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Abstract 

Until now, most severity products are generated from a reclassification of dNBR index ranges. 

In this study, we focused on an automated global burn severity mapping approach. Using 

the catalogue of satellite imagery and the high-performance computing power of 

GoogleEarthEngine we propose an automated pipeline to generate severity maps of 

burned areas at a medium scale of 30 and 10m from the time series of Landsat and Sentinel2 

images. Landsat-8 images available during 2020 and the dNBR spectral index were used to 

calculate the severity level of each pixel using a calibration model and linear regression 

adjustments, which were taken in the field from the CBI index in an app developed for field 

capture. A calibration approach was carried out to give the severity level of the final burned 

areas after several carefully designed logic filters on the normalized burn rate (NBR). This 

script focuses on the fires that occurred in Honduras in 2020. The regression model found a 

similar spatial distribution and strong correlation between the areas analyzed in the field and 

those generated from the dNBR. The preliminary global validation showed that the overall 

accuracy reached 53.85%. However, the adjustments through the correlation models im-

proved the results, yielding an R2 of 0.93 for the quadratic model, 0.79 for the Exponential 

model and 0.72 for the linear model. 

Keywords: burn severity, Composite Burn Index (CBI), GEE, disaster management, regression 

models 

1 Introduction  

Accurately mapping burned areas is essential for quantifying carbon budgets (Chuvieco et al., 
2018; Padilla et al., 2015) and for analyzing the relationship between vegetation and climate. It 
is needed to assess the impacts of fire as a land management tool and quantify trends and 
patterns in fire occurrence, among other relevant applications. Digital image processing aiming 
to map fire activities has been applied to a variety of images from sensors of various spatial, 
temporal, and spectral resolutions (Alonso-Canas and Chuvieco, 2015; Chuviecoet al., 2018). 
Considering the computational power of Google Earth Engine (GEE) it is a powerful tool to 
enhance image preprocessing and algorithm application to big datasets. Common datasets used 
for image classification, burn severity detection or change detection in GEE are Landsat (Long 
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et al., 2019), MODIS or Sentinel-1 radar imagery. Analyses experienced a major improvement 
using (semi-)automatic image classification and thus are based on a greater database of thou-
sands of images. Implementing new algorithms from Machine Learning for image classifica-
tion and damage detection, big steps towards an automated burn severity workflow have been 
taken (Parks et al., 2018). Nevertheless, all these remote sensing data workflows show difficul-
ties in integrating ground truth data to validate the created results. One of the major short-
comings in remote sensing image processing is that several common techniques use validation 
with reference images (Parks et al., 2018). Further, it is crucial to integrate ground truth data 
from the field into the methodology. This is enabled considering the power of Citizen Science 
and modern web applications like EpiCollect, which allows bi-directional communication be-
tween workers in the field and the image repository of their project (Ananensen et al., 2019). 
Regarding the applicability of EpiCollect in the field of Geosciences and Remote Sensing, the 
advantages of real-time ground truth data for validation of computed results are apparent 
(Hoffmann et al., 2016). 

2 Area of Study 

The Central Forest Corridor region is located in the centre of Honduras. It has a size of 
186,525 ha and is delimited to safeguard water-producing areas of 13 municipalities.  

3 Methodology 

In this study, the limits of the severity map were defined by the spatial extent of the Central 
American fires in spring 2020. The resolution of the severity products was 30 and 10 m. The 
severity mapping of the burned area through GEE is described in Figure 1. 
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Figure 1: Workflow from image processing (chapter 3.1), field data (chapter 3.2) and model calibration 

and validation (chapter 3.3) 

As shown in Figure 1, the pipeline consisted mainly of three steps: model training, per-pixel 
processing and modelling of the burned area. 

3.1  Datasets and Image processing 

We produced fire severity metrics for the study area in GEE based on the Landsat 8 and 
Sentinel 2 Surface Reflectance. The data has been corrected atmospherically using the Land 
Surface Reflectance Code (LaSRC)1, which uses the quality assurance (QA) layers, which are 
produced during the atmospheric correction process, to estimate the amount of high aerosol 
that impact the derived surface reflectance. The clouds were masked using FMask (Zhu & 
Woodcock, 2014) as well as a per-pixel saturation mask in Landsat images, and the maskS2sr 
function based on the Sentinel 2 band 'QA60' the correction was concluded.  

