
Hein et al

76

Evaluation of a NoSQL Database

for Storing Big Geospatial Raster

Data

 GI_Forum 2021, Issue 1

Page: 76 - 84

Research Paper

Corresponding Author:

nicole.hein@gia.rwth-aachen.de

DOI: 10.1553/giscience2021_01_s76

Nicole Hein1 and Jörg Blankenbach1

1RWTH Aachen University

Abstract

Database systems capable of efficiently storing geospatial data are widespread. However,

recent developments in earth observation systems, remote sensing, mobile mapping, and

crowd sourcing lead to large amounts of geospatial mass data that can hardly be handled

efficiently with the existing solutions. Especially large geospatial raster data require novel

concepts for well-organized data storage.

A concept for storage of large geospatially and temporally referenced image data using

the NoSQL graph database system Neo4j as a research subject of the project “RiverView®”

is introduced. New strategies and access structures have been developed to ensure the

persistence and performant access to image data in Neo4j. These strategies are compared

with the up-and download performance of the widespread Rasdaman array database

system.

Keywords: geospatial raster database, graph database, big geo data, image database,

Neo4j

1 Introduction

Database systems storing spatial-related data (spatial or geodatabase systems) have become
standard in the geospatial domain, e.g. as a core component of modern geoinformation
systems or distributed spatial data infrastructures. Due to the emergence of novel or further
developed geospatial data acquisition methods like mobile mapping systems or multi-sensor
earth observation systems, the storage of big geospatial raster data is becoming increasingly
important.

This study is part of the research project “RiverView®” and presents an approach for storing
of big geospatial raster data within a NoSQL database as well as a benchmark with an existing
database system.

Hein et al

77

2 State of the art and related work

Geodatabase systems are very common in the field of geospatial data management (Bill 2016).
Consequently, there are several commercial and free geodatabase systems available like Oracle
Spatial and Graph (Oracle Corporation 2021), PostgreSQL/PostGIS (PostgreSQL Global
Development Group 2021, PostGIS Project Steering Committee 2021) and MySQL (Oracle
Corperations and/or affiliates 2021). Often these storage systems are further developed object-
relational databases that have been expanded by specific spatial data types, spatial access
structures, and analyses (Yeung & Hall 2007). While in the past, geodatabase systems were
mainly applied for storing spatial features as vector data (vector features), more recently, the
demand for the efficient storage of spatial raster data has risen. The reason for this
development is, in particular, the advent of further developed geospatial data acquisition
methods like modern laser-scanning devices, high-resolution digital cameras and novel remote
sensing sensors producing large volume raster data sets that require efficient storage (Nebiker
1997). Raster data is represented by (often equidistant) raster cells, which, in the case of raster
images, are picture elements and can be stored in implicit structures like matrices or arrays
(Nebiker 1997). Brisaboa et al. (2017) described the efficient querying of raster and vector data
via k2- respectively R-Tree data structures. Database systems for storing image data and its
classifications have been developed since the late 1970s, e. g. REDI and GRAIN (Chang et al.
1980), (Tamura et al. 1984). In the 1990s, Peter Baumann developed the first prototype of
Rasdaman (Rasta Data Manager) to store multidimensional arrays in a database system,
especially for geospatial or space sciences (Baumann 1993), (Baumann et al. 1997). Rasdaman
is a middleware working with PostgreSQL and SQLite on a storage basis (Baumann 2018).
Since the term Big Data arose (Chalmers et al. 2013) with its different types and particular
challenges (Lansley et al. 2019) arises, NoSQL database systems are becoming increasingly
popular. In (DeZyre 2019) several reasons are identfied for using NoSQL database systems in
terms of Big Data because relational database systems are not suitable for the complexity and
heterogeneity of upcoming data. Additionally, NoSQL database systems are easily expandable.
Since Big Data is complex and contains highly interconnected information, it is represented
well as a graph (Miller 2013).

3 Background

The research project RiverView® (FiW 2020) aims at developing a novel approach for the
holistic monitoring of medium and small watercourses. The core component of RiverView®
is an unmanned surface vehicle (RiverBoat, Fig. 1) equipped with multiple sensors, which
allows for autonomous digital water data acquisition with high spatial and temporal resolution.
In addition to chemical-physical sensors, an above-water mapping system is installed ,
containing an omnidirectional multi-camera system consisting of 6 individual cameras, with
which georeferenced images (5 MP each) of the water environment can be recorded
continuously at high temporal frequency (max. 10 Hz).

