
Graser et al

153

Extracting Patterns from
Large Movement Datasets

 GI_Forum 2020, Issue 1
Page: 153 - 163

Short Paper
Corresponding Author:

 anita.graser@ait.ac.at
DOI: 10.1553/giscience2020_01_s153

Anita Graser1,2, Peter Widhalm1 and Melitta Dragaschnig1
1AIT Austrian Institute of Technology, Vienna, Austria
2University of Salzburg, Salzburg, Austria

Abstract
Extracting useful information from large spatiotemporal datasets is a challenging task that
requires suitable visual data representations. Big movement data are particularly hard to
visualize since they are prone to visual clutter caused by overlapping and crisscrossing
trajectories. Different data aggregation approaches have been developed to address this
challenge and to provide analysts with better visualizations for data exploration and data-
driven hypothesis generation. However, most approaches for extracting patterns, such as
mobility graphs or generalized flow maps, cannot handle large input datasets. This paper
presents a flow extraction algorithm that can be used in distributed computing environments
and thus make it possible to explore movement patterns in large datasets. We demonstrate
its usefulness in a use case exploring maritime vessel movements

Keywords:
trajectories, spatiotemporal analysis, movement data analysis

1 Introduction

Large movement datasets that are collected by systems tracking vehicles, people or goods have
the potential to improve our understanding of mobility and transport systems, in order to, for
example, monitor vehicle emissions or tackle the issue of rising road traffic fatalities (WHO,
2018). Data exploration and data-driven hypothesis generation are important steps in the
process of building data-driven models since they enable knowledge to be gained, and spatial
modelling (Miller & Goodchild, 2015). However, we humans are not well equipped to
understand large amounts of raw numerical data. Instead, we need to visually represent the
data to extract useful information. The development of visualizations of big spatial data,
however, is challenging (Robinson et al., 2017). Movement data in particular are hard to
visualize due to visual clutter caused by intersecting and overlapping trajectories. Therefore, it
is ‘necessary to use appropriate data abstraction methods’ (Andrienko & Andrienko, 2011).

Data aggregation is a common technique for dealing with large amounts of data (Andrienko
et al., 2017a). Concerning movement data, density surfaces are probably the most commonly
used aggregation technique, as can be inferred from their prevalence in review (Chen et al.,

Graser et al

154

2015; Andrienko et al., 2017b; He et al., 2019) and application papers (Willems et al., 2009;
Aronsen & Landmark, 2016). The temporal dimension has been integrated into density
concepts in Demšar & Virrantaus’ (2010) space-time density volumes of trajectories. However,
density approaches provide only limited data exploration capabilities.

More advanced aggregation techniques aim to extract mobility graphs or generalized flow
maps from movement records. For example, Andrienko & Andrienko (2011) extract and
cluster characteristic waypoints from trajectories to generate aggregated flow maps, as
illustrated in Figure 1. However, their approach cannot deal with large datasets. As a work-
around, they therefore suggest extracting and clustering characteristic points from a subset of
the full trajectory dataset. ‘Assuming that the sampling is done sufficiently well, i.e., the
statistical and spatial distribution properties of the whole data set are preserved in a sample,
we can use the territory division so obtained to summarize […] the whole database’ (p. 216).

Figure 1: Example of raw movement data (left) and extracted flow map (right) using the algorithm by
Andrienko & Andrienko (2011), applied to one day of vessel movement data in the area surrounding
Gothenburg, Sweden. The flow map clearly communicates the relative popularity of the different route
options in this area. (Background map: Positron © OpenStreetMap contributors and CARTO)

Extracting suitable samples from large movement datasets is no simple task. To avoid
sampling, Pallotta et al. (2013) instead use incremental DBSCAN to identify waypoints.
However, tuning DBSCAN parameters ‘for good waypoint identification is not possible when
dealing with areas with varying density’ (Dobrkovic et al., 2018, p. 25). Approaches addressing
the issue of varying density include lattice or grid-based DBSCAN (Xiao et al., 2017) as well
as other clustering algorithms, such as OPTICS (Rinzivillo et al., 2008) or genetic algorithms
(Dobrkovic et al., 2018). In Graser et al. (2020), we present M³ – a movement data exploration
model that uses an incremental grid-based clustering algorithm. M³ runs in distributed
computing environments and is therefore scaleable to large datasets that exceed the processing
capacity of individual machines. Besides location information, M³ also takes other movement
characteristics, such as speed and direction, into account. However, Graser et al. (2020) do not

Graser et al

155

cover the follow-up step of computing flows. To address this gap, this paper proposes an
algorithm for computing flows from massive movement datasets.

