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Abstract 
An increasing demand for agricultural products within the past years has led to increasing 
agricultural intensification. Various agricultural compositions and landscape configurations 
can have different impacts on the provision of ecosystem services. The EU follows the aim of 
supporting and developing sustainable food production systems. We use the plot-based 
data provided by the Integrated Administration and Control System (IACS) to identify 
different types of agricultural landscapes and their spatial distribution in Brandenburg, 
Germany. By calculating a set of landscape metrics to characterise agricultural land use, 
we were able to identify six types of agricultural landscapes by a Two-Step cluster analysis 
for a hexagonal grid. Thereby, the majority of Brandenburg is covered by agriculture 
characterised by high share of cropland but different degrees of fragmentation. By 
providing a framework using landscape metrics derived from IACS data, the approach of 
clustering to identify typologies is highly transferable to other regions within the EU and may 
provide an important asset for offering new units of analysis for a better tailored 
environmental and agricultural planning depending on the local to regional characteristics.  
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1 Introduction  

European agricultural landscapes have featured considerable changes towards intensification 
and marginalization of areas, and these major trends are expected to continue in the future 
(Lüker-Jans, Simmering, & Otte, 2016; Rounsevell, Annetts, Audsley, Mayr, & Reginster, 
2003). We define agricultural landscapes as the result of land uses and management in an area 
following the definition of Kizos and Koulouri (2006). These landscapes provide ecological 
functions, e.g. habitat provision; economic functions, e.g. income generation; and cultural 
functions, e.g. landscape aesthetics.  According to  Lüker-Jans et al. (2016), marginal 
agricultural landscapes are characterised by unfavourable biophysical conditions, such as steep 
slopes, shallow and/or poor soils, and inferior accessibility. They often show increased 
biodiversity and habitat richness due to low intensities of cultivation, crop and grassland 
rotation and small-parcelled mosaics. Conversely, intensive agriculture often goes along with 
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larger field sizes, lower heterogeneity in habitat structure, and more monoculture (Ruiz-
Martinez, Marraccini, Debolini, & Bonari, 2016). Thus, intensification is frequently associated 
with a decrease in biodiversity and negative effects on the environment, i.e. soils and water 
quality (Thomson et al., 2019). A sustainable pathway is needed for maximising agricultural 
production and particularly achieving future food security while at the same time reducing the 
negative environmental effects of agricultural land use. In recent years, the provision of 
ecosystem services from agricultural land has been increasingly highlighted by science and 
enacted in policy changes (Schaller et al., 2018). The European Common Agricultural Policy 
(CAP), the major policy instrument driving agricultural land use in Europe, aims to support 
the sustainable management of natural resources such as water, soil and air and to contribute 
to the protection of biodiversity, enhance ecosystem services and preserve habitats and 
landscapes (European Union, 2019). 

In the past decades, landscape metrics have been successfully applied to characterise and 
compare (agricultural) landscapes across space and time in a quantitative manner (Uuemaa, 
Mander, & Marja, 2013). Typically, number, size, shape and arrangement of patches of 
different land-use/land cover types are used quantify landscape structure, composition and 
dynamics. Lately, metrics have also been used as proxies for characterising agricultural land 
use intensity, e.g. area under cultivation, mean patch size and Shannon’s Diversity Index 
(Schlesinger and Drescher 2018). In contrast, others have analysed inputs, such as labour, 
capital or management practices, and outputs, such as yields (Shriar, 2000) or the dependence 
on industrial goods, e.g. machinery and fertilizer (Temme & Verburg, 2011; Zasada et al., 2013) 
to characterise agricultural land use intensity. However, these studies face the problem of data 
availability and are therefore often restricted to small areas and selected farms. A promising 
dataset to achieve area-wide characterization by different types of agricultural landscapes 
comes from the Integrated Administration and Control System (IACS, in German: Invekos). 
In recent years, initial studies successfully used this dataset that is derived from the subsidy-
payments to the farmers to analyse agricultural land use change (Lüker-Jans et al., 2016; 
Tomlinson, Dragosits, Levy, Thomson, & Moxley, 2018) and farm-level agriculture 
characterization  (Lomba et al., 2017; Uthes, Kelly, & König, 2020). 

