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Abstract 

The types of data available have changed in the last decade. While, historically, data were 

gathered in batches and distributed as such, e.g. as a database or shapefile, today we are 

dealing increasingly with real-time data. This data is produced and consumed continuously 

in real time. The phenomenon is most commonly known as streaming data. Traditionally, 

software for spatial analysis, such as a Geographical Information System (GIS) or spatial 

database, was created and optimized for the batch processing of data. However, the 

inherent characteristics of streaming data provide new challenges for data-stream 

processing systems, which have not yet been solved. In this paper, we propose enhancing 

systems for the handling and analysis of streaming data through the use of spatial operators. 

We identify Complex Event Processing (CEP) as a promising underlying concept for such a 

system and use the (open source) self-service IoT toolbox ‘StreamPipes’ as a representative 

for this. On the basis of a review of the literature, we selected 6 core types of spatial operator 

and implemented 33 basic spatial operators in 11 groups. These can be combined with the 

existing non-spatial operators for in-depth analysis of streaming data that involves spatial 

dimensions. 
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1 Introduction  

Data are at the core upon which each information system is built. In the last decade, the use 
of data streams has increased massively. In turn, this has led to new approaches to deal with 
this type of data and to new opportunities to gain insight into the physical world. This is 
especially true in the field of geography. While research in the field of streaming data has 
focused mainly on financial transactions or industrial production (Industry 4.0 or Smart 
Factory), spatially referenced data from remote sensing, in-situ sensing, social sensing and 
health sensing are becoming a new focus of academia and industry (see e.g. Graser and 
Widhalm (2018) or Yu et al. (2020)). This has led to the definition of the term GeoStreaming 
as: ‘the ongoing effort in academia and industry to process, mine and analyze stream data with 
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geographic and spatial information’ (Zhang et al. (2017, p. 1)). Another definition is proposed 
by Brandt and Grawunder (2018, p. 3): ‘GeoStream is a data stream from spatio-temporal data. 
It is defined by three parts: (1) it is a data stream, (2) it has spatial information, and (3) it has 
temporal information.’ They define three types of data which need to be handled by 
GeoStreams: point data at locations, data streams and evolving regions (e.g., weather 
phenomena).  

These new opportunities come with additional challenges. Spatio-temporal data require special 
approaches to processing and analysis (see e.g. Yang et al. (2020)). Spatial databases as well as 
GIS were developed to deal with these challenges by using a batch processing approach. 
Streaming data, on the other hand are continuous but can be highly irregular, consisting of 
many different (small) events, which need to be gathered, processed, analysed and piped 
simultaneously as well as in real time. This is in contrast to the traditional IMAP (input, 
management, analysis and presentation) principle in the GIS world, where each of these steps 
is carried out sequentially. Their combination as a GeoStream requires solutions to be found 
for the existing challenges of spatio-temporal data within a continuous data stream, which can 
continue indefinitely.  

In this paper, we address the research questions of how to handle GeoStreams efficiently and 
how to make them available to the wider GIS community. We identify and develop core 
operators for spatial analysis to be used in streaming systems. Complex event processing (CEP) 
is identified as the most promising concept from the field of streaming data processing. We 
base this decision on the research gaps identified by Brandt and Grawunder (2018, pp. 29–31): 
(1) Moving from static trajectories to continuous streams; (2) Connection of different types of 
GeoStreams; (3) Making sense of data, and (4) Extendable general-purpose systems. 

2 State of the Art and Foundations  

To achieve our goal in this paper, we need to investigate three different fields of research: 
Streaming data and CEP, GeoStreams and Spatial Operators. While some work exists which 
tries to combine these, this has been done mainly in relation to broader concepts as part of 
vision papers. Two examples for these broader concepts are PlanetSense, proposed by Thakur 
et al. (2015), which is a real-time streaming and spatio-temporal analytics platform for 
gathering geo-spatial intelligence from open source data, and BigGIS, presented by Wiener et 
al. (2016), which describes an overarching architecture in spatio-temporal big data. BigGIS 
envisions a system which integrates semantic information, streaming and batching in a 
continuous refinement process. Here, we focus on how to efficiently integrate and enhance 
state-of-the-art stream processing with spatial analysis. 

