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Abstract 

Spatial data on Low-and-Middle-Income-Country (LMIC) cities, and deprived areas within 

cities, are often not readily available in support of local and global information needs. To 

address this information gap, we propose the systematic semi-automated SLUMAP 

framework that provides policy-relevant information on deprived urban areas in Sub-

Saharan Africa (SSA), based on free open-source software (FOSS). First, we assess user needs 

for spatial information on deprivation (ranging from local communities to global research 

and policy support). Second, we show how free or low-cost image datasets can be used for 

mapping the location of deprived areas at the city scale and providing an overall 

assessment of their spatial patterns. This is implemented as a grid-based approach using 

machine learning and assessing the contribution of a large number of spectral and spatial 

features derived from open or low-cost imagery. Third, we show how higher (spatial and 

spectral) resolution data can provide a detailed characterization of such areas, with a 

GEOBIA/machine-learning workflow and deep learning techniques. We illustrate the 

experiments and results on the city of Nairobi (Kenya)and discuss transferability to SSA cities. 
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1 Introduction 

Urbanization rates are rising in most Low-and-Middle-Income Countries (LMICs) (UN, 2019). 
Most of this increase is happening in areas commonly known as slums, informal settlements 
and areas of inadequate housing, hereafter “deprived urban areas”. In particular, African cities 
are rapidly growing, while there is an insufficient provision of low-income serviced housing. 
The urban Sustainable Development Goal 11 (SDG 11) has the “proportion of urban 
population living in slums, informal settlements or inadequate housing” as its first indicator to 
measure progress towards sustainability. Unfortunately, data for this indicator is commonly 
not readily available for supporting local or global monitoring. Existing datasets supporting 
the SDG 11.1.1 indicator are country-level estimates without a reference to individual cities. 
Thus, existing data failed to provide insights into the spatial patterns of deprived urban areas 
and their dynamics within cities. Earth Observation (EO) data has, in principle, the capability 
to map deprived urban areas (e.g., Wang, Kuffer, Roy, & Pfeffer, 2019), as data archives are 
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growing and computational power is increasing. However, EO methods fall short in providing 
scalable, transferable, and low-cost solutions that respond to user needs (Kuffer et al., 2020). 
Therefore, to date, EO has not been used as an effective tool to provide relevant information 
to various users on urban development issues, specifically for monitoring deprived urban areas 
and accounting for the local SDG 11.1.1 indicator. To make appropriate use of the growing 
amount of EO data and advancements in methods, it is essential first to understand user needs. 
However, there is a general communication gap between the EO experts and potential users 
of EO data, hereafter “users”. We observe that the EO community is developing methods 
that are mostly based on very high resolution (VHR) commercial EO data, often for a small 
subsection of a city. At the same time, urban development questions typically require an 
understanding of patterns at the city or regional scale. In addition, resource constraints and 
understanding of advanced methods is hindering the knowledge transfer from research to 
users. The paper aims to provide an overview of spatial information needs in deprived urban 
areas and develop solutions for meeting these needs. Examples from Nairobi (Fig. 1) illustrate 
recent developments in machine learning and FOSS solutions for developing a systematic 
semi-automated SLUMAP framework that provides policy-relevant information on deprived 
urban areas.  

 

Figure 1: 

A deprived area in Nairobi 

(Photo: Ángela Abascal Imízcoz). 

2 Methodology 

2.1  Mapping user needs and requirements  

The first step towards shortening the gap between existing inconsistent/unavailable datasets 
and essential geospatial resources in deprived urban areas is to develop an adequate 
understanding of user needs and requirements at (inter)national and local levels. This was done 
through the assessment of data requirements by way of an online survey, fortified by additional 
discussions and workshops that covered diverse users: 

▪ An online survey of users utilizing deprived urban area-related spatial data (N = 112). 
The survey included different professions and sectors working with ‘slum’ related 
data, including civil society, government, international and research organizations. 
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The backgrounds of respondents were GIS, EO and data science (40%), urban 
planning (28%), social (20%), environmental (9%) and health (4%) professions.  

▪ Interactions with community-based organizations in Nairobi and Lagos, in form of 
online meetings due to COVID restrictions.  

▪ Workshops (at the World Urban Forum and hybrid local/online workshops in Lagos 
and Accra), expert discussions with local and national authorities (Kenya and Lagos).  

