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Abstract

During the last years ergodic properties of several multidimensional continued frac-
tions have been investigated (Schweiger 2000). In Baldwin 1992a and 1992b the
generalized mediant algorithm (which is equivalent to Selmer’s algorithm by a shift
of coordinates) is studied in greater detail. Furthermore an algorithm, called the
GCFP algorithm, is mentioned (Baldwin 1992b p. 1517). Baldwin states that “An
analytical form for the invariant measure and entropy of GCFP are unknown’. The
purpose of this note is to calculate the invariant measure for this algorithm and to
show that the convergence exponent is positive almost everywhere.
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1.

Selmer’s algorithm in any dimension can be defined as follows: Let
A"V = {b = (by,by,...,b,) : by > by >--->b, >0} Then we
define

ob = (bo - bn,bl, e ,bn).
There is an index i = i(b), 0 < i < n, such that

wob = (b],bz,...,b,’,bo—bn,...,bn) S AL
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With the help of the projection p: A" — A" defined by
p(bo,by,...,b,) = (2—(‘),...,2—;) we get a bottom map T with the
property

pomoo=Top.

In this paper we consider only the case n =2. It is well known
that the set A:={(x,y):0<1—-x<y<x<1} is absorbing
(i.e. almost every (x, y) eventually enters A and stays there for-
ever).

Therefore the ergodic behaviour of Selmer’s algorithm can be
obtained by the study of the following map:

T(x,y) = (1 ;y)yc> if (x,y) € A(1) == {(x,y) € A: 2y < 1}

T(x,y) = (ﬁ,l ;y) if (x,y) € A2) :=={(x,y) € A:1<2y}.

We define the first entry time of the set A(2) almost everywhere on
A as

e(x,y) :==min{k > 0: T"(x,y) € A(2)}.

The map S: A — A, S(x,y) := T®)*(x,y) is the jump trans-
formation of T with respect to the set A(2) (see Schweiger 1995).

The map S is equivalent to Baldwin’s GCFP algorithm. The time-1-
partition is defined by the following triangles:

. 1 141 1 1
A(ta) has th t 1 1, —
(ta) has everlces<,1+t>,<2+t,2+l>,<»2+[>

147 1 1 241 1
A(18) has the vertices | ——, —— ), (1 .
(1/3) has eva“xs<2+w’2+t>’<’2+¢>’<3+¢’3+t>

Here 7= [{] — 1 on A(ra) and = [{] —2 on A(zf}). Then one
verifies the explicit version of S as follows:

Theorem 1
o y 1=(+1y
S(ey) = (x_ly, o ),<x,y> € Alta)

B y x—(t+1)y
S(x,y) = (1 —(t+ 1)y 1= (r+1)y

),<x,y> € ().



Invariant Measure and Exponent of Convergence 13

Remark. The local inverse branches are given as

1 +1x X
V(za)(x,y) = ((1 _|_t)x—|-y7 (1 +t)x+Y>

(I+0)x+y X
VitB)(x,y) = (1 YA +ox 1+ (1 +t)x>‘
Theorem 2. The invariant density is given by
1
x(x+y)

Proof: If one has already found the shape of o(x,y) then Kuzmin’s
equation can be verified quite easily.

s 1+ x 1
;(0((1+I)X+y’ (1+t)X+y> ((1+t)x+y)3+

<(1+t)x+y x > 1 )
T+ (1 +0x" 14+ (1 +0x/) (1+ (1 +1)x)°

O'()C,y) =

+o

= 1
~Z ((1 0+ G+ 001+ 0x ) T

1
T o @ or )+ (L l)X))

ool 1 1
Zx( 1+ 1x)( +t)x+y)_(1+(1+f)x)((2+t)x+Y)>
1

_x(x+y)'

The more interesting question is how to find this density! Here the con-
nection between jump transformations and first return maps is helpful.

The first return time of the set A(2) is defined almost everywhere
on A(2) as

n(x,y) :=min{n > 1:T"(x,y) € A(2)}.

The map R : A(2) — A(2), R(x,y) := T"*¥(x,y) is known as the
first return map.