2.1  Stream Processing and CEP 

Stream processing describes the gathering, handling and use of continuous data flows (called 
data streams). Early works such as Terry et al. (1992) and Babu and Widom (2001) define data 
streams in contrast to traditional data, which they call persistent datasets. They demonstrate 
the key challenges with regard to queries on stream data: (1) The size of the data and therefore 
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its storage need are unbounded; (2) While performing queries, the query itself requires 
unbounded storage; (3) It is unclear how to deal with updates to the data regarding queries; (4) 
An exact answer to a query is impossible for reasons 1–3. Babu and Widom (2001) then refer 
to the concept of triggers, called ‘event-condition-action rules’, which enable a system to act 
upon defined or learned rules in data streams.  

Since then, the field of stream processing has progressed, and it is now a thriving area of 
research. Many frameworks for handling and analysis of data streams such as Apache Storm1, 
Apache Kafka2  and Apache Flink3  have been developed. However, to deal with the research 
gaps identified by Brandt and Grawunder (2018), we need an approach that not only handles 
the data but also analyses complex interactions and events in a continuous data stream. CEP 
provides the means to do this. Bruns and Dunkel (2015) describe CEP as a software 
technology for the dynamic analysis of big data in real time. It allows the analysis of 
interconnected events, e.g. in causal, temporal, spatial or various other relations, via the three 
core components of the architecture of a CEP, as described by Etzion and Niblett (2011): (1) 
an event producer, (2) an event consumer, and (3) an event processing agent (EPA). These are 
analogous to a data source such as an air-quality sensor, a data sink such as a database, and a 
processing component such as an analysis algorithm. An event can be an unmodified, raw 
event, or a derived event, e.g. created by processing through an EPA. A derived event can 
include modified parameters or new attributes. By combining several EPAs, an event 
processing Network (EPN) is created (see Bruns and Dunkel (2015)). This allows the handling 
of complex events and processing chains. 

2.2 GeoStreams 

In comparison to the general fields of stream processing and CEP, their combination as 
GeoStreams is a new research topic. It is, however, an important one (see Zhang et al. (2017)).  

Early work in this area was presented by Huang and Zhang (2008). They based their approach 
on existing spatio-temporal databases and proposed extending these with a new data type. 
Huang and Zhang identified the same core challenges as those identified in early work on 
streaming data, e.g. by Babu and Widom (2001): ‘(1) it is difficult to decide how frequently the 
program should issue the queries to the spatial databases; (2) it is computationally expensive 
to find the latest data from all the historical data each time when the query is issued; (3) an 
integrated query optimization cannot be performed by the database system and kept 
transparent [for] the user’ (Huang and Zhang (2008, p. 107)). They also identified a lack of 
support for spatial data in existing methods and approaches from the stream processing 
community, as ‘previous work […] can only handle streaming point locations naively’ (Huang 
and Zhang, 2008, p. 109). However, they define the necessary data types only broadly and do 
not elaborate on the spatial operators used or how they are chosen. 

Galić (2016) and Galić et al. (2017) propose a framework for highly scalable spatio-temporal 
stream computing called MobyDick. This framework is based on existing approaches from the 

                                                           
1 https://storm.apache.org/ 
2 https://kafka.apache.org/ 
3 https://flink.apache.org/ 
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field of spatial databases; it uses relational snapshot queries, which are also called ‘continuous 
queries’ in the context of streaming data. Their own work is inspired by work in the field of 
mobility data and by the insight that state-of-the-art Data Stream Management Systems 
(DSMS) have inadequate spatial capabilities: ‘However, spatio-temporal properties of both 
data streams and continuous queries have been disregarded, and most of the current DSMSs 
offer very rudimentary support for mobility data’ (Galić et al., 2017, p. 3). Like Huang and 
Zhang (2008), they do not explain how they chose their spatial operators; they also focus on 
new data types for databases. 

