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Abstract 

While we still lack a community-agreed definition of ‘big Earth data’, there is clear 

evidence that the data’s unprecedented volume, variety and velocity, as well as veracity, 

require changes to traditional ways of storing and analysing Earth observation (EO) data 

and sharing their value with the public. Alongside the challenges, opportunities also arise 

when continental or global-scale analyses become readily feasible, or when time series / 

time lapse analyses provide unprecedented insights. This contribution presents a broad 

overview of current trends, limitations and opportunities for an increased use of larger 

volumes of EO data, while having in mind that the main objective is to use big Earth data 

to foster the fifth ‘V’, namely value. The data become valuable if they can be transformed 

into information which matches specific contexts. The overview on big Earth data is 

complemented by specific implementations and use cases. 
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1 Big Earth data as a recent trend in Earth observation 

The ever-increasing volume, variety and velocity of satellite images, acquired by a variety of 
Earth observation (EO) acquisition platforms, can be valuable for numerous application 
areas or even extended into completely new ones. The unprecedented combination of high 
spatial and high temporal resolutions in particular allows for new approaches to solve spatial 
problems on Earth. Applications of these advances include shorter response times in 
reacting to land-use changes over large areas, such as (illegal) deforestation of rain forest 
(Maus et al., 2016); observation of unclear and confusing city structures and changes therein 
in Asia, Africa and South America (Bachofer, 2017); or prompt reaction to natural and 
humanitarian disasters such as earthquakes and floods (Lang, Schoepfer, Zeil, & Riedler, 
2017; Schwarz et al., 2018). The European Copernicus programme is one of the main drivers 
of this expansion of EO data, illustrated in Figure 1, which shows the increase of users 
registered to access satellite data via the ESA portals. However, the latent message here is 
that not only have the numbers of users increased, but also the diversity of application 
domains. While arguably most of the users in the pre-Copernicus era were EO experts, EO 
data is increasingly being used by non-EO experts in fields such as Biology, Ecology, 
Geology or Marine Science. 
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Figure 1: Increasing use of European satellite EO data, documented by registered users (Source: ESA, 

created and shared by isardSAT). 

With wider interest in, and the increasing volume, variety and velocity of, EO data, new 
challenges arise. What is the best way to store and manage data, and how can it be made 
accessible for end-users without the need for downloading? How can we produce useful 
information systematically from the content of an image, or even a long time series of 
images? How can EO data from different sensors be combined, or how can they be 
combined with non-EO data? Arguably, in most analyses only a small portion of the 
available images are currently being used. There are several possible reasons for this. The 
prevalent requirement is still for data to be downloaded prior to analysis, partly because local 
workflows cannot be easily translated into Web-based workflows. Other reasons are the 
tools and computation capabilities that are simply not powerful enough yet, and the lack of 
interoperability and transferability of approaches. 

If we take a closer look, we see that there is no community-agreed definition of what ‘big 
Earth data’ actually is and whether the term describes the phenomenon appropriately. 
Synonyms might be ‘big EO data’, ‘big environmental data’ or ‘big data in remote sensing’. 
However, newly emerging trends in how data volumes are provided and processed, and the 
modifications to associated methods of analysis, are evident. The open access policy of the 
Landsat and Sentinel programmes in particular (European Commission, 2013; Wulder & 
Coops, 2014) seems to be a key driver for putting the term ‘big Earth data’ on the agenda 
(Baumann et al., 2016; Guo, 2017; OGC, 2017). In the optical EO domain, the Copernicus 
Sentinel-2 satellites are specifically designed to deliver high resolution (HR) imagery as a key 
information source of the European Copernicus programme, which collects significantly 
more data than any comparable initiative, past or present. Under the present acquisition plan, 
each of the two currently operational Sentinel-2 satellites produces more than 1.7 Terabytes 
(Tb) of data per day for the 1C processing level (ESA, 2017), as shown in Figure 2. This 
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translates into several hundred images every day. Since the beginning of the exploitation 
phase of Sentinel-2A in mid-2015, more than 3.7 million images have been acquired (as at 
March 2018). The Sentinel-2 constellation covers the vast majority of the Earth’s land 
surface with dual satellites (2A / 2B, 180° apart), a broad swath-width of up to 
approximately 290 km, a 5-day revisiting time at the equator, which is even more frequent at 
higher latitudes, and 13 multispectral bands ranging from 10m to 60m spatial resolution 
(Drusch et al., 2012). A comparable increase of data volumes and velocities in the radar 
domain is provided by the Sentinel-1 satellite constellation. 

