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Abstract 

In this paper, we show a framework for partial bot rejection based on spatially supervised 

text mining from social media messages. We show qualitative results towards the reduction 

of known bots and give hints on how this cleaning technique can help us in filling gaps of 

current signals related to human life on Earth based on social media. The bot rejection 

framework is based on using a spatial signal for supervising a machine learning model with 

extreme label noise still being able to reject some of the unwanted components of the social 

media stream. Furthermore, we comment that such models show significant biases and can, 

therefore, not be used responsibly without bias analysis and mitigation per application. 

Keywords: social media analysis, text mining, data cleaning 

1 Introduction  

Urbanization is one of the most pressing and challenging megatrends for human life on Earth. 
As depicted in Figure 1, the rural population has constantly been increasing up to today, but 
with a slowing effect, it is expected to start decreasing by the mid of the current century. In 
contrast, the urban population is expected to have at least linear growth in the time such that 
by 2050 urban areas give a home to more than double as many people as the rural areas (United 
Nations Department of Economic Affairs, 2018). Moreover, the local dynamics of this 
development are surprising, if not daunting. For example, it is expected that Delhi, India, will 
become the largest city by 2030, overtaking Tokyo. In 2018, however, the United Nations 
report 37.4 million inhabitants for Tokyo and only 28.5 million for Delhi. The expectation 
formulated for 2030 is that Tokyo will shrink to 36.5 million inhabitants while Delhi will grow 
to nearly 39 million inhabitants. This is a growth of 11 million inhabitants in 12 years or about 
one million inhabitants per year. This extreme local variability of the dynamics implies heavy 
challenges, for example, for the transport system (food, mobility, waste disposal etc.), for the 
infrastructure (electricity, water, healthcare, police, etc.), and for the environment (e.g., air and 
water pollution). 
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Figure 1: Global Urban Population Compared to Rural Population - 1950 - 2050 as Expected by the United 

Nations. 

The United Nations have established 17 Sustainable Development Goals (SDGs), many of 
which have strong interaction with the process of urbanization (United Nations, 2019). For 
example, urbanization is related to zero hunger and no poverty, as the hope for jobs and fleeing 
from rural poverty is one reason people move into the city. Good health and wellbeing, as well 
as quality education, are challenged as well because these rely on infrastructures that might be 
difficult to grow at the needed pace and at the same time  motivate people to relocate to the 
urban areas. Furthermore, clean water and affordable and clean energy is similarly challenging 
as the energy density needed in megacities is difficult to provide with renewable energies today 
The consequences of quick urbanization processes directly challenge sustainable cities and 
communities, climate action, life on land, and life below water in terms of pollution.  

In order to cope with this situation on a global scale, innovative methods of data acquisition 
and data analysis are needed, which go beyond the current observational capabilities mainly 
based on remote sensing from space. Because these overhead observation systems do not 
observe the process of urbanization, but rather the impact of urbanization on morphological 
structures, while it is comparably easy to see cities grow from a spaceborne platform, it might 
be difficult to get a reliable signal on the expected minor shrinkage of Tokyo. It is unlikely that 
this will result in a major change in the morphology. Therefore, we propose and follow a 
different path of using additional signals with strong anthropogenic components to better 
understand these dynamics. 

One such signal is represented by night light observations as, for example, provided by NASA 
and NOAA. These images represent the amount of light emitted at night, which correlates 
with human settlements quite strongly. In addition, the amount of light has been used to 
estimate census parameters in the United States.The more light is being observed, the higher 
the population density and the average income (Chen & Nordhaus, 2019). Figure 2a depicts 
an example of such night light observations. The limitation of these observations is twofold: 
long integration times are used in order to come up with clear signals, and the resolution 
remains limited. That is, light gives us kind-of an upper bound to the urban extent as light is 
among the first persistent signals in settled areas.  
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Figure 2: NASA Night Light Imagery and Twitter Occurrence over Europe. 

Another promising signal can be extracted from social media depicted in Figure 2b. Social 
media message frequency also correlates to population density in areas of social network 
adoption (Li et al., 2013). However, social media is full of special noise patterns induced by a 
high number of bots sending messages and frequent trends that have a varying spatial 
resonance ranging from global (#metoo) to very local resonance (e.g., hashtags related to local 
events). Therefore, long integration times are needed as well, such that the social media data 
represents a reasonable average behaviour. However, when looking closely at densities, it 
seems that social media is more focused on city centres and, therefore, a more selective signal 
compared to night light emission None of these signals can truthfully represent the 
sociodemographic indicators of interest, including population density, wealth, and income, but 
all of them show a slightly different pattern of correlation with these signals of interest. 
Therefore, we expect a joint observation of all of these signals towards unexpected diverging 
patterns is a suitable monitoring aid for systematic urbanization analytics. 