A recent definition of GeoStreams can be found in Brandt and Grawunder (2018, p. 5). In 
their extensive survey paper, they define a GeoStream as ‘the intersection of two fields in 
computer and geography science: Data Stream Management and Geographic Information 
Science (GIS)’. Their work looks at 137 different publications, over 100 of which are from the 
field of computer science – either from the ACM or the IEEE. However, key studies in the 
literature, such as the dissertation by Whittier (2018), are in the field of spatial information 
science and geography. As well as the key challenges and research gaps in the field, Brandt and 
Grawunder also identify the evaluation of (spatial) predicates on GeoStreams as a key topic.  

GeoStreams and their inherent potentials and challenges are also an ongoing topic in industry. 
Schmutz (2019), for example, combines geofences from databases with KSQL (Kafka SQL) 
for location analysis. He identifies problems with the asynchronous processing of long-running 
operations or the combination of different analyses. Other key players in industry also start 
with proprietary tools and products such as Esri Stream Event, IBM Streams or IBM Pairs. 

2.3 Spatial Operators 

To identify the spatial operators required, we first need to identify the available operators for 
spatial analysis. As one question is how to provide accessibility to GeoStreams to a broad 
userbase of the GIS community, we follow the approach of Brauner (2015) and investigate the 
spatial operators of widely used GIS. A quick search in the spatial analyst toolbox of Esri (2018 
version), one of the best-known commercial vendors of GIS, results in more than 180 tools 
in 20 categories. Additional operators are available in their add-ons. While it would be possible 
to re-implement all these operators, we argue that not all are needed, or provide a benefit for 
stream processing, or are essential for most tasks. Instead we investigate the GIS literature of 
the last 25 years to provide the scientific basis for identifying the core spatial operators which 
are needed for stream processing and CEP. 

Bailey and Gatrell (1995) provide a working and broadly accepted definition of ‘spatial analysis’ 
as the quantitative investigation of phenomena which are located in a geographical space. Two 
key functionalities which operators for spatial analysis have to perform are (1) The selection 
of existing data, and (2) the transformation of data. However, these two functionalities are still 
too broad.  



Bruns et al 

 

111 
 

Albrecht (1998) provides a ‘universal framework’ using a well-known classification of GIS 
operators (see Figure 1). While, as the author emphasizes, this is an approximation, it provides 
a strong basis for our selection. The six key classes and therefore the six functions required 
are: Search, Locational Analysis, Terrain Analysis, Distribution Neighbourhood, Spatial 
Analysis and Measurements. The first five can be subdivided into more specific subclasses. 
The concepts are broad, and similar classifications were made by Jones (1997), Longley et al. 
(2011) and Burrough et al. (2015). It can be argued that this ‘universal framework’ is too 
focused on the operators of commercial tools. But for our research question, these links to 
existing GIS make them more suitable, as they are familiar to users. Other approaches were 
also investigated, namely: the 10 core concepts of spatial information of Kuhn (2012); the 
algebraic approaches to specify operators provided by Scheider et al. (2016); the question-
based approach of Scheider et al. (2019) in which they implement 8 tools which are well known 
to GIS users in a SPARQL extension called SPARQL_Constraint; the problem-oriented 
approach by Chrismann (2002). For further discussion about spatial operators, we refer the 
reader to chapter 4 of Brauner (2015). 

Figure 1: Classification of GIS-Operators by Albrecht (1998) 
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3 Spatial Operators for Streaming Data 

In this section we will first describe the open source CEP tool StreamPipes (Riemer et al., 
2015; Riemer, 2016; StreamPipes, 2020) which we used, second the operators selected and 
implemented, and finally two examples of analysis pipelines using the particular operators. 

3.1 StreamPipes 

StreamPipes, at its core, is a framework for the processing of streaming data in a big data 
environment – a CEP system in short (StreamPipes, 2020). This includes the import and 
handling of non-streaming data sources such as traditional databases, HDFS files, etc. It is 
designed to be a self-service analysis tool which allows complex analyses in a big data 
infrastructure without the need for technical expertise. StreamPipes can compute at least 
54,000 events per second on a raspberry Pi (Zehnder et al., 2020), which was deemed 
acceptable for most use cases. 