Let i denote the invariant measure of 7 with density 7 and v denote
the invariant measure for S with density o. It is well known that the

restriction of 1 on measurable subsets of A(2) is an invariant measure
for R.
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Lemma 1. The dynamical systems (A(2),R,p) and (A, S,v) are
isomorphic. In fact the diagram

NG NG

T | T

A S A
is commutative.

Proof: Observe that e(T(x,y))+ 1=n(x,y). Furthermore T:
A(2)— A is bijective.
The relation p(7T-'H N A(2)) = v(H) shows that

1 X 1
U(x7y):7— ; 3
X+y x+y (x—|—y)

Since 7(x,y) = é we find o(x,y) as given in theorem 2.

Remarks:
(1) The normalization constant is given as

N(S) = ”A o(x,y)dxdy = Ll g J dy

- X(xFy)

(2) The entropy can be calculated as
3 oo
o ——— QT log(x — ty)o(x, y)drdy +
N(S) ; A(ta)

" J LW) log(1 — (¢ + 1)y)o(x,y)dx dy).

2.
Define
0 r+1 1 1 r+1 0
B(ta):=(1 ¢t 0|, B@f):=(0 t+1 1
0 1 0 0 1 0
M(t1517 s 7tsgsats+155+1) = M(l‘]S], .. .,2‘585)3(1‘54_1654_1)

0<t, ee{a,p}, i=1,...,5+1



Invariant Measure and Exponent of Convergence 15
Wy s a
M(tiey, ... tEs) =: ng BESI) BSSZ)
B B

e |BY B
R ‘
. B gl
1i 1j

() R

) By,
Bk =10 e
B

In the sequel we write [i, /] to mean [i, ] Es) or [i, j]g). We also define
Bij) = (5,1
Lemma 2. The following recursion relations are valid.
For brevity we write t = £,
Eoi=al  i=123
+1
Byt =
By = (1 4+ 1)BY) + B +BY
s+1 s
Bgz )= Bz(o)
0.1% = —(+ Do, 11 + [1,2)"
[0 ]S+1 [O 1](_?
[1,2] = —ifo, 1] ~ 0,2

e =0 i=123
s+1 s
Bgo ):BEO)
By = (14 1)BY + (r+ DB + By
+1
B — 5

2
2

0, 119 = (¢ + D)o, 11 + [0,2]
[0,2]°*Y = [0,1]"¥
(1,270 = (e 4 1)[0, 1)) — [1,2)¢)
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Lemma 3.5 3 =6, = &1 = ¢
At least one of the three consecutive products [0, 1]
j=0,1,2 is nonnegative.

Proof: We may assume [0, 1]¢) > 0.

(1) 1If [1,2]®) > 0 we are done.
(2) Suppose [1,2]*) <0 and [0,2] > 0. Then

0,1]*Y = —(r 4+ 1)]0,1]¥ +[1,2]¥ <0

[0,2]°Y = —[o,1]*) <0

(s+)) [17 2] (S+j)’

[1,2)%7D = —£[0,1]“ — [0,2]¥ < 0.

Then clearly [0,1]“V [1,2]¢7) > 0.
(3) Suppose [1,2 ]” <0 and [o 2/ <0. Then [0,1]*") =

—(t+ 1[0, 1]¥ + (1,2
and [0,2]¢Y = —J0, 1]

If [1,2]““) = —1[0, 1) — [0,2]“‘> < 0 we obtain [0, 1]*"V
[1,2]4) > o.

If [1,2)“Y = —£[0,1]®) = [0,2]) > 0 then this is case (2)

with signs reversed. Therefore [0, 1] [1,2]¢"?) > 0.

Lemma 4

0,1]“)] < BS) + BY,
10,2 < BS) + By
I11,2]“)] < B + BY

Proof: The cases s = 0, 1,2 are verified by inspection. We proceed by
induction.