Hein et al

78

 Figure 1: RiverBoat Figure 2: Water body information system

For managing all collected data, a GIS-based water body information system (Fig. 2) was
developed. Therefore, efficient and powerful storage capacities due to the heterogeneous and
large volume datasets are required. Whilst the scalar and vectorial data (e.g. O2 level, water
temperature) can be inputted directly in a relational geodatabase, image data storage in
particular is a major challenge because it has to fulfil the following characteristics:

1) (Near) real-time data export
2) Scalability / Big Data ability
3) Handling heterogenous data

Pre-existing solutions (e.g. PostgreSQL/PostGIS, Oracle) have been tested for geospatial
image storage (Hein & Blankenbach 2017). However, after concluding evaluations, several
problems (e. g. no real-time ability, no Big Data ability) were identified.

Hence, a novel concept was developed for storing geospatial raster data based on the NoSQL
database system Neo4j. Neo4j (Neo Technology 2018) is a graph database that includes the
topological components “node”, “relationship”, “property” and “label” as well as data
indexing features to find nodes as basic information item faster in the graph. For geospatial
data handling Neo4j provides a spatial library including e. g. spatial search trees (R-Trees) to
accelerate read operations on spatial data (Taverner 2019).

4 Raster Data Storage and Indexing

A geospatial raster image is a matrix of picture elements (pixels) consisting of colour and
possibly transparency information. In practice, two approaches are commonly pursued for the
database-driven storage of geospatial raster images. Either the raster images are stored directly
in the database (e. g. by using Binary Large Object (BLOB)) or using an image file format on
the hard disk. In both cases, the metadata (e.g. spatial reference, image dimensions and
resolution) are stored in the database that enables the deployment of useful access structures
to the data.

Hein et al

79

Database indices are utilised as efficient access structures that have to be optimised, in this
case for raster data in different resolutions. For the latter image, pyramids are used to provide
the original image in different resolutions (Fig. 3, left).

Figure 3: Image pyramid and adapted tiling (Source: Esri 2021)

Another crucial database access structure for raster data is tessellation (Fig. 3, right). For real-
time applications, the ability to load only parts of images is necessary, hence, images must be
split into delimited parts. Therefore, rectangular blocks are normally applied, which is why this
process is also commonly known as tiling. However, in general, different tiling strategies can
be used, e.g.:

1) Aligned Tiling: The Aligned Tiling Strategy (ATS) divides the image data into
rectangular tiles with equal height and width (Fig. 4, left top).

2) Random Tiling: The Random Tiling Strategy (RTS) calculates for each rectangular tile
an individual height and width randomly (Fig. 4, left bottom).

3) Region-of-Interest Tiling Strategy (RoITS): This tiling strategy was explicitly
developed for the RiverView application because large parts of the images contain
water or sky, which are less relevant to users. Thus, the general idea was to tile only
the interesting areas in the image in a more granular way. The RoITS, therefore,
identifies points of interest (POI), e.g. by calculating the image feature points using
the SIFT (Lowe 2004) algorithm (Fig. 4, right). The more feature points found in an
area, the more granular the area of the image is tiled: If a certain amount of points are
found in a rectangle, a tile is defined.

Hein et al

80

Figure 4: ATS (left top), RTS (left bottom) and RoITS (right)

Both, image pyramids and tiling, is then used to create a spatial index, speeding up spatial
queries (e.g. query boxes) on the data. In geodatabases, search trees usually represented by
graphs are applied and are stored separated from the data itself. A very widespread spatial
search tree is an R-Tree (Fig. 5) (Guttman 1984).

Figure 5: R-Tree on image (right) and R-Tree as graph (left)

5 Implementation

For the implementation of the raster data storage in Neo4j, it had to be decided whether only
the metadata and the access structures or also the image data itself should be stored in the
database (see section 4). Out of preliminary tests, the storage of binary (raster) data directly in
the database is not efficient, which is also confirmed by (Armbruster 2016). Hence, the raster
data is stored on hard disk while Neo4j holds the metadata.