 

Figure 2: Overview of the StreamPipes architecture (StreamPipes, 2020) 

StreamPipes uses a multi-layered technical architecture, shown in Figure 2. The user interacts 
only with the top layer, the pipeline editor. Here the different operators (called elements) are 
combined into an analysis pipeline. The user does not need to know how each component is 
connected to the underlying layers. However, semantic descriptors in the input and output of 
each element ensure that only valid data-processing pipelines can be created. 
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The pipeline manager manages the definition of the pipelines and their execution. It compares 
the semantic description of each element and ensures the validity of the pipeline. To execute 
a pipeline, the pipeline manager starts the Pipeline Element Containers, each of which contains 
a single element which has all relevant information. These elements in turn execute the code 
in an execution engine. Figure 3 shows an example of a meta-description element for a spatial 
event. It contains the core (spatial) attributes of the (spatial) position. The ‘Schema’ describes 
the different attributes of an event. The field ‘Quality’ defines different attributes, which are 
used to describe the quality inherent in the data. These attributes are dependent on the use 
event or analysis chain, so must be defined before the pipeline is executed. The ‘Grounding’ 
parameter describes how each event communicates with other events. 

 

Figure 3: Description layer and data layer in StreamPipes for a geographical position (Riemer, 2016) 

Finally, the last three layers in Figure 2 provide technical components such as virtual machines, 
third-party services, and the exact services which execute the element container. For a more 
in-depth view, we refer the reader to Riemer et al. (2015), Riemer (2016) and StreamPipes 
(2020). 

We also need to discuss how implementation and integration of the spatial operators can be 
developed for StreamPipes. We use the StreamPipes SDK. This SDK allows the creation of 
new EPAs (see Section 2), which can be done using the Java programming language (Version 
1.8.0_201 at the time of writing). We refer the interested reader to StreamPipes (2020) for 
more information and tutorials. A StreamPipes SDK consists of three different classes (see 
Figure 4). (1) The controller class defines the semantic model in the declairModel method, and 
the onInvocation method extracts the defined parameter for the algorithm class. (2) The 
parameter class therefore consists of the parameters from the controller class. (3) The 
algorithm class contains the algorithms for the data processing. Here, every parameter is 
initialized, e.g. through a database connection. The onEvent method then initializes every 
dynamic parameter to catch events and process these. Finally, in the onDetach method, every 
open connection is closed. 
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Figure 4: SDK class for a data processor 

By using the StreamPipes SDK and its classes, we can freely define and implement any spatial 
operator needed for spatial analysis in a CEP system. 

To summarize, we chose StreamPipes as it provides many advantages for our goal. While other 
tools would be feasible, the following key features needed for a spatial CEP system led us to 
our decision: (1) StreamPipes provides a native inclusion of different stream processing 
frameworks such as Apache Kafka, Apache Flink and Apache Spark; (2) It is built from the 
ground up with CEP in mind; (3) It is easy to modify as well as to create new pipeline elements 
with the StreamPipes SDK; (4) Each pipeline element can be created independently, but also 
combined with any other element, which allows for many different combinations in a pipeline; 
(5) It provides a simple drag-and-drop pipeline editor which reduces users’ requisite technical 
know-how; (6) It is an open source tool under the Apache licence, which allows a wide range 
of fields and people to use it without restrictions, from academics and industry to the general 
public. 

Additionally, a number of StreamPipes features are beneficial for a spatial CEP, and for future 
development of the system and the operators: (1) Since its inception, the system has been 
based on semantic technologies and concepts. This allows the easy combination of different 
operators. Each pipeline element describes its required input and the output it provides in a 
standardized semantic annotation. In addition, each dataset is transformed and annotated with 
the semantic information by the different EPAs. (2) The system uses JSON natively for the 
exchange of data. This allows an easy implementation of new data types, such as GeoJSON, 
and facilitates the integration in existing platforms. This means that: (3) It is interoperable at 
its core and can combine different data sources and types. (4) It already includes some simple, 
WGS84-based, spatial coordinates if they are point data. (5) It has advanced capabilities for 
time-series analyses as well as machine learning algorithms for stream processing. (6) It was 
granted Apache incubator status in 2019. This facilitates its high visibility and an active core 
team for the development of future features, as well as the integration of the operators 
developed. 