This paper shows how a spatial knowledge injection method applied to text mining can be 
used to reduce some unwanted signals from social media, making social media a more reliable 
signal. In order to clean up the Twitter signal, the aim is to remove components that are just 
due to bots or automated messaging. In order to detect a component of such bot messages, 
we apply text mining to the social media messages in order to detect a very spurious pattern 
of bots, namely, that many bots are not using sensible location information. We learn a bot 
rejection model based on training it with all precisely geolocated tweets based on whether the 
location is over land or ocean. While some of these messages over the ocean might originate 
from shipping, many of these messages are expected to be blurring the patterns of urbanization 
we want to observe.  
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2 Methodology 

2.1 Datasets 

In this study, we use three datasets. The first dataset is the NASA/NOAA Night Light Imagery 
for 2018. It represents the average light emission in 2018 across the globe in a medium 
resolution of about 500m per pixel (of course varying across the globe due to the WGS84 
projection). This data has been acquired by the Suomi NPP satellite and processed by NASA 
to account for the moon phase dynamics trying to normalize towards a moon-phase 
independent representation of the light emission. This dataset comprises 3.73 billion pixels. 
The second dataset is a sample of all observed social media messages throughout 2018 acquired 
from the public Twitter stream, representing about one per cent of the total social media 
messages on this platform. We sampled a set of 220 million precisely geolocated tweets (note 
that these include bots and retweets due to the specification of the stream API endpoint) and 
process both the geospatial location and the raw text, including hashtags and punctuation in 
all observed languages. The third dataset is the dataset representing country boundaries across 
the world. For this purpose, we take the LSIB 2017 Large Scale International Boundary 
Polygons Dataset as published by the United States Department of State at the Office of 
Geographer. It presents 284 countries in 312 features modelled with 2,342,905 points. 

2.2 Labeling 

In a first step, we label Twitter data from the first three months based on the country dataset 
in two categories: land and water . As we already expect very high label noise in this dataset as 
some tweets might be from very good bots or human beings around the ocean, we do not 
create geospatial buffers around the countries to take care of coastal areas into account. 
Instead, we rely on the fact that most tweets in the ocean are observed far enough from the 
nearest country In order to do this efficiently, we need to rely on a dedicated implementation 
based on well-performing bulk loaded in-memory R*-trees to speed up point in polygon 
queries. We rely on HDF5 and boost::geometry for the core operations and modern C++, 
including OpenMP for parallel processing. We follow a strict property map interface, that is, 
records that are implicitly linked by their primary key, which is just the row number in the 
memory block allowing for constant-time access to individual records. With an average 
Gaming PC (Intel i7, 32 GB RAM), we process the point in polygon join in this way in 8 hours 
without simplifying geometry. The resulting dataset is heavily imbalanced, with only 5.7 million 
tweets observed over water. Hence, we then create a class-balanced dataset by sampling 
alternating between land and water classes such that we gain a temporally ordered sub-dataset 
with the same numbers of water and land classes and a total of 11 million1.  

  

                                                           
1 Source codes and details of this project and are available at https://www.bgd.lrg.tum.de/code/2021-

landwatersplit. 
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2.3 Text Mining 

The data mining problem induced by the labelling process is to develop a text mining model 
that can be applied across many languages, including non-human languages like hex-codes 
observed for some bots. As explained, we have now a labelled dataset of tweets based on 
whether it was observed over the ocean or a country. In a second step, we train a skip-gram 
model with subword information on the tweet text towards detecting the class “water” or 
“land” (Bojanowski et al., 2016). This model is based on cutting text into small pieces of n 
consecutive characters, so-called n-grams, and assigning a randomly initialized vector of 
chosen dimension with each n-gram. Then, we minimize an objective function using a variant 
of gradient descent which balances two aspects: one loss term pulls vectors associated with 
textually nearby n-grams (those that appear not farther away than a chosen parameter “context 
window” in the text) towards each other minimizing their Euclidean distance in the embedding 
space while a second loss term compares with random non-neighbouring word vectors and 
pushes the representing vectors away from each other. Word embeddings obtained in this 
unsupervised way are then used to numerically represent words or sentences (by taking the 
mean of the words or n-gram tokens). We apply a deep neural network with one softmax layer 
to directly transform these learnt word embeddings into a classification result for tweets. As 
expected, the model’s performance is not excellent, as calling for a land/water split from 
textual data is not plausible. Nevertheless, it gives us an interesting signal regarding the 
trustworthiness of tweet messages, as we explain in the sequel. More concretely, we train a 
model with an embedding dimension of 10 and tune parameters for an optimal overall F1-
score. Therefore, we train on the first million entries in the balanced sample, use the second 
million entries to validate hyperparameters, and evaluate over time in slices of one million 
tweets. Results are depicted in Figure 3. The model reaches a performance of about 0.8 F1-
score, keeping in a window of less than 5 per cent around. It is interesting to see that numbers 
degrade only a neglectable amount over time and stabilize around 0.80 overall F1 quickly. This 
is a hint that only a small fraction of the model does not generalize over time.  