The questions and discussion points included spatial, temporal, contextual information 
requirements of users as well as requirements about data access, aggregation, uncertainties and 
ethics/privacy. Two major aspects discussed in the user interactions that are key for routine 
and accurate production of maps of deprived urban areas at continental scale are highlighted 
(Fig. 2), namely (i) the need for a low-cost mapping system and (ii) the local data requirements 
(characterization) for the city and community-level data on deprived urban areas. To show 
how data can be produced that respond to the user needs, we use the case of Nairobi to explore 
the potential of several HR and VHR sensors (i.e., Sentinel-1/2, SPOT6/7, WorldView-3 and 
Google Earth (GE) images) for mapping and characterizing deprived urban areas. The city-
scale mapping using Sentinel-1/2 data is responding to the user needs for a low-cost mapping 
system. This allows for developing  a standardized and scalable mapping system and drastically 
increases scalability and repeatability (routine mapping). The local characterization explores 
the potential of VHR images to respond to the user needs on urban morphology, 
environmental/ health aspects (e.g., garbage piles) and automatizing building mapping (in 
support of local planning needs). 

 

Figure 2: A semi-automated SLUMAP framework. 

2.2  Using open vs. low-cost imagery at the city scale  

To assess the potential of free-cost Sentinel-1/2 for mapping the morphological deprivation 
probability at the city scale, we develop a machine learning workflow using FOSS software 
GRASS GIS  in a Jupyter Notebook and R. A grid-based approach is implemented. Gridded 
mapping has proved successful for mapping slums with VHR GE images (Duque et al., 2017). 
Besides, it tends to have a high transferability potential, as reflected by the increasing number 
of available global gridded layers (e.g., WorldPop, GHSL, GUF, etc.), and it responds to 
privacy concerns (e.g., ‘blurs’ the boundaries). We apply our workflow to an area of interest 
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covering the city of Nairobi (652 km²). We use Sentinel-1/2 and SPOT7, which is considered 
low-cost commercial imagery (Fig. 3) and compare the results. Ancillary open global datasets 
(i.e., SRTM, OSM and a preliminary version of the World Settlement Footprint 2019 – 
unpublished to date - which is an improvement of the World Settlement Footprint 2015 
(Marconcini et al., 2020)) are also included in the experiments. First, a wide set of over 2000 
spectral, spatial and ancillary features are extracted. For optical imagery, these features are 
mainly based on vegetation indices, water or moisture indices, built-up indices, image 
transforms, texture metrics (e.g., GLCM, Structural Feature Set) and a few metrics calculated 
on an unsupervised classification (such as the Mean Patch Size). For SAR they are mostly 
based on intensity, coherence, textures and filtered bands. Ancillary features include 
geomorphometric features, built-up and street density. Statistics are calculated in 50m x 50m 
grid cells, and feature selection (using the VSURF - Variable Selection Using Random Forest 
- algorithm (Genuer, Poggi, & Tuleau-Malot, 2015)) is implemented prior to random forest 
(RF) classification, for parsimony. The classification scheme includes 
8 land-use/land-cover classes: (1) High to mid-density built area, (2) 
Low density built area, (3) Industry/large structures, (4) Paved 
ground/Bare ground, (5) Vegetation, (6) Water, (7) Deprived urban 
areas (typical), and (8) Deprived urban areas (atypical). For our focus 
classes (7 and 8), a detailed class description is provided in the 
textbox. For training and testing, 3962 manually labelled samples (i.e., 
grid cells) representing the dominant class are used. Several feature 
combinations are assessed, and their respective performances are 
compared based on accuracy metrics (i.e., precision, recall and F1 
score). 

 

Figure 3: 

Interface between deprived and non-

deprived urban areas. Top left: GE imagery. 

Top right: SPOT7 (RGB). Bottom left: S2 (RGB). 

Bottom right: S1intensity (VV, VH, VV/VH). 