(s+1)

110,2)%"V| = |0, ]| < B) + BS) < By + B,

11,29 < (¢ + )]0, 1] +][1,2]"]
(s)

[0
< (t+1)(BS) +BY)) + BY) + B
s+1 s+1
:B((Jl+)+ (()2+)
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[0, 1] < (e + 1)[[0, 1]¥] + |

<(t+ 1)(300 +B( ))

_ pls+l) ‘+1)
=By, + 0Y1

Es+l — &

onvergence

[0,2]"]
(s)

+ By, + By,

0.2)9 = [0, 1)) < By + B = By +

1[1,2)4F0 ) < 1[0, 19| +][0,2]")|
< 1(BS) +BS)) + By + BY)

(s)
(sl (H—l) (s+1) _ By
=By ' = (By ' +Bg )(1 (s+1) N B((;;l))

(1) Let [0,1]“[1,2]®) > 0. Then
1[0, 1]°*Y] < max((¢ + 1)][0, 1]%],

11,2"))

< max((t + 1)(BY) + BY)), BY) +

< B&Jrl) +B(s+1)
If additionally ¢ > 1 then clearly

max((z + 1)(BY) + BY)), BY) + BY))

and we obtain the better estimate

0,169 < B +B(s+1)<1 3

(2) Let [0,1]¥[1,2]“ <o.

|€X+1 =Q, & = ﬁ|

17

(s)

+1
By

) = (t+ 1)(BS) +BY))

By

(A+1)>
01

B(A+1) +B

[07 1](3-0-1) = _(terlts + ts+1)[0a 1](3—1)

— (ty1 + 1)[0,2]

Therefore

110, Y] < (tyanty + 1) (BS Y + B+

+ (ty1 + 1)(385_1) +B

)+ (B

V1,270,

s—1 s—1
o B ).
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On the other hand
Bio' "+ By = (et + ) By By )+
+ (4 DB+ B+
+ (1 + D) (B '+ B V) + By,

Since Bész D < By, (=1 Wwe obtain

|[0 1] (s+1) | < ( S+1) +B(()S1+1))<1 _L)
B((JSOJrl) +B(s+1)

Er=5=0
[0, 1)) = (ty 18, + t1 + 1)[0, 107
— (te1 + D[1,2)7 — 0,210,

lesri =& =0, &1 =[]
[0, 1Y = (ppatytyy + ity — 1)[0, 107
F (typ1ts + to1 + 1)[0,2)072+
+ (typ1 + 1)[1,2]72
110,11 V] < (tgatstomr + et ) (Bl + By )+
+ (bsg1ts + top1 + 1)(3(()0 oy Bésziz)ﬂ‘

+ (s + 1)(Boy 7+ By ) — By

B(()SOH) +B(s+1 (terltstsfl + terIIS)(B(()i)_z) +Bésl_2))+
+ (tyirts + tyig + 15+ 1)(BésO +B(S N+
+ (foatson + 15ty + fopy + 1+
i+ DBY Y + B )+
+ (11 + 1)BG > + By 7.
Since Béz 2 <B ( % we obtain

|[0 1] (s+1) | < ( SJFI) +B(S+1)) (1 _ B(()Sl ? >
B(H—l) _l_B(()S‘l-‘rl)

|€s+l =& = &1 = Od|
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(2.1) Let [0,1]“7V[1,2)%"Y > 0.
Since &_; =« we can use the better estimate
11,27 < BV,
Then

110, 11°"Y] < max((ty115 + ty1 + 1)][0, 1147,
terr 4+ DI[1,2]°79) +][0,2]¢7Y)
MM+%H+UwW”+%Tm

o1 + ) )) +B(()0 ) +B(()S271)

(
(
< max((
(
= (torals + 01 + 1)(386_1) + By )+
Yl
Since
By + BS = (15t + 1 + DB + By )+
+ (B + B )+
+ (ton + 1B+ By

we obtain

(s—1)
B
|[0 1] v+l)| < ( v-‘rl) +B(()vl+1))<1 - 01 . )
B(()OH) +B( +1)

(2.2) Let [0, 1]“‘1 [1,2]°Y <o.

If [0,1]“[1,2]“) <0 and [0, 1]“ D11,2]%7Y <0 then by
lemma 3 we get [0, 1]“ [, 2]( 2 > .