In this phase, we generate Landsat and Sentinel composites for the cloudless dates before the 
fire (from 06 to 30 March) and after the fire (from 15 to17 April) using a pixel-based approach 
within the GEE platform, and then we reduce pixel unmasking in the reflectance stack com-
posite using pre-and post-fire "mosaic". Then, we calculated spectral transformations in order 
to enhance the discrimination of changes in the land surface. In this study, we calculated two 

                                                      

1https://www.usgs.gov/media/files/landsat-8-collection-1-land-surface-reflectance-code-product-

guide 
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spectral transformations, the Normalized Burn Ratio (Formula 1), which contrasts the differ-
ence in reflectance between the NIR and the SWIR-2 (Short Wave Infrared), and the temporal 
index version dNBR (Formula 2) (Miller et al., 2007). We calculated spectral transformations 
in order to enhance the discrimination of changes in the land surface.  

𝑁𝐵𝑅 = ( 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
) 

Formula 1: Normalized Burn Ratio 

𝑑𝑁𝐵𝑅 = (𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒) × 1000 

Formula 2: Differential Normalized Burn Ratio 

The dNBR shows the best contrast between healthy photosynthetic vegetation and burnt 
vegetation. This index, similarly to NDVI, has values between -1 and 1, but it was multiplied 
by 1000 in order to manage the data type (integer) better, to follow the convention established 
by Key and Benson (2006). Therefore, higher values above 100 dNBR are set as the "burnout" 
threshold. In the same way, the dNBR can be used to assess the severity of burns, as areas 
with higher dNBR values indicate more serious damage. In contrast areas with negative dNBR 
values may show higher vegetation productivity. dNBR can be classified according to the 
ranges of severity of burns. The thresholds of severity levels used in this study were those 
proposed by the United States Geological Survey (USGS), in this case, the class marks of the 
unburned to high ranges of the Key and Benson (2006) classification were used. These dNBR 
thresholds thus establish the respective fire severity classes (Table 1). 

Table 1: Thresholds of severity levels from dNBR index 

 

3.2 Field data 

The field data represents the composite burn index (CBI) (Key and Benson, 2006), which rates 
factors such as surface fuel consumption, soil char, vegetation mortality, and scorching of 
trees. CBI is rated on a continuous scale from zero to three, with CBI = 0 reflecting no change 
and CBI = 3 reflecting the highest degree of fire-induced ecological change.  
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The field data were collected using EpiCollect, a tool developed in 2009 by the Imperial Col-
lege London research group, which allows taking and sending georeferenced information from 
phones to a central website. The information there is analyzed graphically and filtered accord-
ing to the variables, using Google Maps/Earth. The stored data can be downloaded and viewed 
directly on the phone in Google Maps. The tool to capture field data is available here: 
(https://five.epicollect.net/project/cbi). 

3.3 Severity calibration model 

We aimed to determine whether our GEE based methodology (the calibration by regression 
models via CBI method) produced Landsat-based fire severity datasets with equivalent or 
higher validation statistics than severity datasets produced using one pre-fire and one post-fire 
scene (i.e., the standard approach since these metrics were introduced). 

This calibration has two components, first the result of the dNBR index classified into five 
severity intervals (Carl and Key, 2006), and second the CBI field index which relies on 13 field-
plots covering the research area, with a homogenean distribution per every severity class. Of 
the 13 field-based CBI plots, 23% are considered not burnt, (CBI=0), low severity (CBI <1.0) 
23%,  moderate-low severity (CBI 1.0 and <1.5) 8 %, moderate-high severity (CBI 1.5 and 
<2.0) 23 %, and 23% are high severity (CBI >2.0).  

 (Figure 2). 

After, we evaluated the global accuracy of preliminary classification through the confusion 
matrix. Subsequently, the dNBR values were adjusted through regression analysis by three 
different models (linear, exponential and quadratic), evaluated through an ANOVA test in 
order to determine how well each model fits the field data. Using the SPSS tool, a variety of 
goodness-of-fit statistics are presented, using the value of R squared (R2), and the statistic F. 
Finally, we extracted GEE-derived dNBR, values based on spatial analysis and then applied 
linear regression through statistic reducer function "ee.Reducer.linearRegression", to evaluate 
the performance of each severity metric. Specifically, we quantified the correspondence of 
each severity metric (the dependent variable) to CBI (the independent variable) as the coeffi-
cient of determination, which is the R2 of a linear regression between predicted and observed 
severity values.  