The remainder of this paper is structured as follows: Section 2 presents our incremental flow
computation algorithm; Section 3 presents a case study with massive vessel movement data;
finally, Section 4 draws conclusions and provides an outlook for future work.

2 Methodology

Conceptually similar to Andrienko & Andrienko (2011), our proposed flow extraction method
is based on a two-step process. First, we extract prototypes from the movement data. These
prototypes describe movement characteristics in a certain geographic area and contain the
following information:

• Number of input location records (similar to density surfaces but with support for
multiple prototypes per grid cell)

• Geographical distribution (mean coordinates and variance) of location records
• Distributions (mean and variance) of direction, speed and other characteristics

available in the location records (including temporal or seasonal information).

In the second step, we determine flows between prototypes, including information about:

• Distribution of travel speeds
• Number of observed transitions.

The details of both steps are described in the following subsections.

2.1 Extracting prototypes

This step is based on the M³ model introduced in Graser et al. (2020). In short, movement
data records are clustered into prototypes using an incremental algorithm based on Vector
Quantization. In Vector Quantization, probability density functions are modeled by the
distribution of so-called prototype vectors. In our approach, these prototypes describe
movement properties using Gaussian Mixture Models (GMMs). Each GMM consists of a set
of components 𝐶𝐶. Each component 𝑐𝑐 has a set of parameters 𝜃𝜃𝑐𝑐 = {𝝁𝝁𝒄𝒄,𝑺𝑺𝒄𝒄}, where 𝝁𝝁𝒄𝒄 is the
mean value vector and 𝑺𝑺𝒄𝒄 is the covariance matrix of the multivariate Gaussian. The Leader-
Follower clustering (Duda et al., 2001) approach employed adds new data points to the closest
existing cluster or creates a new cluster if a specified distance threshold dmax between the data
point and the closest cluster is exceeded. To allow for distributed processing, movement data
is split using a spatiotemporal grid. The contents of each grid cell are then processed
independently.

2.2 Computing flows

After the prototypes have been computed, our new flow algorithm computes transitions
between pairs of prototypes. Like the prototypes, our flows are also modeled using GMMs.

Graser et al

156

The information modeled in each flow includes but is not limited to the number of transitions
and the speed distribution. An object moving from prototype A to prototype B triggers an
update of the corresponding flow. To allow for distributed processing, each node in the
distributed computing environment needs a copy of the previously computed prototypes.
Before flows can be computed, movement records are grouped by moving-object ID, sorted
chronologically, and then split into trajectories. Each moving object is processed
independently. The complete flow algorithm (as illustrated in Figure 2) can be summarized as
follows:

1. Create trajectories (i.e. sequences of chronologically ordered records) for individual
moving objects:

a. Split continuous movement tracks at stops and observation gaps and remove
outliers

b. Optionally: generalize the trajectories to reduce data size.

2. For each trajectory:

a. Let x be the next record in the trajectory
b. Find the most similar prototype μ∗
c. Let dmax be the distance threshold
d. If |x − μ∗| ≤ dmax and μ∗ is different from the previous prototype:

i. Let 𝛾𝛾 be the flow between μ∗ and the previous prototype
ii. Let 𝛼𝛼𝑥𝑥, 𝛼𝛼𝛾𝛾, 𝛼𝛼μ∗ be the directions of x, 𝛾𝛾, and μ∗ respectively
iii. Let 𝜎𝜎𝛼𝛼μ∗ be the standard deviation of the direction of μ∗
iv. Let 𝜑𝜑𝑚𝑚𝑚𝑚𝑥𝑥 be the direction difference threshold
v. If |𝛼𝛼𝑥𝑥 − 𝛼𝛼μ∗| ≤ 𝜑𝜑𝑚𝑚𝑚𝑚𝑥𝑥 and |𝛼𝛼𝑥𝑥 − 𝛼𝛼𝛾𝛾| ≤ 𝜑𝜑𝑚𝑚𝑚𝑚𝑥𝑥 and |𝛼𝛼𝑥𝑥 − 𝛼𝛼μ∗| ≤