The aim of this paper is to identify and characterise different types of agricultural landscapes 
and to depict their spatial patterns using landscape metrics and a cluster analysis for the case 
study of Brandenburg, Germany. While landscape metrics are most frequently applied to grids 
and administrative areas, we use hexagons. They have shown to better capture spatially 
continuous phenomena such as agricultural landscapes because of their spatial smoothing 
effect towards the edges of the hexagons (Birch, Oom, & Beecham, 2007; Schindler, 
Poirazidis, & Wrbka, 2008). The outcomes of this study may provide an important asset for 
providing new units of analysis for better-tailored environmental and agricultural policies 
depending on the local to regional characteristics. 
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2 Material and Methods 

2.1 Study Area 

We focus on the state of Brandenburg, which is located in the northeast of Germany covering 
29.640 km² of which 45% are used for agriculture (Figure 1). Ongoing pressure on agricultural 
land to convert into residential land is observed in the suburban areas of Berlin, while an 
increasing demand for regional food production can also be observed. At the same time, 
Gutzler et al. (2015) anticipate an increased use of cropland for renewable energy production. 
Farms in Brandenburg are comparatively large, around 240 ha, four times the German average 
(Gutzler et al., 2015). In addition, general low soil quality with almost two-thirds being sandy 
and sandy-loamy soils, low rainfall at only 591 mm/year and a high technological level 
characterise the agricultural land use. Compared to other German states, Brandenburg shows 
a relatively high share of organic agriculture (12 % of agricultural area) that is further increasing 
in recent years (Ministerium für Landwirtschaft, Umwelt und Klimaschutz [MLUK], 2019).  

 
Figure 1: Agricultural land use and hexagons grid outline of the state of Brandenburg, Germany.  

2.2 Data 

We used plot-based information on cultivation for Brandenburg agriculture in 2018 (reported 
for 31.5.2018) provided by the Integrated Administration and Control System (IACS). We 
selected and reclassified the data into the categories: grassland, cropland, and maize as a single 
crop. We also derive the plot sizes and edges and if a plot is managed conventionally or 
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organically. In addition, we use Open Street Map (OSM) data on buildings and soil quality data 
that captures the yield potential (Bundesanstalt für Geowissenschaften und Rohstoffe, 2014).  

2.3 Methods 

We created a hexagonal grid with a cell size of 10 km² (N = 2836; 178 were deleted because 
of missing data). The size of the cells captured the landscape level and the spatial configuration 
of plots within. We selected the following indicators to assess different types of agricultural 
landscapes based on a literature review: soil quality (values from 0-100), number of buildings 
(N), edge density (calculated as share of total hexagon area, in km/10km²), median plot size 
(ha), organic share of total agricultural area (%), maize share of total agricultural  (%), cropland 
share (%), Shannon Diversity Index, share agriculture of total area (%) and mean distance to 
settlements (km). We measured cropland intensity by the share of maize that is likely to be 
used for biogas and cultivated as a long-term self-following crop (i.e. without crop rotation; 
(Gutzler et al., 2015; Lüker-Jans et al., 2016). We included both maize types (i.e. silage maize 
and corn maize) in our analysis. According to the  Fachagentur Nachwachsende Rohstoffe e. 
V. (2013), the expansion of maize is expected to be on par with intensification of crop 
production. We calculated the respective indicator values for the year of 2018 for the hexagons. 
To reduce redundancies in the datasets we calculated Spearman’s correlation coefficients 
(Lausch & Herzog, 2002) and dropped those indicators with a correlation of 0,4 or more, i.e. 
share of agriculture, Shannon’s Diversity Index, distance to settlements. We then applied a 
cluster analysis on the remaining 7 indicators: number of buildings, soil quality, median plot 
size, edge density and share of cropland, maize and organic agriculture. The Two-Step 
clustering offers the advantage automatic determination of the optimum number of clusters 
and was originally developed for large datasets by Chiu, Fang, Chen, Wang, and Jeris (2001). 
For validation of the cluster number, the model fit was evaluated by the silhouette coefficient, 
which is a measure of cohesion and separation of clusters. A value above 0,2 thereby indicated 
a fair quality of clusters (Tkaczynski, 2017). 

To measure spatial autocorrelation for the categorical cluster values, we calculated the join 
count (Plant, 2012). This determines the degree of clustering or dispersion among a set of 
spatially adjacent polygons. To calculate the join count for each cluster value, we set the 
reference cluster value to 1 and all other cluster values to 0, and we calculated the join count 
separately for each cluster. 

