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Continuous Solutions of the Goøa,b-Schinzel
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and on Related Domains
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Abstract

We determine all continuous solutions f : R! R of the functional
equation

f �x� y f �x�� � f �x� f � y�
on restricted domains like fx � 0; y � 0g or fx> 0; y> 0g:

0

The Goøa,b-Schinzel equation

f �x� y f �x�� � f �x� f � y�; �1�

originating in the theoryof continuousgroups [3,4,6], has a rich literature
(see e.g. [1^10]). In most of these works particular a¤ne semigroups onR
are considered, particular in the sense that elements of the form (0, � ) are
permitted. In other words, we have pairs (�, � ) ��; � 2 R� with
the composition

��; �� � �� 0; � 0� � ��� 0; �� 0 � �� ��; � 0; �; � 0 2 R�



The aim was to determine all one-parameter subsemigroups of
this structure. Thus � � ��U�; � 0 � ��V�; � � ��U�; � 0 � ��V�.
Under the supposition that � is injective this leads with x � ��U� 2 R;
y � ��V� 2R; f �t� � �� �ÿ1�T�� to the functional equation (1). For its
continuous solutions on x 2 R; y 2 R see [9, 2, 3]. If one considers
only semigroups of pairs ��; �� ��; � 2 R� � �0;1�� with the same
composition

��; �� � �� 0; � 0� � ��� 0; �� 0 � �� ��; � 0; �; � 0 2 R��
then we get (1) restricted to x � 0; y � 0. Also in an application to
meteorology (oral communication of Peter Kahlig,Vienna) the validity
of (1) can be justi¢ed only for nonnegative x; y. We determine the
continuous solutions of (1) on this and related domains.
While it would be justi¢ed to assume f �t� � 0 (see Corollary), in our

main result we do not make this assumption. If negative values f �t� < 0
are permitted then, see (1), f �t� has to be de¢ned also for negative t, even
though we suppose only that (1) be satis¢ed for x � 0; y � 0. For one
familyof solutionsEq. (1), required only for nonnegativex, y, determines
f �t� also for negative t. In case of the remaining three classes of solutions
the equation

f �x� y f �x�� � f �x� f � y� �x � 0; y � 0� �2�
says nothing about the values of f at negative places.

1

Notice that, if y � 0 is in the domain of (1), thenwe have

f �x� � f �x� f �0� i:e: f �0� � 1 or f �x� � 0: �3�
We will need a result about continuous solutions of (2) which assume

two (or more) equal nonzero values at di¡erent (nonnegative) places.

Lemma 1. If a continuous solution of (2) assumes the same nonzero value atmore than
one (nonnegative) place then it is constant onR� :� �0;1�.

Proof : (The proof is more di¤cult than for �x; y� 2 R2:� If there exist
x I<x II in R� such that f �x I� � f �x II� then f has a maximum or mini-
mum f �x0� on the open interval �x I;x II�:

Case 1: f �x0� > 0. Then there exist x1;x2 �x1 < x0 < x2� as close as
we want such that f �x1� � f �x2� > 0. Put into (2) y � �t ÿ x1�=
f �x1� �t � x1� in order to obtain
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f �t � �x2 ÿ x1�� � f x2 � t ÿ x1

f �x1� f �x1�
� �

� f x2 � t ÿ x1

f �x1� f �x2�
� �

�

� f �x2� f t ÿ x1

f �x1�
� �

� f �x1� f t ÿ x1

f �x1�
� �

� f x1 � t ÿ x1

f �x1� f �x1�
� �

� f �t�:

�4�

Thusf isperiodicon �x1;1�, inparticularon �x0;1�,witharbitrarilysmall
periods, thus, being continuous, is constant: f �x� � b > 0 �x � x0�. Now
choose in (2)x � x0; 0 � y � x0 inorder toget, sincex� yb � x � x0 ,

b � f �x� yb� � bf � y�;
thus f � y� � 1 for y � x0. But f �x� � b forx � x0 and f is continu-
ous, so

f �x� � 1 �constant� on R�:

Case 2 : f �x0� < 0. Then there exist x1;x2 �0 < x1< x0 < x2�, as close
as we want, with f �x1� � f �x2� < 0.We set in (2) y � �t ÿ x1�=f �x1�,
now with t � x1.Thus the continuous f is periodic with arbitrarily small
periods, and so constant on �0;x1�, in particular on a right neighbour-
hood �0; "� of 0, that is, f �x� � b < 0 forx 2 �0; "�. But, by (3), either
f �0� � 1 > 0 or f �x� � 0. Both contradict f �x� � b < 0�x 2 �0; "��.
Case 3 : f �x0� � 0 but there is no proper neighbourhood of x0 on which
f � 0. In this case too, there exist x1 < x0 < x2 such that f �x1� �
f �x2�><0. According to whether > or < applies, one proceeds as in case
1or 2, respectively.

Case 4:The maximal or minimal value of f on �x I;x II� is 0 and the value
remains 0 on a proper subinterval of �x I;x II�. Let x 01 be the smallest
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zero of f on the right of xI and x 02 the greatest zero of f left from x II.
Since f �x I� � f �x II� 6� 0, one obtains, as in (4), f �t � p� � f �t�
� p � x II ÿ x I� for all t � x I if f �xI� > 0 and for all t 2 �0;x I� if
f �x I� < 0.

