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Abstract

We consider ¢nite and in¢nite point sets of low discrepancy, (t;m; s)- nets and �T; s�-
sequences.The parameters, t;T are directly related to the discrepancy of the point sets
and thus indicative of their quality.
The de¢nitions of these point sets fundamentally involve a further natural number

b > 1 called the base.We examine single instances of the above objects with respect to
di¡erent bases and try to reassess the quality parameters t;T. Upper estimates of the new
respective parameters t0;T0 are obtained by employing and, in some cases, explicitly
calculating, sums of certain remainders.The ensuing estimates generalize and slightly
improve known results of this type.

1. Motivation

For some time now, �t;m; s�-nets and �T; s�-sequences have been recog-
nized as point sets (sequences) of very lowdiscrepancy and as being espe-
cially useful in quasi-Monte Carlo integration. Again in this area, the
integration of rapidly convergentWalsh series (see [4], [5], [3], [2]) yields
very good results.
When performing integration of Walsh series with a �t;m; s)-net,

whereWalsh functions in a base b are used, it may not be appropriate or
possible to use the same base for the net, whereas we still want to retain
the good error estimates we have if the bases are equal.
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One approach is to consider a function, which is by assumption a
rapidly convergentWalsh series in base b, as aWalsh series to another base
c for which good nets are easily obtainable and investigate its quality of
convergence.This was done quite extensively in [8].
The d̀ual'approachwould be to examine the net according to its qual-

itywith respect to a di¡erentbase. (This is an example of what is known as
a`propagation rule of nets'.) Some trivial relationships are immediate and
alreadymentioned in early papers on the subject. In [7], Lemma 9 the idea
of base change for �t;m;s�-nets was given consideration.We were able to
slightly improve this result and moreover give a more general form that
connects the problemwith the evaluation of sums of certain remainders.
As in [7], the results are also applied to low-discrepancy sequences,

namely, �T; s�- and (t,s)-sequences.

2. Conventions and De¢nitions

The de¢nition of �t;m; s�-nets is as follows:
De¢nition 1. Let b � 2, s � 1, and 0 � t � m be integers.Then a point set
P � fx0; . . . ; xNÿ1 consisting ofN � bm points of �0; 1�s forms a �t;m;s�- net in
base b if the number of n with 0 � n � N ÿ 1 for which xn is in the subinterval J of
�0; 1�s, is bt forall

J �
Ys
i�1

�
ai
bdi
;
�ai � 1�

bdi

�
with integers di � 0 and 0 � ai < bdi for 1 � i � s, and with s-dimensional
volume btÿm.
Intervals ofthe form of J will be called elementary intervals in base b.
Note that nets are ¢nite point sets. An equivalent to (t, m, s)-nets in

sequences are �T; s�-sequences (¢rst introduced in [1]):

De¢nition 2. Let b � 2; s � 1, and T : N 7!N0 be a function such that
T�m� � m.Asequence fxig1i�0 shall be called a �T; s�-sequence in base b if for every
m 2 N; k 2 N0, thepointsets fxig�k�1�b

mÿ1
i�kbm are �T�m�;m; s�-nets in base b.

If the function T is constant, say, T�m� � t 2 N0�8m 2 N�, we obtain an
importantspecial case, which is called a �t; s�-sequence in base b.
We introduce variables consistently used in this paper:

Convention1. Throughoutthispaper weshall consider two bases which arepowers ofthe
same integer b and designate themas bh and bh

0
, where b, h, h 0 2 N; b � 2; h; h 0 � 1.

Further we will consider an arbitrary �t;m;s�-net P in base b h�t;m; s 2 N0; 0 �
t � m;m; s � 1� and ask for the optimal t 0 such that P is a �t0;m0; s�-net in base
b h
0
, where hm � h0m0 and t 0;m0 2 N0; 0 � t 0 � m0;m0 � 1.
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Since for h00 :� �h; h0� we can always write the bases as �b h 00 �h=h 00 �b h 00 �h 0=h 00 ; we
will w.l.o.g. assume that �h; h0� � 1.
The function M�t 00� that we are going to de¢ne next is of essential

importance in estimating the optimal t 0.

De¢nition 3. For some t 00 2 f0; . . . ;m 0g consider all partitions fd 0i gsi�1
of m 0 ÿ t 00 in s parts (i.e.