We conducted this analysis for the fire study area and reported R2 values. We then conducted 
a parallel analysis but used dNBR reclassify derived severity mapping. This parallel analysis 
allows a comparison of severity datasets produced using one pre-fire and one post-fire image 
(e.g., CBI-derived metrics) with the calibration by regression approach as with GEE. 
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4 Results and Analysis 

Using GEE, we were able to produce dNBR quickly, and CBI including composite burned 
index on (specifically to calibration by regression method) for the 13 fields-plots analyzed; fire 
averaged about 237,40 hectares (Figure 2).  

 

Figure 2: Severity mapping and location of the 13 CBI included in the calibration of the differential nor-

malized burn ratio (dNBR). Tegucigalpa, Honduras 

The entire process took approximately one minute, though this is a rough estimate that de-
pends on the size and available resources shared with other users (Gorelick et al., 2017). None-
theless, the processing time is quick with fairly low investment in terms of human labour. 

The confusion matrix results showed the outcome of the preliminary classifier dNBR, with an 
overall accuracy of 53,8%However, as can be seen in Table 2, the regression analysis results of 
R2, the value of the F test, and its significance value for each of the three models are presented. 
Although the linear regression model presents a moderate value of R2 (0.87), its significance 
value F is the highest (83.58), while the quadratic model with the highest value of R2 (0.93) 
presents a significance value of F minor (79.37), all models with a significance of 0.000, less 
than 0.05 which allows concluding that there is a significant relationship between the variables 
(dNBR and CBI), is much stronger in the linear and quadratic model.  
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Table 2: Regression Analysis Results of dNBR as dependent variable and CBI as an independent 

variable 

Model  
Equation 

Model summary 
Parameter Esti-

mates 
R2 F df1 df2 Sig b1 b2 

Linear 0.874 83.579 1 12 .000 332.757 

139.751 
Quadratic 0.935 79.376 2 11 .000 -7.299 
Exponten-
tial 0.729 32.218 1 12 .000 2.932 

The correspondence between CBI and each severity metric for 13 plots covering fire was eval-
uated simultaneously using the regression models; the adjust was consistently higher for the 
GEE-derived severity high and moderate class as compared to the unburned class (Figure 3).  

 

Figure 3: Regression models showing the correlation of CBI control points with dNBR. a) linear R²= 0.87; 

b) exponential R² =0.79; c) quadratic R² = 0.93 

In general terms, the linear and quadratic models improve the fit of the severity mapping 
through the dNBR. Furthermore, the inclusion of the CBI increased the correspondence to 
field severity measure for the fire In this case, all terms in the linear, exponential and quadratic 
regressions for severity metric were statistically significant (p < 0.05). 

a) b) 

c) 
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5 Conclusions 

This paper presented a practical and efficient methodology for producing one Landsat 8 and 
Sentinel 2 based fire severity metric: dNBR and specifically the calibration by regression CBI 
method. This method relies on Google Earth Engine and provides expanded potential in terms 
of fire severity monitoring and research in regions outside of Honduras that does not have a 
dedicated program for mapping fire severity. We aimed to evaluate differences between the 
GEE-based calibration by a regression of the CBI method approach to the standard approach 
in which one pre-fire and post-fire Landsat scene is used to produce severity datasets through 
the thresholds of severity levels from dNBR index. The inclusion of the CBI provided addi-
tional improvements in the class severity Thresholds definitions for fire severity mapping on 
GEE. This provides further evidence that the inclusion of the field data should be considered 
when multiple fires are of interest (Parks et al., 2018). In conclusion, the application of the 
different regression models (Linear, Quadratic and Exponential) under the test of general sig-
nificance (F) is greater than their level of significance, which allows us to conclude that the 
application of the regression model (Linear and Quadratic) provides a better fit of the severity 
obtained by the CBI than the dNBR-only intercept model. 
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