3.2 Operators Implemented 

For the selection of the spatial operators, we can now build on the foundations of StreamPipes, 
the challenges defined in the GeoStreams literature, and the classification of (spatial) operators 
for spatial analysis as set out in the existing GIS literature.  
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First, as discussed in the literature, we need to define and select a suitable spatial data model 
to use with the spatial operators in the CEP. As is well known, e.g. from Longley et al. (2011), 
there are two key models for spatial data: the entity model and the field model. Additionally, 
the data structure itself has to be modelled, either as vector or as raster data. For stream 
processing, we identified the entity and vector model as the most efficient, because the 
computation time is shorter, and storage needs of vector data are smaller compared to raster 
for stream processing. While raster is highly efficient in distributed computing and benefits 
from its similarity to image analysis, these benefits are mostly irrelevant here. To process and 
communicate data between the different CEP components, interoperability must be ensured 
(i.e. the autonomous interaction of software components by using standardized data formats; 
Andrae (2013)). Here, two further considerations come into play. First, for overall 
interoperability, we go to the OGC and use the standard ISO 9007 as well as the reduced 
simple feature model (OGC, 2019). Second, we need to define a semantic standard description 
of the data, an ontology. StreamPipes uses the basic geo vocabulary4, but is missing an ontology 
domain for the geometry. Here, we propose a simple, provisional ontology which uses WKT. 
This allows us to minimize the computational workload. An example of code to define an 
event is shown in Figure 5. Alternatively, more extensive ontologies can be found in, for 
example, Bucher et al. (2017) or Scheider and Tomko (2016). 

Figure 5: Example of code for the provisional ontology 

Not all spatial operators identified in the previous section are essential for our spatial CEP. 
From our point of view, the key operators are those that enable the analyses carried out most 
commonly by a GIS user. We therefore exclude statistical analysis functions and network 
analysis. Some of these common operations are already performed by existing EPAs, while 
others have specific requirements, such as the need for specific parametrizations for 
geostatistical models. Compared to other operators, the ones for such analyses are therefore 
of relatively little benefit for the initial system. Instead, additional operators such as the 
projection of coordinate systems, the integration of data sources and data sinks, as well as their 
use as static information like a geofence, provide a higher benefit and need to be implemented 
first. While these operators are not seen as special in traditional GIS, they need special care in 
a streaming environment. Additionally, adjustments to geometries, such as the refinement of 
lines into their subgroups, are needed. While we use vector data as the main data model, some 

                                                           
4 https://www.w3.org/2003/01/geo/ 
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special data usage scenarios and operations do exist which necessitate the implementation of 
raster operations. Galić (2016) and Galić et al. (2017) focus on this topic in their work. 

The considerations just outlined lead us to 33 basic spatial operators, shown in Figure 5. Each 
operator is implemented as an EPA in StreamPipes. Therefore, complex operators can be 
realized either as a single EPA or as a combination of several EPAs. Following Brauner (2015, 
p. 38) that operators should be ‘generally available, yet their discovery and usability is 
hampered’, we divided the operators into eleven groups, for ease use: (1) Base Operators, (2) 
Change on Geometry Operators, (3) Geofence Operators, (4) Measure Operators, (5) 
Operators on Window Functions, (6) Thematic Operators, (7) Topology Operators, (8) 
Calculate from Raster Operators, (9) Routing Operators, (10) Data Operators and (11) Derived 
Geometry Operators. Some of the specific operations, particularly the raster operations and 
the routing operators, are implemented as a proof of concept and were required for the 
implementation of concrete realistic examples. 
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Figure 6: The basic spatial operators implemented 
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Which operator groups to include was by and large obvious, notably groups 1, 2, 4, 6, 7 and 
10. We selected geofences as a key operator, as this operation is essential to detect the 
entering/leaving of moving objects in an area, which is often seen as a central functionality in 
GeoStreams. Window functions were included as the most efficient option to compute the 
number of objects in a time window, and for the temporary storage of events. This provides 
the basis for future extensions for statistical learning methods or machine learning algorithms. 
Raster operations are included for future extensions and to allow the addition of further data 
sources, such as remote sensing data or weather forecasts, as these are most often available 
directly only as raster data. Routing operators are included to enable flexible route planning or 
isochrones dependent on the changing circumstances. As any new event can, for example, 
change the road situation, it is important to be able to analyse the impact on other objects, 
such as an ambulance, and to react to the new situation. Finally, the derived geometry operators 
allow the most common operations between different data points as well as the plotting of the 
trajectory. The trajectory was chosen because the live movement of a point is a key benefit of 
a streaming approach compared to traditional GIS. We also used the existing operators of 
StreamPipes in addition to our selection.  