2𝜎𝜎𝛼𝛼μ∗ :
1. Update the flow properties: travel speed and number of

transitions
2. Update the previous prototype reference.

Graser et al

157

Figure 2: Flow diagram for the flow algorithm

Both algorithms for extracting prototypes and computing flows were implemented in Apache
Spark. Spark (Zaharia et al., 2010) is a general-purpose cluster-computing framework that
supports distributed computing on large datasets which do not fit into the available memory.
This is important for processing large movement datasets. For the prototype extraction, only
the (intermediate) prototypes and the particular movement record currently being worked on
have to be kept in the memory. Similarly, for the flow computations, only the prototypes, the
(intermediate) flow results, and the trajectory currently being worked on have to be kept in the
memory for each iteration.

3 Case study

This case study aims to extract movement patterns from massive maritime vessel movement
data. Vessel movements are tracked by the Automatic Identification System (AIS), which
requires that vessels above a certain size broadcast their position and status.

3.1 Input data and cluster setup

The data used in this study were published by the Danish Maritime Authority; our dataset
contains 350 million records covering July 2017. To store this data for distributed processing,

Graser et al

158

we use GeoMesa Accumulo. GeoMesa provides fast spatiotemporal indexing (Hughes et al.
2015) to help store and access spatiotemporal data. GeoMesa also provides spatial analysis
functions that can be called by Spark.

The computer cluster used in this case study comprises eight data nodes: three nodes with two
Intel Xeon E5-2430L CPUs and 32G RAM each, three nodes with two Intel Xeon E5-2660
v3 and 64G RAM each, and two nodes with two Intel Xeon Gold 6136 each. The operating
system and HDFS file system reside on SSDs. The setup is based on Apache Hadoop 2.7 and
managed using Ambari 2.6.

3.2 Results

Figure 3 and Figure 4 present the resulting prototypes and flows for two different vessel types
– passenger and tanker vessels – in the area surrounding Gothenburg, Sweden. Wide flow lines
in Figure 3 highlight frequent ferry connections in this area. These connections include local
ferries that travel back and forth between the mainland and various islands along the coast, as
well as long-distance ferry connections heading towards Denmark and Germany in the south-
west.

Figure 3: Passenger vessel prototypes (arrows) and flows (connections between arrows)

Graser et al

159

The tanker flows presented in Figure 4 are mostly focused on the main corridor entering the
port of Gothenburg. Smaller flows indicate tankers providing services to islands. Tangles of
flow lines and prototypes pointing in various directions in the highlighted region indicate an
anchorage area. Indeed, comparisons of these movement patterns and mapped maritime
information (Sjöfartsverket, 2016) confirm that this region is a dedicated anchorage area.

Figure 4: Tanker vessel prototypes (arrows) and flows (connections between arrows). The red circle marks
an anchorage area containing tangles of flow lines and prototypes pointing in various directions

Since our flows also include information about mean movement speeds and speed
distributions, they also support a more in-depth exploration of speed patterns than regular
flow maps (Andrienko & Andrienko, 2011), which model flow strength but not flow speed
distribution. For example, Figure 5 shows the speed patterns of passenger vessels. Wide lines
indicate a high variation in speed values along a flow. The northern route into and out of the
harbor of Gothenburg is particularly noteworthy for its high variations of speed. Information
about regions with high speed variation is particularly relevant since these areas need to be
watched more closely because accidents are more likely to happen where lots of vessels are
moving at different speeds. At its western end, this route splits into darker (higher speed) and
lighter (lower speed) routes with lower speed variation. This indicates that vessels with
different speed characteristics follow different routes from thereon.