Subcase 4.1: If f �xI� > 0 then we make use of f �x 01 � p� � f �x 01� �
f �x 02� � 0 and of the fact that f 6� 0 on �x 02;x 01 � p� (by the de¢nition
of x 01 andx

0
2�. So, since x 02 < x II < x 01 � p, there exists on �x 02;x 01 � p�

a positivemaximal value of f and we obtain f �x� � 1 (constant) as in case1.

Subcase 4.2: If f �x I� < 0 we have to be careful because x 02 ÿ p may be
negative. However now f �t � p� � f �t� for all t 2 �0;x I�, in particular,
f � p� � f �0� � 1 (by (3); f �x� 6� 0 since f �xI� < 0�. So we have points
where f has the same positive value and we can go on as in cases 1, 3 or
in subcase 4.1.
We exhausted all possible cases (and ourselves), so Lemma1 is proved.

&

2

One sees directly from (2) that f �x� � 0 and f �x� � 1 are the only con-
stant solutions. As to nonconstant solutions, we have the following.

Lemma 2. If f is a nonconstant solution of equation (2) then � f �x� ÿ 1�=x is
constantforall x > 0 with f �x� 6� 0.
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Proof : By contradiction (as in [9, 2]): If there were x > 0; y > 0 with
x 6� y; f �x�f � y� 6� 0 and with

f �x� ÿ 1
x

6� f � y� ÿ 1
y

then we would have
x� y f �x� 6� y� xf � y�: �5�

We also have, however,
f �x� y f �x�� � f �x� f � y� � f � y� xf � y�� 6� 0: �6�

In view of (5) and (6), by Lemma 1, the function f would be constant.
This contradiction proves Lemma 2. &

3

We denote the constant in Lemma 2 by c. Thus � f �x� ÿ 1�=x � c;
i:e:; f �x� � cx� 1 if x > 0 and f �x� 6� 0. We saw in (3) that, if
f �x� 6� 0, then f �0� � 1. So, for every x � 0; either f �x� �
cx� 1 or f �x� � 0 hold.This describes exactly the following continuous
functions:

f �x� � 0 �x � 0�; �7�

f �x� � cx� 1 for 0 � x � ÿ1=c;
0 for x � ÿ1=c;

�
�8�

where c is a negative constant and

f �x� � cx� 1 �x � 0�; �9�
where c is an arbitrary real constant.
The solutions (7), (8) and the solution (9) for c � 0 are nonnegativevalued,

so x� y f �x� � 0 if x � 0; y � 0.Thus, to these solutions, equation (2)
does not o¡er any f �t� values for t < 0. However, the solution (9) with
c < 0 yields negative values for x > ÿ1=c.Thus x� y f �x� < 0 for large
enough y and this determines f �t� for all t < 0. Indeed substitute (9)
(with c < 0� into equation (2):

f �x� y�cx� 1�� � �cx� 1��cy� 1�
or, with x � x0 > ÿ1=c and t � x0 � y�cx0 � 1�, that is,

y � �t ÿ x0�=�cx0 � 1� :

f �t� � �cx0 � 1��c t ÿ x0

cx0 � 1
� 1� � c�t ÿ x0� � cx0 � 1 � ct � 1:

So f �t� � ct � 1 also for t < 0 and we have following.
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Theorem.All continuous solutions f : R! R of equation (2) are given by (7), (8)
and by (9) with c � 0, in which case f �t� can bechosen in a continuousbutotherwise arbi-
trary way for t < 0 and, if c < 0, by

f �t� � ct � 1 �t 2 R�: �10�

4. Remarks

1. A similar theorem can be proved if (1) is supposed only for x > 0;
y > 0. Indeed, any solution of (1) for x > 0; y > 0, except f �x� � 0,
satisfying (1) for x > 0; y > 0, satis¢es it also for x � 0 if f �0� � 1 is
added to the de¢nition.The new functions are also continuous if (8) or
(9) has been so extended.The solution (7) has been an exception also in
(3), and should be extended by f �0� � 0:
2. If f � 0 is supposed, then Case 2, Subcase 4.2 and the subcase
f �x1� � f �x2� < 0 of Case 3 canbe disposed of.The remaining solutions
are indeed nonnegative and for them equation (2) says nothing about
values at negative places (in particular (10) does not apply).We have the
following.

Corollary. All continuous nonnegative solutions f : R� ! R� of equation (2) are
given by (7), (8) and by (9)with c � 0.Thesame, with x > 0, are thegeneral nonnega-
tive continuous solutions of (1) on fx > 0; y > 0g.
3.The solution of equation (1) can be obtained similarly for x; y bounded
from above.

Acknowledgements

The research of the ¢rst author has been supported in part by the Natural Sciences
and Engineering Research Council of Canada grant OGP 0002972 and by the Austrian
Academy of Sciences. He is grateful for the hospitality of the Institut fÏr Mathematik,
Karl-Franzens-UniversitÌt Graz.

References
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[9] Goøa,b,St.,Schinzel,A.:Surl'ëquation fonctionelle f �x� y f �x�� � f �x�f �y�.Publ.
Math. Debrecen 6, 113^125 (1960).
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