 

 

  

Figure 7: Example for (polygon) area calculator Figure 8: UML class diagramm 

To show how each operator is implemented and what the required in- and outputs are, we use 
the (polygon) area calculator as an example. This operator allows the computation of the area 
of an object. Each operator can be shown as its SDK class with each operator or as the EPA 
in StreamPipes from a conceptual point of view. Figure 7 shows the different methods in the 
operator; Figure 8 shows the interaction of the classes within the StreamPipes SDK, as 
described in Section 3. The JTS geometry classes were used for the getLength and getPerimeter 
methods. As inputs, a polygon or multipolygon as well as an EPSG code are required. 
Additional required inputs are the accuracy, defined as the number of digits following the 
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decimal point, and the unit result. The operator then returns the size of the area as a number, 
and the chosen unit result as a text. If a MultiPolygon is used for the input, the sum of all 
geometries is returned. 

For the implementation of the operators and the data models, existing software libraries can 
be used to reduce complexity and the time spent on details. We use JTS (Davis, 2018) and 
Apache SIS as our libraries.  

3.3 Example Pipelines 

We present two simple pipelines to show the possibilities of our approach and to provide a 
simple, qualitative evaluation. These examples allow a starting point for future analyses. Open 
data is used in both pipelines.  

 

Figure 9: Computing the number of specific objects per area size in a polygon defined by a geofence 

The first pipeline shown in Figure 9 is a simple computation of the number of bicycle shops 

per km2 in a polygon defined by a geofence. This is a typical, simple computation, which can 
be done in a standard GIS. It illustrates how existing functions can be used, as well as future 
possibilities. To perform the analysis, two data streams are defined. The geofence is chosen by 
filtering existing polygons based on their name. In this example, the district of Karlsruhe is 
selected from a list of polygons of all districts in Germany. This geofence is stored in a database 
and combined with the second stream in the pipeline. For the second stream, first all OSM 
points are included and filtered to include only bicycle shops. These are combined and then 
filtered by the geofence using the ‘topology within’ operator. Finally, all geo objects are 

counted, the area of the geofence is calculated, and the number per km2 is calculated. The 
result can then be further used, visualized and/or stored. To extend this example to a 
GeoStream, we simply need to change the input of the first and/or second stream to a real 
data stream, e.g. moving bicycles or cars. This then returns the density of vehicles in an area 
in real time, in order, for example, to monitor the risks of traffic jams. The usability of our 
chosen tools allows this operation without changing any operator in the pipeline itself. 
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Figure 10: Computing distance and convergence of two moving points 

A more interesting pipeline, which goes beyond the typical capabilities of a GIS, is shown in 
Figure 10. Here, we are interested in the live distance between two moving objects, the 
trajectory of each, and a warning if the objects risk converging. Two moving objects, a cat and 
a dog equipped with GPS sensors, were used as input streams. For each stream, the coordinate 
system was defined and transformed to a point geometry. The trajectories of the streams were 
first visualized in a dashboard as live data. Next, for each object, a buffer area was defined; 
both buffer areas were then merged into one stream for synchronization. Finally, their 
proximity was shown as ‘TRUE’ (close) or ‘FALSE’ (not close), the live (geodesic) distance 
between both points was visualized, and a notification was defined if the status was ‘TRUE’. 
All of these operations are performed simultaneously. A simple, qualitative performance 
evaluation was done with 3,000 objects as input using an artificial data stream. No output lag 
could be detected when all streams were running. 