P
d 0i � m 0 ÿ t 00; d 0i � 0�, where the d 0i are in ascending

order. Set ri :� �ÿh 0d 0i � mod h �ri 2 f0; . . . ; hÿ 1g� and take the sum ofall ri.
ByM (t 00 ) we will denote themaximal sum of ri, taken overallpartitions ofm 0ÿt 00 in s
parts:

M�t 00� :� max

�Xs
i�1

ri

����0 � d 01 � � � � � d 0s � m 0 ÿ t 00;

Xs
i�1

d 0i � m 0 ÿ t 00; ri � �ÿh0d 0i �mod h

�
:

3. Results

The ¢rst result we arrive at is the following:
Theorem 1. Let b � 2; h;m; h0;m0; s � 1 and 0 � t � m be integers with
hm � h0m0.Then every �t;m; s�-net in base bh is a �t 0;m0; s�-net in base bh0 , where

t 0 � minft 00jh0t 00 ÿM�t 00� � htg:
Although M�t00� and thus t 0 are ¢nitely computable, the calculatory

e¡ort is quite high since we have to compute all (ordered) partitions ¢rst.
We give the following estimate forM�t00�.
Lemma1. For b; h;m; h0;m0; s; t;M�t 00� as inTheorem1, we have

M�t 00� �minf�ÿh0mod h��m0 ÿ t 00�;�sÿ1��hÿ1���h 0t 00 � sÿ1mod h�g:
Forh�1, 2, 3,4 andfor h 0 � 1 orÿ1 (mod h ), the inequality is an equality. (Also

for the weaker condition h 0ÿ1mod h � �s � 1�=�s ÿ 1�:�
Applying the estimate toTheorem1 leads to

Corollary 1.For b; h;m; h 0;m 0; s; t as inTheorem1, every �t;m; s�-net in basebh 0 is
a a (t 0,m 0,s)-net in base b h

0
, where

t0 � min

��
ht � �s ÿ 1��hÿ 1�

h0

�
;

�
ht � m0�ÿh 0mod h�
h0 � �ÿh 0mod h�

��
� m0

Remark 1.Thesecond term in thepreceding corollaryprevails over the¢rstterm whenever
thedimension s is high andmis nottoo large. Inmoredetail, thesecond termwill beattained
ifthe following inequality is ful¢lled:

ht � �h0 � 1��hÿ 1��s ÿ 1� � h2m
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(a short prooffor this su¤cient condition can be found in the Proofs section).
We illustrate this with a numerical example. Ifwe take

h � 3; h0 � 2; t � 8;m � 12; s � 20;

the inequality is ful¢lled. Evaluation ofthe¢rstterm in the Corollary gives 31, butsince the
trivial boundm0�18 is already lower, this valuemust be rejected.The second term, however,
leads to t 0�14 which is 4 points belowthe trivial bound.
Remark 2.The ¢rst term in Corollary1can already be obtained from Lemma 9 in [7]
(where h0�1) together withLemma 2.9 in [6 ] (where h�1).However, ifwe had applied
Lemma1only forh0�1and subsequently usedLemma 2.9 of [6], the resulting second term�

t � m�hÿ 1�
h 0

�
would be larger than the onegiven in Corollary 1.
An application to (T, s)- sequences can easily be given:

Corollary 2.Any (T, s)-sequence in base bh is a (T 0, s)-sequence in base b h
0
, where

(with h0m0�hm�r, 0� r< h):

T0�m0� :� min

��
hT�m� � �s ÿ 1��hÿ 1� � r

h 0

�
;�

T�m� � m�hÿ 1� � r
h 0

�
;m0
�
:

Remark 3. Obviously, a corresponding statement about (t, s)-sequences can be given by
lettingT(m ) be a constant function and estimating the remainder r by the worst possible
casehÿ1.Again, thecombination ofPropositions4 and 5 in [7] alreadyleadsto theresult-
ing ¢rstterm d�ht � �hÿ 1�s�=h0e.