Thus, for each image, the following steps were conducted:

Hein et al

81

1) An image pyramid (Gaussian pyramid) is created.
2) Each level of the pyramid is tiled using the respective variants ATS, RTS and RoITS.
3) A search tree (R-Tree) is created for each pyramid level.
4) The tilesets are stored on a hard disk while the metadata, a link of each tile, and the

R-Tree is stored into Neo4j.

For the implementation of these four consecutive steps, OpenCV and NumPy were used.
Uploading images in Neo4j is done via Python with the extension Neo4j Spatial. In the
database, only the extends of the image tiles are stored as polygons and the spatial reference
as point positions.

For the subsequent benchmark of our new raster data management concept, the images were
imported additionally into Rasdaman, a powerful image database storing multidimensional
array data.

6 Evaluation

Whilst data access structures lead to a performance gain at read access, they cause a decrease
in performance for write access. Hence, for benchmarking an evaluation between the two
databases, Rasdaman and Neo4j, regarding up- and download performance was conducted.
Both databases (Neo4j v3.4.9; Rasdaman v9.6) were installed on the same computer with
Linux Debian 8 (6GB RAM).

Fig. 6 shows the upload results of the different tiling strategies with varying tiling sizes (480 x
480, 500 x 500, 1000 x 1000) on the abscissa axis and the time in seconds on the ordinate axis.
For RoITS at 50 POI, the tiles are 481 x 633 pixels on average. At 100, POI the tiles have an
average size of 554 x 805 pixels. RoITS needs the longest time for uploading data – no matter
which size of POI is considered. ATS and Rasdaman show a fast upload time.

Figure 6: Upload benchmark with comparison to Rasdaman

Hein et al

82

The download test is triggered by specifying spatial coordinates of a section of the image which
is required. Hence, a bounding box (range) query with the geometric function “intersects” is
executed in the database. Furthermore, the corresponding tiles within the bounding box are
loaded from the database. Fig. 7 depicts the average download time for the resolutions of the
pyramid levels 0 to 3 when the entire image (8000 x 4000 pixels) is loaded. It is noteable that
Rasdaman (both tiling sizes) and ATS (500 x 500 pixels) take the longest time, taking
approximately 3 seconds for the download. All strategies vary between 1.15 and 1.62 seconds.
Fig. 8 shows the download times in the resolution levels 0 to 3 of the pyramid level with a
bounding box of (x1, y1, x2, y2) = (3526, 512, 7654, 3709). Considering the number of nodes,
it can be concluded that the higher the number of generated nodes there is, the more time the
download takes (see Table 1, Fig. 7 and Fig. 8).

A similar result to the upload emerges: Rasdaman (both strategies) and ATS with 500 x 500
tiling require the most time. All other strategies require between 0.66 and 0.92 seconds.

Table 1: Number of nodes for strategies

Strategy Size
Number
of nodes

ATS 500 x 500 pixels 13,086

ATS 1000 x 1000 pixels 3,349

RTS 480 x 480 pixels 5,317

RTS 1000 x 1000 pixels 2,520

RoITS 50 POI 6,601

RoITS 100 POI 4,573

Figure 7: Download benchmark, 8000 x 4000 Figure 8: Download benchmark, 4126 x 3197

Hein et al

83

7 Summary and Conclusion

The collection of large amounts of geospatial image data in the project RiverView® requires
efficient data storage. Since existing solutions do not offer an optimal solution, a raster data
storage concept based on the NoSQL database system Neo4j was developed and implemented.
A crucial aspect is the implementation of data access structures such as image pyramids and
tiling. Hence, different tiling strategies were evaluated and benchmarked for up- and download.
Based on these benchmarks it evident that the RTS and RoITS tiling strategies perform best
in download. Generally, the strategy implemented depends on the application type. In
summary, efficient geospatial rasta data management with Neo4j is possible based on the
developed strategies and can even be used for real-time applications. It is also conceivable to
extend the approach to remote sensing and satellite data sets for write-once-read-many use-
cases. In future work, the approach will be further developed to point clouds and also
additional evaluations considering other solutions (e.g. Open Data Cube) are planned.

Reference

Armbruster, S. (2016). Welcome to the Dark Side: Neo4j Worst Practices (& How to Avoid Them).
https://neo4j.com/blog/dark-side-neo4j-worst-practices/

Baumann, P. (1993). Language support for Raster Image Manipulation in Databases. Visualization in
Science & Technology.