The two examples show that combining the different spatial operators with existing 
StreamPipes operators allows for a broad range of analyses. Further examples of pipelines, 
together with the datasets and operators, can be found at https://StreamPipes.apache.org/ 
(StreamPipes, 2020).  

4 Conclusion and Future Work 

In this paper, we developed and presented spatial operators for a state-of-the-art, open source 
CEP tool, StreamPipes. These operators allow the execution of complex spatio-temporal 
analyses on streaming data for complex events. This addresses the research gaps identified by 
Brandt and Grawunder (2018), providing an easy-to-use tool which is modular and readily 

https://streampipes.apache.org/
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extendable. By using the semantic properties of StreamPipes in the operators we implement, 
we can easily connect different types of GeoStreams. The existing machine learning tools for 
CEP can leverage spatio-temporal analyses in combination with the spatial operators which 
we developed. Our operators for spatial analysis are based on the existing literature in the fields 
of stream processing, GeoStreams and classical GIS literature. We illustrated the ease of use 
as well as feasibility of our approach in two examples of pipelines for spatial analysis. By using 
open data and open source software, the examples can be easily reproduced and extended. 

Regarding our research question of how to handle GeoStreams to allow the wider GIS 
community to be able to work with them, we have shown that by using CEP together with 
simple, commonly used spatial operators, we can handle GeoStreams efficiently and make 
them simple and intuitive to use. 

The purpose of this paper was to promote a new category of software system / software 
functionality, namely spatial CEP systems for processing GeoStreams as a novel and upcoming 
paradigm. We have shown an example implementation with a focus on efficiency, extensibility 
and user-friendliness. Our examples should illustrate possible applications and the usefulness 
of the approach; they were not used for a crisp and formal evaluation of the system. Extensive 
evaluation of the strengths and weaknesses of the approach should be the subject of future 
work. In general terms, the evaluation dimensions should include: (i) expressiveness of the 
approach in order to solve theoretically and practically relevant problems; (ii) efficiency and 
scalability of the runtime; (iii) formal tests of usability for end-users with little prior geo(-ICT) 
knowledge; (iv) efficiency of the modelling environment for end-users (with aspects such as 
modular reuse of operators, pipelines and sub-pipelines, or ease of implementing new 
operators with the StreamPipes SDK). Initial studies and experiments regarding (i) and (iii) 
have been undertaken within the WEKOVI research project, but much more systematic 
analysis is certainly required. 

Another key limitation of the work presented here is its scope. We provide a foundation for 
more extensive GeoStream analysis, but many other interesting operations have yet to be 
implemented. For future work we therefore identify two focus topics: spatial data mining, and 
asynchronous analysis. Spatial data mining encompasses methods from statistical analysis (e.g. 
kriging and clustering), and network analysis. By carrying out these approaches in GeoStreams, 
additional challenges emerge, solving which could lead to new analyses and insights. The 
problem of analysing asynchronous data streams was discussed by Schmutz (2019), and a 
potential solution was proposed independently by Whittier (2018). This problem is inherent in 
all stream processing and is a feature that is missing in StreamPipes. Using the well-known 
technique of a petri net (Petri, 1966) could be an alternative solution to Whittier (2018). In 
addition, a more thorough and extensive evaluation setup is planned. 

This work further contributes by providing non-technical researchers with a more 
approachable way to perform spatial analyses on streaming data. Using the drag-and-drop 
possibility of StreamPipes, complex analysis pipelines can be created easily. By extending it 
with spatial operators, this open source tool will provide additional benefits for various fields, 
but it will be a boon in particular for geographical researchers. We hope that this will provide 
a starting point for future researchers and practitioners using GeoStreaming and analyses on 
GeoStreams, opening up new (research) questions. 
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