 

Figure 2: Yearly data volume (from Soille et al., 2018 without changes). 

One of the main challenges for the community will be to systematically derive meaningful 
information from the data. This is indeed not an easy task in non-big Earth data domains 
and gets even more complicated, regarding automation and accuracy, for the large amount of 
data we face. We also need to define what data is and what information is. Further, this 
overarching goal is closely tied to technological developments, innovations in the application 
domains, and interdisciplinary research in the fields of remote sensing and computer vision, 
GIScience, computer science, and human-computer interactions. 
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2 Big data, big discussions  

Challenges and opportunities 

As for any new technology, the direction(s) and magnitude(s) that follow from the initial 
developments are unclear. We can infer from observations of other developments, e.g. 
smartphones or social networks, that there are many opportunities, but also challenges which 
need to be tackled. This is especially the case if expectations are high, such as using EO 
technology to help solve global problems. Table 1 illustrates some characteristics of big 
Earth data and their potential impacts, in terms of both challenges and opportunities. 

Table 1: Characteristics of big Earth data and the potential impact. 

Characteristics Potential impact 

The data are open access. Continental or even global analyses are possible. 

Business models based on EO data can be established. 

The data are not collected for a single 

purpose, but are a constant stream. 

Long time-series analyses are possible. Knowledge about 

spatio-temporal characteristics of phenomena prior to data 

collection is less important. Data quality and reliability 

become even more important. 

The volume of data is so huge that 

downloads are cumbersome or even 

no longer possible. 

Remote processing emerges together with cloud 

computing and sharing economy (of data and processing 

capabilities). Data provider becomes platform provider 

for services. Questions of data security and safety arise. 

Smaller companies become competitive as they can rent 

processing capabilities and can use market places for 

selling their products and services. 

Acquisition frequency increases up to 

several days for high-resolution 

images. 

Phenomena with inherent high temporal changes can be 

observed. The actual date of a change can be determined 

more accurately. Several application domains can make 

better use of EO data, e.g. urban development, insurance 

companies or agriculture. 

Time between acquisition and data 

provision is reduced to several hours 

Near real-time analyses become possible. Requirements 

of new application domains, e.g. for disaster 

management, can be satisfied. 

Image archives date back some 

decades (e.g. MODIS, Landsat). 

Analyses of long-term trends are possible, e.g. to study 

the impact of climate change or human-induced changes 

in urban developments. New technologies emerge which 

can handle the temporal domain better, e.g., data cubes. 

Analysts have access to more 

computing resources. 

Larger study areas and time-series analysis can be 

considered. Machine-learning approaches are increasingly 

being used. 
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The main opportunity comes through the increased spatio-temporal coverage of EO data. 
This opens new analysis fields, e.g. monitoring specific global trends in the context of the 
UN Sustainable Development Goals (SDGs), or long time-series analysis with temporal 
resolutions of a few days. Application domains which deal with impacts of climate change, 
monitoring of natural resources, or human impact benefit from the additional evidence 
provided by EO analyses. Challenges may arise with the use of big Earth data, including 
questions of data storage and management, data quality and reliability, whether methods are 
transferable and can be applied on a continental or even global scale, or how the results can 
be interpreted and whether they can be trusted. The impact of the increased volume of data 
and the availability of massive computing power in cloud environments can as yet only be 
surmised vaguely, not forecast or calculated. These are just some of the many open 
questions, which will be looked at briefly in the sections below. 

Production of information from images 

In contrast to other domains, where the data volume and especially the velocity are 
challenges in their own right, in Earth observation, the raw data need first to be transformed 
into information. The process of transforming data into information includes many pre-
processing steps, such as radiometric calibration and correction, or format conversions. But 
we need to distinguish clearly between the terms data and information, which are not as 
sharply differentiated as they might seem to be at first glance. In the case of optical EO, data 
are the raw images, delivered for example on processing Level 1C; to be considered as 
information, data need to be interpreted to some degree. Contrary to what the common 
terminology might suggest, information does not simply ‘sit’ inside data from which it can 
simply be ‘extracted’. Hence, the term ‘information production’ seems to be more accurate 
than ‘information extraction’. 