4. Proofs

Proof of Theorem 1: Given an arbitrary �t;m; s�-net P in base bh, we want
to determine t 0 such that P is a (t 0,m 0,s )-net in base b h

0
.To that end, we

consider an elementary interval J in base b h
0
of volume �b h 0 �t 00=�b h 0 �m 0 ,

where t 00 2 f0; . . . ;m0g is arbitrary, and try to count the points inside J.
Let

J �
Ys
i�1

�
ai

�b h 0 �d 0i
;
ai � 1

�b h 0 �d 0i
�
;

where ai; d 0i � 0 are integers and
P

d 0i � m 0 ÿ t 00.
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Now, for all i, perform a division with remainder, de¢ning
di; ri : h0d 0i � hdi ÿ ri; di; ri � 0; ri < h. So for any iwe have:�

ai

�b h 0 �d 0i
;
ai � 1

�b h 0 �d 0i
�
�
�

ai
b hd iÿri

;
ai � 1
b hdiÿri

�
�
[b riÿ1
j�0

�
aibri � j

�b h�di ;
aibri � j � 1

�b h�di
�
:

Thus, by

J �
Ys
i�1

[briÿ1
j�0

�
aibri � j

�b h�di ;
aib ri � j � 1

�b h�di
�

�
[b r1ÿ1
j1�0
� � �

[b rsÿ1
js�0

Ys
i�1

�
aibri � ji
�b h�di ;

aibri � ji � 1

�b h�di
�
;

J is the union of b�ri elementary intervals in base bh, each of which has the
volume

bÿh
Ps

i�1 di � bÿ�h
0Ps

i�1 d
0
i�
Ps

i�1 ri� � bÿ�h
0�m0ÿt00��

Ps

i�1 ri�:

Now, by the de¢nition of �t;m; s�-nets in base b, if any subset S of [0,1)s
is a union of nonoverlapping elementary intervals in base b, each of which
has a volume at least bt=bm, the subset S contains the `̀right'' amount of
points namely bm times the s-dimensional volume of S.

In our case, the volume bÿ�h
0�m0ÿt00��

P
ri� of the single elementary com-

ponents of J has to be at least �b h�t=�b h�m � b h�tÿm�, that is,

ÿ
�
h0�m0 ÿ t00� �

Xs
i�1

ri

�
� h�t ÿ m� ,

h0t 00 ÿ
Xs
i�1

ri � ht:

So, if for any t 00 this inequality holds for all elementary intervals J (in base

b h
0
with volume b h

0�m 0ÿt 00��, which is equivalent to saying that it holds for
the maximal value of the sum over the ri (we de¢nedM(t 00 ) to be just this
maximal value), then the point set P is a (t 00, m 0, s )-net in the base b h

0
.

Finally, looking for the smallest such t 00 gives us the claimed expression
for t 0:

t 0 � minft 00jh0t 00 ÿM�t00� � htg: &
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Proof of Lemma1: The ¢rst estimate ofM�t 00� is arrived at easily:

M�t00� � max

�Xs
i�1

ri

����Xs
i�1

d 0i � m 0 ÿ t 00; ri � �ÿh0d 0i �mod h

�
� max

�Xs
i�1
�ÿh0mod h�d 0i

����Xs
i�1

d 0i � m 0 ÿ t 00
�

� �ÿh0mod h��m0 ÿ t00�:
For the second estimate observe that M�t 00� � s�hÿ 1� and for any

r1; . . . ; rs as in the de¢nition ofM�t 00�:Xs
i�1

ri �
Xs
i�1
ÿh 0d 0i � ÿh0�m0 ÿ t 00� � h0t 00 ÿ hm � h0t 00�mod h�;

which leads to the preliminary estimate

M�t 00� � maxfh0t 00 � khjk 2 Z; h 0t00 � kh � s�hÿ 1�g:
Clearly, the possible range of values for the right hand side expression is
from �s ÿ 1��hÿ 1� to s�hÿ 1� sincewe can always add appropriate mul-
tiples of h to get into this interval. Inside this interval we have one and
onlyone value that is congruent to h 0t 00 modulo h.We can put this speci¢c
value into analytical terms as is done in the right hand side of the next
inequality, giving the second estimate.