Graser et al

160

Figure 5: Passenger speed patterns: mean flow speeds (line colour: darker colours equal higher speeds)
and speed variation (line width)

As this case study shows, our flows enable the exploration of movement patterns regarding
the spatial distribution and density of trajectories, as well as the flow-specific distribution of
movement speeds. We discovered, for example, anchorage areas that could be confirmed by
official port maps, as well as routes with very high variations in vessel speed which could be
important for safety considerations.

4 Discussion

The most critical step in the flow computation is the creation of trajectories. While Spark
provides high-level functions for grouping and aggregating records, these are mostly geared
towards dealing with unsorted data. If high-level Spark core functionality is used incorrectly,
an aggregator needs to collect and sort the entire trajectory in the main memory of a single
processing node. Consequently, analyses frequently run into out-of-memory errors when
dealing with large datasets. Third-party libraries such as Spark-sorted (Tresata, 2020) provide
groupSort, a functionality required to group, sort and iteratively process massive datasets. It
never materializes the group for a given key in memory, but instead offers iterator-based
streaming of the sorted data. This functionality helps to efficiently build the trajectories which
are necessary for computing flows.

The runtime of the computations depends on a variety of factors, including the size of the
input dataset, the characteristics of the compute cluster setup (such as the number of Spark
executors and their assigned memory), and the spatial resolution of the model (dmax and nmax

Graser et al

161

in the prototype extraction step). Models with fewer prototypes and larger cells can be
computed faster but provide a less detailed representation of the original observations. A
detailed runtime evaluation and sensitivity analysis of the prototype algorithm is provided in
Graser et al. (2020). The runtime of the trajectory creation step depends on the efficiency of
the groupSort implementation. The runtime of the flow computation step depends on the
efficiency of the implementation for finding the matching prototype and thus on the spatial
indexing method used.

While the prototype algorithm allows for continuous updates and can therefore handle
continuous streams of input data, the flow algorithm does not allow for continuous updates.
Flows would have to be recomputed (at least locally) whenever prototypes changed. Therefore,
the algorithm does not support exploration of continuous data streams. However, it can be
used to explore large historical datasets. To support incremental updates of the flow model, it
needs to be integrated into the prototype computation steps. An incremental flow model must
keep track of the last observed positions of all moving objects within the system. This
introduces considerable memory requirements, since every computational node needs access
to this information.

The quality of the flows presented in the case study was assessed using visual plausibility
checks. Both the form of the flows (geometries) as well as their strength and speed show
expected patterns and are therefore deemed suitable for the exploration of this movement
dataset. A quantitative evaluation requires a measure for how well the computed flows
represent the original trajectories. To the best of our knowledge, there is no established
method that addresses this specific issue. However, measures used to evaluate trajectory
generalization algorithms may be adaptable to this issue.

5 Conclusions and future work

We have presented a novel algorithm for extracting flow patterns from large movement
datasets. Our new flow algorithm builds on the distributed movement data exploration model
M³ and enables the distributed computation of flows between prototypes. We have
demonstrated the usefulness of this approach in a case study involving a large dataset of
maritime vessel movements.

While the visualizations in this case study enable a qualitative evaluation of the resulting flows,
questions remain pertaining to the quantitative evaluation of the flows. Future work should
therefore include the development of quantitative measures that can be used to assess the
quality of aggregated flow information.

Potential uses cases for flow data are not limited to data exploration. In the future, we plan to
use movement patterns extracted from historical data in predictive analytics, for example, to
provide location predictions as well as to estimate time of arrival.

Graser et al

162

Acknowledgements

This work was supported by the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT) within the ‘IKT der Zukunft’ programme under Grant 861258 (project
MARNG).

References

Andrienko, N. & Andrienko, G. (2011). Spatial generalization and aggregation of massive movement
data. IEEE Transactions on visualization and computer graphics, 17(2), 205-219.