2.3 Local characterization of deprived areas 

Next, we investigate the characterization of intra-deprived areas environments (i.e., garbage 
piles, built-up morphology). First, we make use of VHR superspectral data collected by the 
WorldView-3 satellite (8 multispectral and 8 SWIR bands) to map the urban environment in 

Textbox: Definition of 
deprived classes:  
(7) Very compact arrangement 
of low-rise buildings, generally 
forming ‘organic’ patterns. No 
structured street layout, except 
for a few main streets. Little or 
no vegetation. 
(8) Arrangement of buildings 
with a density that varies from 
compact to mid-dense, and a 
pattern that is more regular than 
in class 7.  
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deprived urban areas. State-of-the-art machine learning classifiers and processing methods 
such as Geographic Object-Based Image Analysis are deployed (Georganos, Grippa, Lennert, 
et al., 2018; Georganos, Grippa, Vanhuysse, Lennert, Shimoni, & Wolff, 2018). Moreover, we 
assess the created land cover/ land use (LULC) models for deprived areas. The assessment 
focuses on maximizing their interpretability and transferability and alleviate the data 
management and processing burden (Georganos, Grippa, Vanhuysse, Lennert, Shimoni, 
Kalogirou, et al., 2018). For example, this included defining a suitable grid size that reflects the 
urban patterns of deprived areas but still allows data aggregation to ease processing. We extract 
various indicators at a grid level (i.e., 25 meters) derived from the modelled LULC of these 
regions. For instance, these indicators may be pertinent to open space, building density, or the 
proportion of garbage piles. The training data on garbage piles were collected in collaboration 
with local community-based groups in Mathare (a deprived area in Nairobi), a key 
environmental issue that emerged in interaction with communities. A similar effort is presently 
ongoing in other communities. Second, we exact building footprints and map the 
morphological patterns using GE imagery. These morphological patterns allow differentiating 
deprived urban areas from better-off areas at the city scale. To achieve this, we largely rely on 
open tools and free data. There are two major steps in this approach: (1) extracting building 
footprints from GE imagery by using deep learning techniques (modified U-Net architecture) 
using a global training dataset provided by Wuhan University that containing labelled building 
footprint (gpcv.whu.edu.cn/data/building_dataset.html), and (2) measuring the 
morphological configuration of buildings with the open-source tool MOMEPY 
(http://docs.momepy.org/en/stable/).  

3 Results 

3.1  User requirements for evidence-based policy-making  

The results of the user need assessment (Fig. 4) shows that data on deprived urban areas are 
not available or accessible for users. In workshops, it was stressed that data, if at all available, 
are often not usable (e.g., not covering the area of interest) or are too dated. Most data needs 
relate to routine and up-to-date information about the location of deprived urban areas, 
building information and more detailed characterisation of their environment. 

        

Figure 4: Existing data gaps and data needs on deprived urban areas: assessment of problems 

encountered by users (left) and user’s data needs on deprived areas (right).  

http://gpcv.whu.edu.cn/data/building_dataset.html
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3.2  City-scale results 

For each of the assessed feature combinations, the original set can be drastically reduced to a 
small number of important predictors with VSURF. The results of the random forest 
classifications are validated with an independent test set, focusing on the two deprived urban 
area classes. The best combination of SPOT7 and ancillary predictors achieves higher accuracy 
than the best combination of Sentinel1/2 and ancillary predictors (Tab. 1). However, the 
difference is not as marked as could be expected given the spatial resolution gap. The 
morphological deprivation probability is computed by summing the class probability of classes 
7 and 8 (Fig. 5). Considering that Sentinel images are free datasets with wide temporal 
availability, they constitute a valuable option for mapping the morphological deprivation 
probability at the city scale, allowing for frequent updates, as required by users. 

Table 1: Accuracy assessment of the best feature combinations involving Sentinel-1 (S1), Sentinel-2 (S2), 

SPOT7, and ancillary global datasets. 

 

 

Figure 5: Morphological deprivation probability classes in 50x50m grid cells (Nairobi). Left: S1-S2-

Ancillary (with S2 RGB subset). Right: SPOT7-Ancillary (with SPOT7 RGB subset). 

3.3 Local characterization based on LULC 

Taking as an example Mathare, Nairobi, Fig. 6 illustrates the potential of our modelled LULC 
for characterizing the local environment in a deprived area. Notably, garbage  pile density (Fig. 
6.a) is a very important socio-economic and health indicator as it can be associated with disease 
exposure, water/sanitation and act as a socio-economic proxy for the surrounding 
neighbourhoods (Engstrom, Hersh, & Newhouse, 2017). The lack of openness (Fig. 6.c) can 
also be detected. The detection of vehicles (Fig. 6.e) reflects socio-economic activity to a 

g) 
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degree. The RF Out of Bag Overall Accuracy of the map product for Mathare using all valuable 
WV-3 resources (multispectral + shortwave infrared) surpassed 87%. Finally, these indicators 
can be extracted in a gridded format (25 m), as illustrated in Fig. 6.g, which maps the spatial 
distribution of garbage piles across Mathare. 

