood of F such that each transformation in this neighbour-
hood is iterable.

Proof:
Again, it is easy to see that F is iterable. Assume as in the proof of
Theorem 2 the existence of sequence G �m�

ÿ �
m2N

of contractions which
are noniterable andwhich converge toF. Using exactly the same notations

as above we see that � �m�1 , � �m�1 , � �m�0 , � �m�0 , � �m�0 � k� �m�1 , � �m�0 ÿ k� �m�1

with 0 < k� �
�m�
0 =�

�m�
1

h i
are bounded above. (13) yields for k � 0

ln r �m�3 � � �m�0 ln r �m�1 � � �m�0 ln r �m�2

for allm. Since lim
m!1 r �m�j � r j; j � 1 . . .m, and since there are only ¢nitely

many distinct possibilities for �
�m�
0 ; �

�m�
0

� �
, we may select a subsequence

ml� � l 2N, for which �
�m 1�
0 � A; � �m 1�

0 � B�2 N� independently of
l 2 N, and therefore ln r3 � A ln r1 � B ln r2 which is a contradiction
to our assumption that ln r3 does not belong to the subgroup of R
generated by ln r1, ln r2.This ¢nishes the proof of Theorem 3.
InTheorem4which refers to a quite similar situationwemake assump-

tions on the arguments of the eigenvalues �1; �2; �3 rather than on the
absolute values.

Theorem 4.
Let again F be a contraction

y1 � �1x1 � � � �
y2 � �2x2 � � � � �terms of degree at least 2�
y3 � �3x3 � � � �

where 0 < j�3j < j�2j < j�1j < 1. Let � j � r je2�i' j , 0 < r j < 1,
0�' j < 1, for j � 1; 2; 3, and assume that
(i) '1; '2 1 are linearly independent over Q or
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(ii) '3 does not belong to the subgroup of R generated by '1; '2 and 1.
Then there is a neighbourhood of F which is free of noniterable
contractions.

Proof:
As in previous cases we see that F is iterable. Using the same technique
and notations as above we ¢nd in addition to relations for the logarithms
of r �m�j ; j � 1; 2; 3, like (13) also relations for the arguments ' �m�j , namely

�
�m�
1 '

�m�
1 � � �m�1 '

�m�
2 � Rm �14�

and

'
�m�
3 � �

�m�
0 � k� �m�1

� �
'
�m�
2 � �

�m�
0 ÿ k� �m�1

� �
'
�m�
1 � Sm;k �15�

for allm, where � �m�j � r je
2�i� �m�j , j � 1; 2; 3;Rm and Sm are integers, and

0� k� �
�m�
0 =�

�m�
1

h i
. Since � �m�j tends to � j for m!1, we have also

lim
m!1'

�m�
j � ' j. As in the proofs of Theorem 2 and Theorem 3 we get

that the sequences �
�m�
1

� �
m2N

, �
�m�
1

� �
m2N

, �
�m�
0

� �
m2N

, �
�m�
0

� �
m2N

are bounded above. From (14) we get, jRmj �� �m�1 � � �m�1 �C1 for all

m, and from (15) (putting k � 0) jSm;0j � 1� � �m�0 � � �m�0 �C2 for all

m, so there are only ¢nitely many possibilities for Rm and Sm;0, and also

for �
�m�
1 ; �

�m�
1 ;Rm

� �
and for �

�m�
0 ; �

�m�
0 ; Sm;0

� �
. Hence we may select a

subsequence �ml� l2N of indices for which �
�m l�
1 � a, � �ml �

1 � b,

Rm � R, and � �ml �
0 � A; � �m l �

0 � B; Sml ;0 � S, for all l. If we go to the
limit 1!1 we ¢nd from (14)

a'1 � b'2 � R a; b;R 2 Z; a 6� 0�� �16�
and from (15)

'3 � A'1 � B'2 � S �A;B; S 2 Z� �17�
Under the assumption (i) of Theorem 4we have a contradiction from (16),
and under assumption (ii) we have a contradiction from (17).
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