Andrienko, G., Andrienko, N., Chen, W., Maciejewski, R., & Zhao, Y. (2017a). Visual analytics of
mobility and transportation: State of the art and further research directions. IEEE Transactions on
Intelligent Transportation Systems, 18(8), 2232-2249.

Andrienko, G., Andrienko, N., Fuchs, G., & Wood, J. (2017b). Revealing patterns and trends of mass
mobility through spatial and temporal abstraction of origin-destination movement data. IEEE
transactions on visualization and computer graphics, 23(9), 2120-2136. 4

Aronsen, M., & Landmark, K. (2016). Density mapping of ship traffic. FFI-RAPPORT 16/02061.
Norwegian Defence Research Establishment (FFI).

Chen, W., Guo, F., & Wang, F. Y. (2015). A survey of traffic data visualization. IEEE Transactions on
Intelligent Transportation Systems, 16(6), 2970-2984.

Demšar, U., & Virrantaus, K. (2010). Space–time density of trajectories: exploring spatio-temporal
patterns in movement data. International Journal of Geographical Information Science, 24(10), 1527-1542.

Dobrkovic, A., Iacob, M. E., & van Hillegersberg, J. (2018). Maritime pattern extraction and route
reconstruction from incomplete AIS data. International journal of Data science and Analytics, 5(2-3), 111-
136.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. John Wiley & Sons.
Graser, A., Widhalm, P., & Dragaschnig, M. (2020, in print). The M³ massive movement model: a

distributed incrementally updatable solution for big movement data exploration. International Journal
of Geographical Information Science.

He, J., Chen, H., Chen, Y., Tang, X., & Zou, Y. (2019). Diverse visualization techniques and methods
of moving-object-trajectory data: a review. ISPRS International Journal of Geo-Information, 8(2), 63.

Hughes, J. N., Annex, A., Eichelberger, C. N., Fox, A., Hulbert, A., & Ronquest, M. (2015). Geomesa:
a distributed architecture for spatio-temporal fusion. In Geospatial Informatics, Fusion, and Motion Video
Analytics V (Vol. 9473, p. 94730F). International Society for Optics and Photonics.

Miller, H.J. & Goodchild, M.F. (2015). Data-driven geography. GeoJournal, 80(4), 449–461.
Pallotta, G., Vespe, M., & Bryan, K. (2013). Vessel pattern knowledge discovery from AIS data: A

framework for anomaly detection and route prediction. Entropy, 15(6), 2218-2245.
Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., & Andrienko, G. (2008). Visually

driven analysis of movement data by progressive clustering. Information Visualization, 7(3-4), 225-239.
Robinson, A.C., Demšar, U., Moore, A.B., Buckley, A., Jiang, B., Field, K., Kraak, M.J., Camboim, S.P.

& Sluter, C.R. (2017). Geospatial big data and cartography: research challenges and opportunities
for making maps that matter. International Journal of Cartography, 3(1), 32–60.

Sjöfartsverket (2016). Passageplan Göteborg, Retrieved from
https://www.sjofartsverket.se/pages/29206/Passageplan%20folder%20Göteborg%202016.pdf

Tresata (2020) Secondary sort and streaming reduce for Apache Spark: tresata/spark-sorted. Retrieved
from https://github.com/tresata/spark-sorted

WHO (2018) Global status report on road safety 2018. Technical report, World Health Organization,
Geneva. Retrieved from

Graser et al

163

https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf
Willems, N., Van De Wetering, H., & Van Wijk, J. J. (2009). Visualization of vessel movements.

In Computer Graphics Forum, 28(3), pp. 959-966. Oxford, UK: Blackwell.
Xiao, Z., Ponnambalam, L., Fu, X., & Zhang, W. (2017). Maritime traffic probabilistic forecasting based

on vessels’ waterway patterns and motion behaviors. IEEE Transactions on Intelligent Transportation
Systems, 18(11), 3122-3134.

Zaharia, M., Chowdhury, M., Franklin, M.J. et al. (2010). Spark: Cluster computing with working sets.
In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, p. 10.

	1 Introduction

