
Graser et al 

153 
 

Extracting Patterns from 
Large Movement Datasets 

 GI_Forum 2020, Issue 1  
Page: 153 - 163  

Short Paper 
Corresponding Author: 

 anita.graser@ait.ac.at 
DOI: 10.1553/giscience2020_01_s153 

 

Anita Graser1,2, Peter Widhalm1 and Melitta Dragaschnig1 
1AIT Austrian Institute of Technology, Vienna, Austria  
2University of Salzburg, Salzburg, Austria 

Abstract 
Extracting useful information from large spatiotemporal datasets is a challenging task that 
requires suitable visual data representations. Big movement data are particularly hard to 
visualize since they are prone to visual clutter caused by overlapping and crisscrossing 
trajectories. Different data aggregation approaches have been developed to address this 
challenge and to provide analysts with better visualizations for data exploration and data-
driven hypothesis generation. However, most approaches for extracting patterns, such as 
mobility graphs or generalized flow maps, cannot handle large input datasets. This paper 
presents a flow extraction algorithm that can be used in distributed computing environments 
and thus make it possible to explore movement patterns in large datasets. We demonstrate 
its usefulness in a use case exploring maritime vessel movements  
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1 Introduction 

Large movement datasets that are collected by systems tracking vehicles, people or goods have 
the potential to improve our understanding of mobility and transport systems, in order to, for 
example, monitor vehicle emissions or tackle the issue of rising road traffic fatalities (WHO, 
2018). Data exploration and data-driven hypothesis generation are important steps in the 
process of building data-driven models since they enable knowledge to be gained, and spatial 
modelling (Miller & Goodchild, 2015). However, we humans are not well equipped to 
understand large amounts of raw numerical data. Instead, we need to visually represent the 
data to extract useful information. The development of visualizations of big spatial data, 
however, is challenging (Robinson et al., 2017). Movement data in particular are hard to 
visualize due to visual clutter caused by intersecting and overlapping trajectories. Therefore, it 
is ‘necessary to use appropriate data abstraction methods’ (Andrienko & Andrienko, 2011). 

Data aggregation is a common technique for dealing with large amounts of data (Andrienko 
et al., 2017a). Concerning movement data, density surfaces are probably the most commonly 
used aggregation technique, as can be inferred from their prevalence in review (Chen et al., 
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2015; Andrienko et al., 2017b; He et al., 2019) and application papers (Willems et al., 2009; 
Aronsen & Landmark, 2016). The temporal dimension has been integrated into density 
concepts in Demšar & Virrantaus’ (2010) space-time density volumes of trajectories. However, 
density approaches provide only limited data exploration capabilities.  

More advanced aggregation techniques aim to extract mobility graphs or generalized flow 
maps from movement records. For example, Andrienko & Andrienko (2011) extract and 
cluster characteristic waypoints from trajectories to generate aggregated flow maps, as 
illustrated in Figure 1. However, their approach cannot deal with large datasets. As a work-
around, they therefore suggest extracting and clustering characteristic points from a subset of 
the full trajectory dataset. ‘Assuming that the sampling is done sufficiently well, i.e., the 
statistical and spatial distribution properties of the whole data set are preserved in a sample, 
we can use the territory division so obtained to summarize […] the whole database’ (p. 216).  

   
Figure 1: Example of raw movement data (left) and extracted flow map (right) using the algorithm by 
Andrienko & Andrienko (2011), applied to one day of vessel movement data in the area surrounding 
Gothenburg, Sweden. The flow map clearly communicates the relative popularity of the different route 
options in this area. (Background map: Positron © OpenStreetMap contributors and CARTO) 