3 Results 

We identified 6 different types of agricultural landscapes in Brandenburg: 1 Peri-urban, 2 High 
Fragmentation, 3 Low Fragmentation, 4 High Intensity, 5 Low Intensity (marginal grasslands), 
6 Organic Production (see Table 1). The Two-Step clustering for these 6 clusters returned the 
best results with relatively low Bayesian Information Criterion (BIC) values (7894,076) and 
distance measure is the highest (1,546). A The silhouette measure of cluster cohesion and 
separation indicates a fair quality (0,3) for these 6 clusters.  
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Table 1:Centroid of clusters with indication of lowest (green) and highest (red) values  

 Centroid 

Cluster 
Soil 

Quality 
Number of 
Buildings 

Edge 
Density 

(km/10km²) 

Median 
Plot Size 

(ha) 

Organic 
Share 
(%) 

Maize 
Share 
(%) 

Cropland 
Share 
(%) 

1: Peri-urban 49,4 3206,2 5,0 3,0 7,6 10,1 68,9 

2: High 
Fragmentation 49,4 194,7 10,4 4,4 5,1 18,4 83,7 

3: Low 
Fragmentation 51,3 197,4 4,1 3,5 5,3 19,3 86,7 

4: High 
Intensity 62,8 173,9 7,9 11,2 3,2 20,5 93,7 

5: Low 
Intensity 47,2 207,8 8,3 4,5 12,9 7,2 35,7 

6: Organic 
Production 50,4 244,6 6,3 3,2 68,9 4,8 72,1 

More specifically, the identified types of agricultural landscapes can be characterised as the 
following:  

Cluster 1 (Peri-Urban: 5,8 % of all clusters, N = 149) can be described as the peri-urban 
agriculture cluster mainly characterised by very high mean numbers of 3206 buildings (Table 
1). Hence, mean share of agricultural area is lowest amongst the clusters with a calculated 
average of 24,5 %. Consequently, edge density is also relatively low (mean 5,0 km/10 km²). 
With the lowest average median plot size (3,0 ha) plots in this cluster tend to be smaller than 
plots in other clusters. Share of maize and cropland in general tend to be lower than in the 
other clusters. Additionally, the areas of this cluster are characterised by lower soil quality (49,4) 
in terms of yield potential. 

Cluster 2 (High Fragmentation: 36,1 % of all clusters, N = 933) characteristics are that of 
high fragmentation and high mean of agriculture share (66,0 %). Cropland share in general and 
particularly share of maize is relatively high. 

On the contrary, Cluster 3 (Low Fragmentation: 22,4 % of all clusters, N = 579) is 
characterized by low fragmentation of the agricultural landscape explained by a low mean 
agriculture share of 25,5 %. Furthermore, it shows a high share of cropland, relatively high soil 
quality and low edge density. The landscape is generally not characterised by agriculture, but 
other land covers such as water or forest. 

Cluster 4 (High Intensity: 8,9 % of all clusters, N = 229) shows the highest mean agriculture 
share (66,3%) as well as high quality soil (62,8). It is characterised by large plot sizes (11,2 ha) 
with large share of cropland (93,7 %) and maize (20,5 %). 

Cluster 5 (Low Intensity: 15,6 % of all clusters, N = 404) mainly represents marginal 
grasslands with a  mean agriculture share of 44,5 %. The low soil quality (47,2) leads to plots 
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mainly used for grassland (low share of cropland = 35,7). Compared to other clusters (except 
6) grassland is thereby often managed organically (mean organic share = 12,9 %). 

Cluster 6 (Organic Production: 11,2 % of all clusters, N = 289) represents organic farming. 
It is characterised by a low share of cropland and maize, smaller median plot sizes (3,2 ha), and 
a mean agricultural share of 32,5 %.  