M�t 00� � �s ÿ 1��hÿ 1� � �h0t 00 ÿ �s ÿ 1��hÿ 1�mod h�
� �s ÿ 1��hÿ 1� � �h0t 00 � s ÿ 1mod h�:

The ¢rst estimate is strict for all t 00 such that �m0 ÿ t 00� � s, since then
we can choose d 01 � d 02 � � � � � d 0m 0ÿt 00 � 1; d 0m 0ÿt 00�1 � � � � � d 0s � 0,
which makes the sum of the ri equal to �m 0 ÿ t 00��ÿh0mod h�.
The second estimate is strict for all t 00 such that

�m0 ÿ t 00� � �s ÿ 1��h0ÿ1mod h�;
We can choose d 01 � � � � � d 0sÿ1 � �h 0ÿ1mod h� and

d 0s � �m 0 ÿ t 00� ÿ �s ÿ 1��h 0ÿ1mod h�;
which gives r1 � � � � � rsÿ1 � �hÿ 1� and rs � �h 0t 00 � s ÿ 1 mod h�,
so that the sum of the ri evaluates to the second estimate.
As a consequence of the last two paragraphs the given estimate for

M�t 00� is strict for h, h 0 such that h 0 � 1 (mod h). (We also have the slightly
weaker su¤cient condition h 0ÿ1 mod h � �s � 1�=�s ÿ 1� for strictness
of the estimate.)
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For h0 � ÿ1 �mod h�, note that ri � d 0i mod h, so that for
(m 0ÿt 00)��s ÿ 1��hÿ 1� � �s ÿ 1��h 0ÿ1mod h�we can always reach the
¢rst estimate by choosing each d 0i smaller than h, for then the sum of the ri
equals the sum of the d 0i , which is �m 0 ÿ t 00� � �m 0 ÿ t 00��ÿh 0mod h�.
The last two paragraphs cover all cases of h�1,2,3,4, since for h�1 the

function M is trivially constant and equal to 0 and for h >1 all relatively
prime h0 are either congruent to1orÿ1modulo h. &

Proof of Corollary 1: All we have to do is to plug in Lemma 1 into Theo-
rem 1. For the ¢rst estimate of the Lemma (the second of the Corollary)
we have:

h0t00 ÿM�t00� � h0t 00 ÿ �ÿh0mod h��m0 ÿ t 00� � ht ,

t 00 � ht � m 0�ÿh0mod h�
h0 � �ÿh0mod h� ;

t0 � minft00jh0t 00 ÿM�t00� � htg �
�
ht � m0�ÿh0mod h�
h0 � �ÿh0mod h�

�
:

We also get t 0 � m 0 very quickly from the last line, observing
ht � hm � h 0m 0 and the monotonicity of the ceiling function.
As regards the other estimate,we have to ¢nd the smallestt00 that ful¢lls

the right hand side inequality in

h0t00 ÿM�t00� � h0t00 ÿ ��s ÿ 1��hÿ 1� � �h0t00 � s ÿ 1 mod h�� � ht:

We set t00 � �ht � �s ÿ 1��hÿ 1� � F�=h0;F 2 Z.The inequality then
becomes

ht � �s ÿ 1��hÿ 1� � Fÿ �s ÿ 1��hÿ 1�ÿ
�ht � �s ÿ 1��hÿ 1� � F� s ÿ 1 mod h� � ht � Fÿ �F mod h� � ht:

Clearly, this inequality is ful¢lled for all F � 0 and no F < 0. So

t0 � minft00jh0t00 ÿM�t00� � htg �
�
ht � �s ÿ 1��hÿ 1�

h0

�
;

completing the proof. &

Proof of Remark1: We want to establish a su¤cient condition for the ¢rst
term in the Corollary to be at least as large as the second one.
Initially we remove the ceiling brackets, using the monotonicity of the

ceiling function:
ht � �s ÿ 1��hÿ 1�

h0
� ht � m0�ÿh0mod h�

h0 � �ÿh0mod h� :
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Now we multiply with the denominators and cancel equal terms:

�ÿh0mod h�ht � �s ÿ 1��hÿ 1��h0 � �ÿh0mod h�� � hm�ÿh0mod h�:
Finallywe strengthen the inequality by using �ÿh0mod h� � 1 on the left
hand side and �ÿh0mod h� < h on the right hand side:

ht � �s ÿ 1��hÿ 1��h0 � 1� � h2m: &

Proof of Corollary:The given terms are obtained by ¢rst considering the
base change where h0 � 1, which can be done along the same lines as
Proposition 4 in [7] (only now using our Corollary 1 instead of Lemma
9 in [7]) and afterwards applying Proposition 5 in [7], corresponding to
h � 1.These propositions, stated for �t; s�-sequences, are obviously valid
for �T; s�-sequences as well if we replace t by T�m� and do not estimate
the remainder r by the worst case hÿ 1. &
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