Extracting suitable samples from large movement datasets is no simple task. To avoid 
sampling, Pallotta et al. (2013) instead use incremental DBSCAN to identify waypoints. 
However, tuning DBSCAN parameters ‘for good waypoint identification is not possible when 
dealing with areas with varying density’ (Dobrkovic et al., 2018, p. 25). Approaches addressing 
the issue of varying density include lattice or grid-based DBSCAN (Xiao et al., 2017) as well 
as other clustering algorithms, such as OPTICS (Rinzivillo et al., 2008) or genetic algorithms 
(Dobrkovic et al., 2018). In Graser et al. (2020), we present M³ – a movement data exploration 
model that uses an incremental grid-based clustering algorithm. M³ runs in distributed 
computing environments and is therefore scaleable to large datasets that exceed the processing 
capacity of individual machines. Besides location information, M³ also takes other movement 
characteristics, such as speed and direction, into account. However, Graser et al. (2020) do not 
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cover the follow-up step of computing flows. To address this gap, this paper proposes an 
algorithm for computing flows from massive movement datasets.  

The remainder of this paper is structured as follows: Section 2 presents our incremental flow 
computation algorithm; Section 3 presents a case study with massive vessel movement data; 
finally, Section 4 draws conclusions and provides an outlook for future work.  

2 Methodology 

Conceptually similar to Andrienko & Andrienko (2011), our proposed flow extraction method 
is based on a two-step process. First, we extract prototypes from the movement data. These 
prototypes describe movement characteristics in a certain geographic area and contain the 
following information:  

• Number of input location records (similar to density surfaces but with support for 
multiple prototypes per grid cell) 

• Geographical distribution (mean coordinates and variance) of location records  
• Distributions (mean and variance) of direction, speed and other characteristics 

available in the location records (including temporal or seasonal information). 

In the second step, we determine flows between prototypes, including information about: 

• Distribution of travel speeds 
• Number of observed transitions.  

The details of both steps are described in the following subsections. 

2.1 Extracting prototypes 

This step is based on the M³ model introduced in Graser et al. (2020). In short, movement 
data records are clustered into prototypes using an incremental algorithm based on Vector 
Quantization. In Vector Quantization, probability density functions are modeled by the 
distribution of so-called prototype vectors. In our approach, these prototypes describe 
movement properties using Gaussian Mixture Models (GMMs). Each GMM consists of a set 
of components 𝐶𝐶. Each component 𝑐𝑐 has a set of parameters 𝜃𝜃𝑐𝑐 = {𝝁𝝁𝒄𝒄,𝑺𝑺𝒄𝒄}, where 𝝁𝝁𝒄𝒄 is the 
mean value vector and 𝑺𝑺𝒄𝒄 is the covariance matrix of the multivariate Gaussian. The Leader-
Follower clustering (Duda et al., 2001) approach employed adds new data points to the closest 
existing cluster or creates a new cluster if a specified distance threshold dmax between the data 
point and the closest cluster is exceeded. To allow for distributed processing, movement data 
is split using a spatiotemporal grid. The contents of each grid cell are then processed 
independently.  

2.2  Computing flows 

After the prototypes have been computed, our new flow algorithm computes transitions 
between pairs of prototypes. Like the prototypes, our flows are also modeled using GMMs. 
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The information modeled in each flow includes but is not limited to the number of transitions 
and the speed distribution. An object moving from prototype A to prototype B triggers an 
update of the corresponding flow. To allow for distributed processing, each node in the 
distributed computing environment needs a copy of the previously computed prototypes. 
Before flows can be computed, movement records are grouped by moving-object ID, sorted 
chronologically, and then split into trajectories. Each moving object is processed 
independently. The complete flow algorithm (as illustrated in Figure 2) can be summarized as 
follows: 

1. Create trajectories (i.e. sequences of chronologically ordered records) for individual 
moving objects: 

a. Split continuous movement tracks at stops and observation gaps and remove 
outliers 

b. Optionally: generalize the trajectories to reduce data size. 