[0, 1] (s+1) —(tsy1tsts—1 + tyi1ty + 1541)[0, 1] s=2) 4
+ (st + toer + 1D[1,2]°77+
+ (typ1 + 1)[0,2]572.
Therefore
110, 11°V] < max((ty 1551 + Losrts + tm)(B(“z) +B(()‘1‘2)),
(teirts + o1 + DB + B )+
+ (ter + D)BY Y + B ).
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We calculate
(s+1)

B(H_l) +B()1 = (terltstsfl + topits—1 T Gl +
+topity + oo H g+t + 1)+
+ (B 2 + BG )+
+ (1 + 1)(BS 2 + By )+
+ (trits + 15)B, ( )+B(()1 2,
Therefore
HO 1] (s+1) ’<( A‘Jrl) +B(()S]+l))
However, if t;, > 1 or t,_; > 1, we get the improved estimate
(s=2)
Y S B
’[07 1](s+l)| S ( +1) +B +1))<1 #>
01 B(s+1) +B(()s1+1)

Theorem 3. For all pairs (x,y) € A with a nonterminating algorithm
the inequalities

B4
()| = pls)

BOI BOI
B[4
YT R0 | = 50
01 01

are valid for s > 1.

Proof: Put (§,7n) := T°(x,y). Then

Bgsl) _ B(lo +B f+B 77 Bgl)
B o)

X —

B((fO)JFB ¢ +BY) 77 B,
110, 19+ (1,2}
(B (S)"‘B(nf‘f‘Boz n)B (S)
Since%gfglandOgnglweget
10, 09 1,2
0 L A 20 L aw ) =%
By + By By + By,

A similar estimate can be given for the second coordinate.

\xBE)‘Yl) — Bssl)| <4 max(
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Theorem 4. There exists a constant d > 0 such that for almost all
(x,y) € A the inequalities

B
- < —
iy | <
(s)
B21
y B \y << N
| <

are valid for s > so(x,y).
Proof: Let

[0, 1)1 HL%@||m2WM>

ps(x,y)zmaX< ; 56 S
By + By By +BY) Bl + By

Then the proof of Lemma 4 also shows that p,.1 < p;.
Lemma 5. [f|s; = aand t; > 1 for s —

Ps+3(%,y) < Kg(x, y)ps(x,y)

where
(s—2) (s—1)
B B,
Ks(x,y) = max(l - ol 1— a

S B(s+1) +Bésl+1) B(s+2) +B(()sl+2)

K s+1

By B >

B(s+3) +Bésl+%) B(s+4) +B(()sl+4)

Proof We note first that €,_; = €,_, = o implies Bérz) = B(()f)_l =

B(()l . Since €11 = €540 = €,43 = « then at least once we find for
some j =0,1,2
(s4++1) RO | gletit) By,
s+
(0.1 < oy B3+ 85577 (1 - #WW+EWM>

|[0 1] 9+j+l)|

i
1-— .
(s+j+1) (s+j+1) — S P ( (s+j+1) (s+j+1) >
By + By, By, + By,
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Since additionally €, = v and €,_; = « then

o, 2](S+j+1)| 10, 1] S+J)| ( B(S+j—3) )

B(()s+j+1) +B(s+j+1) (s+;) N B(s+]) S Prj-1 (()soﬂ) + B(S+j)

K 1
|[1 2] (s+j+1) ’ < (B(s+/+1) +B(S+j+1)) 1— B((nﬂ :
Ps+j B(S+j+l)+B(s+]+l) :

Now we continue the proof of the last theorem.
Note that

BY™ + By < (641 +2)(BYy + BY))
and if z,.; > 1 we find
r+1 r+1 r+1
By 4+ By < 2B,

Furthermore if €,.1 = « also

By 4 BYTY = BT 4 B < (1 +2)(BY + BYY).
Therefore
1
rg(x,y) <1 —— .
2 H,':()(t‘v+i—2(x7y) + 2)
Define

Io L if eg=a,;2>21,i=5—-2,...,54+3
Y(ey) = g( 2T o T“w>+2>) o

0 elsewhere
then a.e.

IVIEE‘CN27T x,y)) J (%, y)dp(x,y) < 0.

Since there exists a constant 6 such that

loe BY)
limsupOgT01 <f< o0

N—oo
a.e. the result follows by standard methods (see Schweiger 2000).
Remark:

(1) Clearly a more careful analysis of the proof of Lemma 4 and
Lemma 5 would give a better value for (x,y).
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(2) Numerical results on the Lyapunov exponents of this algorithm
and other 2-dimensional continued fractions can be found in
Baldwin 1992b and Baladi & Nogueira 1996.
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