Furthermore, it is nice to see that the precision of the water class is higher instead of  the land 
class. The surprising characteristics of this model are visualized as well in Figure 3 as a ROC 
curve which shows the behaviour of the false-positive rate as opposed to the true positive rate 

when changing the threshold parameter  at which the devision between land and water is 

made. Depending on the actual application and its demands, a suitable can be chosen to 
trade-off precision and recall. 
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Figure 3: Performance of the classifier over time and in relation to choosing a classification threshold  

3 Results 

We apply this model over land and reject tweets that are similar to those observed 
throughout the oceans. Figure 4 depicts an application of this framework to a one-month 
data sample taken from the Twitter social network. That is, we trained in the past and take 
fresh data and classify it into the two classes “ocean” and “land”. This figure is representative 
of all the one-million slices. 

 

Figure 4: Illustration of Bot Rejection Result on a One-Month Data Sample. 
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Without knowing exactly, what the model rejects over land, Figure 4 shows the behaviour of 
the trained model. As one can see, the model predicts low values over the ocean and higher 
values over land while it predicts surprisingly low values, for example, for the rectangle over 
Finland, which represents a known bot using fake locations from this rectangle. This illustrates 
that a spatially semisupervised bot rejection scheme is able to correctly reject some of the fake 
messages that we observe in social media datasets. At the same time, however, it is easy to see 
some unwanted results. For example, in Japan and more generally around Asia, we are rejecting 
many more tweets as in countries with western languages. This is a severe bias, which is easy 
to explain. Most of the Twitter social network data is communicated in the English language, 
and non-western languages take only a small fraction of the data. Therefore, the model is 
overfitted to English (or more generally Western) languages and has problems learning Asian 
languages from the given sample or because of the pictographic script. Still, with a thorough 
case by case evaluation, it seems to be viable to apply this model at least in Europe and the 
United States and it can, for example, enable the detection and analysis of urban structures 
below the very noisy Finland bot which is difficult without such a scheme. 

Further research is needed to assess for each possible social media mining application 
independently whether such a bot rejection scheme is helpful (increasing correlation) or not 
(e.g., ethically unsound due to biases) and where to put the threshold on the bot scores. This 
is a difficult question that needs to be answered in the light of individual applications as it 
depends on the spatial integration area (how much data is left for further analysis in each 
analysis unit), the spatial focus (are we interested in the city centres, where social media 
presents a strong signal or more in the extended urban space and the borders of cities, where 
social media messages become rare). Furthermore, the rejection scheme puts a tradeoff 
between preprocessing and data mining in the sense that even if the model was correctly able 
to reject tweets originating from bots, it would as well reject some messages (false positives) 
that weaken the spatial signal. Therefore, a selective threshold leads to less data in the following 
data-mining stag;, a weak threshold reduces the impact of the current approach. Finally, one 
might want to probabilistically calibrate the classifier and use the calibrated scores for upstream 
processing instead of simple thresholding. This might mitigate some difficulties of setting a 
threshold but implies a more complex input of weighted messages to the upstream data mining 
stages. 

4 Conclusion 

This paper explored how the injection of spatial knowledge into a text mining problem through 
labelling can help filter streams of location-based social network messages sensibly. We were 
able to reject the most obvious bot over Finland. We were able to reject the most obvious bot 
over Finland. This qualitative result is not enough to understand the behaviour of this model. 
We will emphasise possible applications in future work, especially towards propaganda 
awareness, social media trend analysis, outlier and event detection, and land cover 
classification. This is, to the best of our knowledge, the first time that a spatially semisupervised 
bot detection and rejection model was designed and showed to perform well with an area 
under curve measure (ROC_AUC) of 0.85. For clarity, we do not claim that this model rejects 
bots. Any claim towards this direction would ignore that language models like GPT-3 (Brown 
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et al., 2020) and BERT (Devlin et al., 2018) can generate text in a quality that is nearly 
indistinguishable from human text and that human beings are often steering bot networks to, 
for example, disseminate fake news or bots just pick up valid messages for retweets. We claim 
to be helpful to filter a very specific component of communication samples that overlaps with 
bots. We envision using this framework of spatial supervision as well beyond social media 
classification.  

We expect that models that allow us to observe and compare anthropogenic signals from a 
multitude of decoupled sensing systems (social media, light, activity, prosperity, …) help to 
put in place global indicators for many of the United Nations Sustainable Development Goals, 
most importantly, “sustained communities” and “life on land”. However, more research in 
bias estimation, de-biasing, and more generally in the ethical implications of using social media 
signals is needed before a wide adoption is encouraged. 
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