2. For each trajectory: 

a. Let x be the next record in the trajectory 
b. Find the most similar prototype μ∗ 
c. Let dmax be the distance threshold  
d. If |x − μ∗| ≤ dmax and μ∗ is different from the previous prototype: 

i. Let 𝛾𝛾 be the flow between μ∗ and the previous prototype 
ii. Let 𝛼𝛼𝑥𝑥, 𝛼𝛼𝛾𝛾, 𝛼𝛼μ∗ be the directions of x, 𝛾𝛾, and μ∗ respectively 
iii. Let 𝜎𝜎𝛼𝛼μ∗  be the standard deviation of the direction of μ∗ 
iv. Let 𝜑𝜑𝑚𝑚𝑚𝑚𝑥𝑥 be the direction difference threshold 
v. If |𝛼𝛼𝑥𝑥 −  𝛼𝛼μ∗| ≤  𝜑𝜑𝑚𝑚𝑚𝑚𝑥𝑥 and |𝛼𝛼𝑥𝑥 − 𝛼𝛼𝛾𝛾| ≤  𝜑𝜑𝑚𝑚𝑚𝑚𝑥𝑥 and |𝛼𝛼𝑥𝑥 −  𝛼𝛼μ∗| ≤

2𝜎𝜎𝛼𝛼μ∗ : 
1. Update the flow properties: travel speed and number of 

transitions 
2. Update the previous prototype reference. 
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Figure 2: Flow diagram for the flow algorithm  

Both algorithms for extracting prototypes and computing flows were implemented in Apache 
Spark. Spark (Zaharia et al., 2010) is a general-purpose cluster-computing framework that 
supports distributed computing on large datasets which do not fit into the available memory. 
This is important for processing large movement datasets. For the prototype extraction, only 
the (intermediate) prototypes and the particular movement record currently being worked on 
have to be kept in the memory. Similarly, for the flow computations, only the prototypes, the 
(intermediate) flow results, and the trajectory currently being worked on have to be kept in the 
memory for each iteration.  

3 Case study 

This case study aims to extract movement patterns from massive maritime vessel movement 
data. Vessel movements are tracked by the Automatic Identification System (AIS), which 
requires that vessels above a certain size broadcast their position and status.  

3.1 Input data and cluster setup 

The data used in this study were published by the Danish Maritime Authority; our dataset 
contains 350 million records covering July 2017. To store this data for distributed processing, 
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we use GeoMesa Accumulo. GeoMesa provides fast spatiotemporal indexing (Hughes et al. 
2015) to help store and access spatiotemporal data. GeoMesa also provides spatial analysis 
functions that can be called by Spark.  

The computer cluster used in this case study comprises eight data nodes: three nodes with two 
Intel Xeon E5-2430L CPUs and 32G RAM each, three nodes with two Intel Xeon E5-2660 
v3 and 64G RAM each, and two nodes with two Intel Xeon Gold 6136 each. The operating 
system and HDFS file system reside on SSDs. The setup is based on Apache Hadoop 2.7 and 
managed using Ambari 2.6. 

3.2 Results 

Figure 3 and Figure 4 present the resulting prototypes and flows for two different vessel types 
– passenger and tanker vessels – in the area surrounding Gothenburg, Sweden. Wide flow lines 
in Figure 3 highlight frequent ferry connections in this area. These connections include local 
ferries that travel back and forth between the mainland and various islands along the coast, as 
well as long-distance ferry connections heading towards Denmark and Germany in the south-
west.  

 
Figure 3: Passenger vessel prototypes (arrows) and flows (connections between arrows)  
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The tanker flows presented in Figure 4 are mostly focused on the main corridor entering the 
port of Gothenburg. Smaller flows indicate tankers providing services to islands. Tangles of 
flow lines and prototypes pointing in various directions in the highlighted region indicate an 
anchorage area. Indeed, comparisons of these movement patterns and mapped maritime 
information (Sjöfartsverket, 2016) confirm that this region is a dedicated anchorage area.  