  

Figure 6: Subsets of mapped LULC in deprived areas in Mathare, Nairobi: a) garbage piles; c) lack of 

openness; e) detection of vehicles (b,d,f RGB); g) garbage piles density (%) at a 25 meter spatial 

resolution. 

3.4  Local characterization based on building footprints extraction and urban 
morphology 

Fig. 7 shows buildings extracted from different places within the city of Nairobi. Visually, the 
building configuration exhibits a significant difference especially comparing the building 
patterns in Fig. 7(b), where building patterns in deprived areas can be quite different from the 
other places shown in Fig. 7.a, c, d.  

  

Figure 7: (a-d) Building footprints extracted from different neighbourhoods; (e) manually delineated 

deprived areas (dated); (f) building clusters based on building morphological metrics (Nairobi). 

(e) 

(f) 
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Once the morphological building patterns are explicitly measured, similar building patterns are 
classified within the same morphological clusters. The morphological cluster highlighted in red 
(Fig. 7.f) reflects the distribution of deprivation areas delineated in Fig. 7.e.  

4 Conclusions 

Deprived areas emerge with the rapid urbanization occurring in LMICs and the insufficient 
provision of low-cost urban housing. An increasing number of people migrate to cities, with 
complex drivers such as climate change. Global datasets do not account for these areas, and 
local data often ignore them. Our results show the capability of the SLUMAP framework that 
builds upon a FOSS solution to respond to user needs for routine and accurate mapping of 
deprived urban areas. To protect privacy, exact settlement boundaries are not shown, which 
could be used against communities (e.g., land tenure conflicts). A fine-scale local 
characterization makes use of commercial (WV-3) and freely available (GE) VHR data to meet 
the local needs for detailed environmental characterization, such as garbage piles mapping and 
morphological characterization of built-up density patterns at local and city scale. The 
SLUMAP framework is transferable to other SSA cities to provide data allowing for inter-city 
comparisons.  

  



Kuffer et al 

93 
 

References 

Duque, J., Patino, J., Betancourt, A., 2017. Exploring the Potential of Machine Learning for 
Automatic Slum Identification from VHR Imagery. Remote Sensing 9, 895. 
https://doi.org/10.3390/rs9090895 

Engstrom, R., Hersh, J. S., & Newhouse, D. L. (2017). Poverty from space : using high-resolution satellite 
imagery for estimating economic well-being. Retrieved from Washington, D.C.: 
http://documents.worldbank.org/curated/en/610771513691888412/Poverty-from-space-using-
high-resolution-satellite-imagery-for-estimating-economic-well-being 

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2015). VSURF: An R Package for Variable Selection Using 
Random Forests Retrieved from  

Georganos, S., Grippa, T., Lennert, M., Vanhuysse, S., Johnson, B. A., & Wolff, E. (2018). Scale 
Matters: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Large and 
Heterogeneous Satellite Images. Remote Sensing, 10(9), 1440.  

Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., & Wolff, E. (2018). 
Less is more: optimizing classification performance through feature selection in a very-high-
resolution remote sensing object-based urban application. GIScience & Remote Sensing, 55(2), 221-
242. doi:10.1080/15481603.2017.1408892 

Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., & Wolff, E. (2018). Very High 
Resolution Object-Based Land Use–Land Cover Urban Classification Using Extreme Gradient 
Boosting. IEEE Geoscience and Remote Sensing Letters, 15(4), 607-611.  

Kuffer, M., Thomson, D. R., Boo, G., Mahabir, R., Grippa, T., Vanhuysse, S., . . . Kabaria, C. (2020). 
The Role of Earth Observation in an Integrated Deprived Area Mapping “System” for Low-to-
Middle Income Countries. Remote Sens., 12(6), 982.  

Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, F., . . . 
Strano, E. (2020). Outlining where humans live, the World Settlement Footprint 2015. Scientific 
Data, 7(1), 242. doi:10.1038/s41597-020-00580-5 

UN. (2019). World Urbanization Prospects. The 2018 Revision. New York, US: United Nations. 
Wang, J., Kuffer, M., Roy, D., & Pfeffer, K. (2019). Deprivation pockets through the lens of 

convolutional neural networks. Remote Sens. Environ., 234, 111448.  