In the context of image understanding, it needs to be understood that an image is a 2D 
representation of the physical 4D world (Marr, 1982). Therefore, image understanding aims 
at reconstructing a scene from a 2D image to allow questions to be answered and 
information to be produced from it. We are referring here explicitly to the arrangement of 
physical objects and their measurable attributes. The data interpretation process requires a 
framework of prior knowledge on the existence and arrangements of the physical objects 
that compose the image and to which the observations relate.  

Advent of new technologies and applications 

Alongside the term ‘big Earth data’, several technologies have emerged or been transferred 
from other domains. While an exhaustive review goes beyond the scope of this contribution, 
some of the most salient developments can be mentioned by way of examples. Most 
prominently, the data cube concept can be seen as the backbone of modern big Earth data 
analytics (Baumann et al., 2016; Nativi, Mazzetti, & Craglia, 2017; Wagemann, Clements, 
Marco Figuera, Rossi, & Mantovani, 2018), together with map-reduce-based solutions such 
as Google Earth Engine (Gorelick et al., 2017). Furthermore, machine-learning technologies, 
e.g. convolutional neural networks (CNN) (Long, Shelhamer, & Darrell, 2015), are 
increasingly being applied to EO images (Längkvist, Kiselev, Alirezaie, & Loutfi, 2016). 
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Data cubes have long been familiar from data warehouse technologies, where attributes are 
indexed by coordinates in different (including non-spatial) dimensions. However, in contrast 
to EO data cubes, other types of data cubes are sparsely populated and can be represented in 
relational databases. An EO data cube stores data in two or three spatial dimensions and at 
least one non-spatial dimension, e.g. time. A definition of a data cube is provided by the data 
cube manifesto (Baumann, 2017): 

‘A datacube is a massive multi-dimensional array […]; “massive” entails that we talk about sizes 
significantly beyond the main memory resources of the server hardware. Data values, all of the same data 
type, sit at grid points as defined by the d axes of the d-dimensional datacube. Coordinates along these 
axes allow addressing data values unambiguously.’ 

Operational examples for larger implementations of data cubes are Digital Earth Australia 
(DEA), which evolved from the Australian Geoscience Data Cube (Lewis et al., 2017), the 
Swiss Data Cube (SDC) (Giuliani et al., 2017), and the EarthServer (Baumann et al., 2016). 
While DEA and SDC are based on the technology of the Open Data Cube Initiative 
(ODCI), the EarthServer uses the Rasdaman array database system (Baumann, Dehmel, 
Furtado, Ritsch, & Widmann, 1998) to manage and query the data. 

Deep learning technologies, such as CNN, are increasingly being used to identify the content 
in EO images. An example can be found in Long et al. (2015). Implementations range from 
simply attaching labels to whole images to marking image objects using dense semantic 
segmentation, in which every pixel is classified. However, there are also critical voices, those 
of people who are not satisfied with the results or the approach and criticize it as a ‘black 
box’ (Marcus, 2018). Physical model-based approaches exist that rely not on learning but on 
explicit structural knowledge; they can be seen as an alternative or complementary effort 
(Baraldi et al., 2010). 

While there is and will continue to be ongoing discussion about the best technological 
foundation and its implementation, there seems little doubt that big Earth data fosters new 
application areas and research questions. For example, Tiede, Baraldi, Sudmanns, Belgiu, & 
Lang (2017) presented an approach for semantic content-based image retrieval and semantic 
analysis of EO images directly at the database level. Pekel, Cottam, Gorelick, & Belward 
(2016) mapped long-term changes of surface water on a global scale, and Lewis et al. (2017) 
used the AGDC to map the water dynamics of the whole of Australia. Hansen et al. (2013) 
mapped forest cover change on a global scale. These are just a few examples of new 
approaches and categories of geospatial information products. They can be used in 
operational applications, such as monitoring the achievements of SDGs or calculating 
essential climate variables as inputs for climate models. 