 
Figure 2: Map and exemplary satellite imagery (Google) of Agricultural Land Use clusters in Brandenburg 
2018 

We identified a high positive spatial autocorrelation for the ‘high intensity’ (N = 98) and 
‘organic production’ (N = 95) clusters. This means that one agricultural landscape type is 
located next to another agricultural landscape of the same type. The spatial clustering of ‘high 
intensity’ agriculture that we find in our results may be attributed to the underlying spatial 
clustering of high soil quality. One reason for spatial clustering of ‘organic production’ might 
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be that it occurs often in nature preserves under stringent conditions (Venghaus & Acosta, 
2018). In contrast to other studies and literature, we could not find significantly higher soil 
qualities in areas under organic production. Other influencing factors could be operational 
determinants, for example the share of grassland which is higher in our organic production 
type than in other clusters (Bichler & Häring, 2003). Another reason the potential 
agglomeration effect of organic agriculture (Schmidtner et al., 2012). In contrast, the ‘low 
fragmentation’ (N = 34) and ‘low intensity’ (N = 43) clusters do not show a high degree of 
spatial autocorrelation and are distributed across the state. The ‘peri-urban’ (N = 54) and ‘high 
fragmentation’ (N = 71) clusters show medium spatial autocorrelation and are mostly 
randomly spatially distributed whereby the peri-urban cells are concentrated around Berlin. 

4 Discussion 

Our results complement information on agricultural landscapes, such as the agro-ecological 
zones of Brandenburg (Landbaugebiete), that have been given a suitability rating for crop 
production (Ackerzahl; Landesamt für Ländliche Entwicklung, Landwirtschaft und 
Flurneuordnung, 2016) and the maps available in the Thünen Atlas, including the distribution 
of crop types or grassland on a municipal scale (Thünen Institut, 2014). Our types thereby also 
include information on composition, diversity and intensity based on a plot-based analysis 
instead of representing a single indicator (e.g. soil quality). They can help to understand the 
agricultural landscape structure in Brandenburg and identify regions where monitoring and 
specified support measures are necessary. 

Typologies of Brandenburg’s agriculture have been created mainly through farmer decisions 
with reference to renewable energy production (Venghaus & Acosta, 2018). Thereby the 
farmer is the decision-making “designer” of agricultural landscapes whereby we used landscape 
metrics as input for typologising agriculture. Consistent with Lüker-Jans et al. (2016) using k-
means clustering, we identified similar agricultural types focused on cropland share with maize 
as a particular crop. In contrast to our hexagons providing a smooth surface allowing the 
unambiguous definition of neighbourhoods for the study area, they analyze metrics on a 
municipal level which provides higher variance in shape and size than grid-based analysis. In 
general, landscape metrics prove to be an adequate tool for analysing configuration and 
composition of landscapes. Similar to Lomba et al. (2017), Uthes et al. (2020) and Lüker-Jans 
et al. (2016), we were able to show the potential of IACS data for analysing agricultural land 
use. Other studies have used remote sensing, e.g. to identify patchiness of the agricultural 
landscape (Weissteiner, García-Feced, & Paracchini, 2016). The analysis on a finer spatial scale 
could enable the possibility of investigating finer landscape structures and, additionally, 
changes in e.g. agricultural composition. A common problem in ecological analysis of spatial 
indicators is scale. Scale dependence can be addressed by sensitivity analysis via up- and 
downscaling the grid cell size and can be applied in further studies. Oberlack et al. (2019) 
emphasised that archetypes can help tailor intensification strategies to particular contexts. 
Additionally, to increase the quality of the “archetypes”, Eisenack et al. (2019) proposed a 
framework to merge quantitative and qualitative approaches. However, this paper focuses on 
the methodological suitability of landscape metrics as an input for cluster analysis within a 
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hexagonal grid. One of the advantages of using IACS data is thereby the high possibility of 
transferability to other study regions.  

Conclusions 

Our findings reveal six different types of agricultural landscapes and their respective spatial 
patterns. We conclude that Brandenburg is characterised by highly fragmented agriculture and 
high spatial clustering of high intensity agriculture and organic production. 

 The chosen landscape metrics derived from IACS data have proven to be adequate for 
improving the understanding of agricultural landscapes, and they are suitable for measuring 
agricultural intensity and diversity in terms of plot composition and configuration at the EU 
level since IACS data are available across the EU. Our paper proposes an approach at the 
landscape level which is, according to Thomson et al. (2019), a fundamental connection 
between the diverse array of relevant disciplines at the plant to field level and can inform 
national and global decision making. Future work will focus on relations of these different 
types with land price development, ownership patterns and trade-offs for example between 
food and energy production. 
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