Baumann, P., Furtado, P., Ritsch, R. & Widmann, N. (1997). Anfrageformulierung und Ablage
dimensionsbehafteter Daten in Rasdaman. https://doi.org/10.1007/978-3-642-60730-1_17

Baumann, P. (2018). Rasdaman – Raster data manager. https://rasdaman.com
Bill, R. (2016): Grundlagen der Geo-Informationssysteme. 6. Auflage, Wichmann-/VDE-Verlag,

Berlin
Brisaboa, N., de Bernardo, G., Gutiérrez, G., Luaces, M. R. & Paramá, J. R. (2017), Efficiently

Querying Vector and Raster Data. The Computer Journal, Volume 60, Issue 9, September 2017,
Pages 1395–1413, https://doi.org/10.1093/comjnl/bxx011

Chalmers, S. & Bothorel, P.-C. C. (2013). Big Data – State of the Art. Report, Télécom Bretagne.
Chang, N. S. & Fu, K. S. (1980). A relational database system for images. Pictorial Information Systems:

Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-09757-0_11
DeZyre (2019). NoSQL vs SQL – 4 Reasons why NoSQL is better for Big Data applications.

https://tinyurl.com/y2yrmkqn
Esri (2021). Tiled Elevation Service. https://developers.arcgis.com/documentation/tiled-elevation-

service/
FiW Aachen (2020). RiverView®. https://www.river-view.de
Guttman, A. (1984). R-Trees: A Dynamic Index Structure for Spatial Searching. Proceedings of the 1984

ACM SIGMOD international conference on Management of data – SIGMOD ‘84.
https://doi.org/10.1145&602259.602266

Hein, N. & Blankenbach, J. (2017). Vergleich von PostGIS und Rasdaman als Geodatenbank für
großvolumige Bilddatenbestände eines mobilen Mappingsystems. In J. Strobel, G. Griesebner, &
T. Blaschke (Eds.), AGIT 3-2017 – Journal für Angewandte Geoinformatik: Wichmann Verglag.
https://doi.org/10.14627/537633001

Lansley, G., de Smith, M., Goodchild, M. & Longley, P. (2019). Big Data and Geospatial Analysis.
Computers and Society. https://arxiv.org/abs/1902.06672

https://doi.org/10.1093/comjnl/bxx011
https://tinyurl.com/y2yrmkqn
https://developers.arcgis.com/documentation/tiled-elevation-service/
https://developers.arcgis.com/documentation/tiled-elevation-service/
https://doi.org/10.14627/537633001
https://doi.org/10.14627/537633001

Hein et al

84

Lowe, D. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of
Computer Vision.

Miller, J. J. (2013). Graph Database Applications and Concepts with Neo4j.
Nebiker, S. (1997): Spatial raster data management for geo-information systems – a database

perspective. Doctoral thesis, ETH Zurich. https://doi.org/10.3929/ethz-a-001847022
Neo Technology (2018). Neo4j. https://neo4j.com/
NumPy Developers (2018). NumPy. https://www.numpy.org/
Oracle Corperations (2021). Spatial and Graph features in Oracle Database.

https://www.oracle.com/database/technologies/spatialandgraph.html
Oracle Corperations and/or affiliates (2021). MySQL. https://www.mysql.com
OpenCV Dev Team (2019). OpenCV. https://www.opencv.org/
Pathak Siddharth, D., Thakur Siddharth, J., Shitole Siddharth, J., Gaikwad, D. P. & Satam Tejas, S.

(2014). Implementation of R-Trees for Spatial Image Processing and Cloud Detection., International
Journal of Engineering Research & Technology (IJERT). ISSN: 2278-0181

PostGIS Project Steering Committee (2021). PostGIS. https://postgis.net/
Tamura, H. & Yokoya, N. (1984). Image database systems: A asurvey. Pattern Recognition 17-1.

https://doi.org/10.1016/0031-3203(84)90033-5
Taverner, C. (2019). Neo4j Contrib Spatial. https://neo4j-contrib.github.io/spatial/
The PostgreSQL Global Development Group (2021). PostgreSQL. https://postgresql.org/
Yeung A.K.W., Hall G.B. (2007): Spatial Database Systems. The GeoJournal Library, vol 87. Springer,

Dordrecht. https://doi.org/10.1007/1-4020-5392-4_4

https://www.numpy.org/
https://www.opencv.org/
https://doi.org/10.14627/537633001