 
Figure 4: Tanker vessel prototypes (arrows) and flows (connections between arrows). The red circle marks 
an anchorage area containing tangles of flow lines and prototypes pointing in various directions 

Since our flows also include information about mean movement speeds and speed 
distributions, they also support a more in-depth exploration of speed patterns than regular 
flow maps (Andrienko & Andrienko, 2011), which model flow strength but not flow speed 
distribution. For example, Figure 5 shows the speed patterns of passenger vessels. Wide lines 
indicate a high variation in speed values along a flow. The northern route into and out of the 
harbor of Gothenburg is particularly noteworthy for its high variations of speed. Information 
about regions with high speed variation is particularly relevant since these areas need to be 
watched more closely because accidents are more likely to happen where lots of vessels are 
moving at different speeds. At its western end, this route splits into darker (higher speed) and 
lighter (lower speed) routes with lower speed variation. This indicates that vessels with 
different speed characteristics follow different routes from thereon.  
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Figure 5: Passenger speed patterns: mean flow speeds (line colour: darker colours equal higher speeds) 
and speed variation (line width) 

As this case study shows, our flows enable the exploration of movement patterns regarding 
the spatial distribution and density of trajectories, as well as the flow-specific distribution of 
movement speeds. We discovered, for example, anchorage areas that could be confirmed by 
official port maps, as well as routes with very high variations in vessel speed which could be 
important for safety considerations.  

4 Discussion  

The most critical step in the flow computation is the creation of trajectories. While Spark 
provides high-level functions for grouping and aggregating records, these are mostly geared 
towards dealing with unsorted data. If high-level Spark core functionality is used incorrectly, 
an aggregator needs to collect and sort the entire trajectory in the main memory of a single 
processing node. Consequently, analyses frequently run into out-of-memory errors when 
dealing with large datasets. Third-party libraries such as Spark-sorted (Tresata, 2020) provide 
groupSort, a functionality required to group, sort and iteratively process massive datasets. It 
never materializes the group for a given key in memory, but instead offers iterator-based 
streaming of the sorted data. This functionality helps to efficiently build the trajectories which 
are necessary for computing flows. 

The runtime of the computations depends on a variety of factors, including the size of the 
input dataset, the characteristics of the compute cluster setup (such as the number of Spark 
executors and their assigned memory), and the spatial resolution of the model (dmax and nmax  
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in the prototype extraction step). Models with fewer prototypes and larger cells can be 
computed faster but provide a less detailed representation of the original observations. A 
detailed runtime evaluation and sensitivity analysis of the prototype algorithm is provided in 
Graser et al. (2020). The runtime of the trajectory creation step depends on the efficiency of 
the groupSort implementation. The runtime of the flow computation step depends on the 
efficiency of the implementation for finding the matching prototype and thus on the spatial 
indexing method used.  

While the prototype algorithm allows for continuous updates and can therefore handle 
continuous streams of input data, the flow algorithm does not allow for continuous updates. 
Flows would have to be recomputed (at least locally) whenever prototypes changed. Therefore, 
the algorithm does not support exploration of continuous data streams. However, it can be 
used to explore large historical datasets. To support incremental updates of the flow model, it 
needs to be integrated into the prototype computation steps. An incremental flow model must 
keep track of the last observed positions of all moving objects within the system. This 
introduces considerable memory requirements, since every computational node needs access 
to this information. 

The quality of the flows presented in the case study was assessed using visual plausibility 
checks. Both the form of the flows (geometries) as well as their strength and speed show 
expected patterns and are therefore deemed suitable for the exploration of this movement 
dataset. A quantitative evaluation requires a measure for how well the computed flows 
represent the original trajectories. To the best of our knowledge, there is no established 
method that addresses this specific issue. However, measures used to evaluate trajectory 
generalization algorithms may be adaptable to this issue. 

5 Conclusions and future work 

We have presented a novel algorithm for extracting flow patterns from large movement 
datasets. Our new flow algorithm builds on the distributed movement data exploration model 
M³ and enables the distributed computation of flows between prototypes. We have 
demonstrated the usefulness of this approach in a case study involving a large dataset of 
maritime vessel movements.  

While the visualizations in this case study enable a qualitative evaluation of the resulting flows, 
questions remain pertaining to the quantitative evaluation of the flows. Future work should 
therefore include the development of quantitative measures that can be used to assess the 
quality of aggregated flow information.  

Potential uses cases for flow data are not limited to data exploration. In the future, we plan to 
use movement patterns extracted from historical data in predictive analytics, for example, to 
provide location predictions as well as to estimate time of arrival.  
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