3 The potential of big Earth data applications 

The concept of ‘from data to information’ outlined above encompasses the whole workflow 
but also stresses the need to produce reliable, global, multi-temporal, geospatial information 
from big Earth data to unfold the data’s potential, e.g., in science or political decision-
making. Just a few of the research domains concerned with big Earth data, then, are: 
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• EO big data handling and data selection 
• Semantics / feature and information extraction 
• Innovative concepts of time-series analysis 
• Remote processing platforms and connections to public and private big data initiatives 
• Machine learning, artificial intelligence and knowledge-based systems 

Many contributions to the issues (1 and 2) of GI_Forum 2018 address the topic ‘from data 
to information’. They range from mapping natural resources such as grassland (Bekkema & 
Eleveld) or forests (Korman et al.; Peters, Liu, Bruce, O’Hehir, & Li) or environmental 
changes in general (Augustin, Sudmanns, Tiede, & Baraldi), to assessing settlement damage 
in war zones (Braun). Specific topics of image analysis workflows are covered: data 
management using data cubes (Augustin et al.), transferable models for image classification 
(Wolfe, Jin, & Bahr), and time-series analyses (Augustin et al.; Braun; Peters et al.). Multiple 
data sources are considered, ranging from high-resolution optical satellite images, in 
particular from Sentinel-2 (Augustin et al.; Korman et al.), to multi-temporal LiDAR data 
(Peters et al.) and radar data (Braun). 

More precisely, Peters et al. develop a framework for automatic LiDAR data processing and 
the prediction of timber yield. They aim to update an existing forest inventory based on 
airborne laser scanning (ALS) using UAV-based LiDAR. Wolfe et al. demonstrate the 
usefulness of visual modelling tools for complex classification tasks using Softmax 
Regression or a Support Vector Machine (SVM) classifier. In the Sentinel-2 HR domain, 
Bekkema and Eleveld have developed a new method to map and assess grassland 
management intensity using the C5.0 univariate decision tree (DT) algorithm and report on 
the suitability of Sentinel-2 data for this task. Augustin et al. report on the development and 
setting-up a of a semantic data cube using the Open Data Cube for semantic queries and 
analyses through time, presenting surface water dynamics during the Syrian conflict as a case 
study. Korman et al. estimate the forest above-ground biomass (AGB) and its temporal and 
spatial variation in Croatia in 2016 using Sentinel-2, Braun uses a time series of Sentinel-1 
radar imagery for the identification of changes resulting from armed combats in the city of 
Raqqa, Syria. 

4 Conclusion and outlook 

The topic of big Earth data has not lost its actuality and has even increased constantly in the 
last 40 years, boosted by the free and open data policy for HR Landsat and Sentinel data. 
Since the launch of the first civil satellites, problems of handling large volumes of EO data 
have always been present for the remote sensing community: in one of the early remote 
sensing textbooks published forty years ago, Barrett and Curtis (1978), we find a sub-section 
entitled ‘Problems of handling large quantities of remote sensing data’ (p. 318). However, the 
message should not be a discouraging one, since – in tandem with the increasing computing 
capacity available over the years – the community has already developed and implemented a 
wide spectrum of algorithms and tools to tackle the challenges. Today’s tools are far more 
sophisticated than earlier ones, which included simply reducing the data volume by lossy 
generalization, compression or even deleting data. Some of the new tools, like data cubes, 
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developments in artificial intelligence, and algorithms for efficient time series analysis, 
represent the cutting edge of the field. 

The kaleidoscope of different topics, technologies and solutions presented in this issue of 
GI_Forum is impressive, providing a snapshot of what is a very dynamic and lively domain. 
And it may well be outdated in the near future due to the speed of technical developments. 
Nevertheless, when looking back we can identify a general shift in ‘big Earth data’-related 
topics, from rather technical and practical questions about how to transmit and store data to 
questions about how to produce information from the available data and thus generate value 
from it. As the remote sensing community and those working in related domains (such as 
computer science) which have influenced the evolution of remote sensing have made 
significant progress towards providing solutions to the first set of questions, we may 
confidently expect the second set of questions to be tackled as well – namely, how to get 
from data to information.  
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