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Abstract 

Urban planning benefits significantly from improved knowledge concerning spatiotemporal 

relationships and patterns in cities based on geospatial factors. In this context, the potential 

of geodata seems inexhaustible. Applications include limited-service offers like carparks, the 

occupancy of which is controlled by geospatial factors characterized by their 

spatiotemporal patterns. This paper proposes an enhanced model for identifying geospatial 

key factors, tying in with an existing geo-analytics model. Our approach combines real-world 

empirical data for off-street parking with open-source geodata on points of interest. We 

formulate stabilization measures in different model-enhancement stages to optimize model 

reliability and fit, based on analyses of statistical characteristics. Additionally, we consider 

modifying the choice of geospatial factors in order to reduce multicollinearity. Our results 

show improved reliability of geo-analytics for the identification of urban spatiotemporal 

relationships. 

Keywords: 
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1 Introduction  

One of the major challenges posed by growing cities is the distribution of limited resources 
such as housing and parking spaces (Boer et al., 2017). Urban mobility suffers from the 
increasing number of trips made in urban areas by car, which reduce the quality of life in towns 
and cities (Boer et al., 2017; Giuffrè et al., 2012). Forecasts indicate an increasing burden on 
transport systems for urban areas. In this context, the importance of flexible solutions for 
future-oriented urban planning is growing, and smart mobility combines traditional mobility 
systems with modern communication structures (Zheng et al., 2015). Limited-service offers 
such as carparks are an integral component of the mobility infrastructure of towns and cities. 
Thus, optimal use of the available parking spaces is in the interests of urban planners as well 
as carpark operators and customers. 
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The power of geospatial data often forms the basis for planning decisions in smart cities. 
Understanding the relevant geospatial correlations is essential to optimizing mobility 
processes. Geo-analytics allow us to identify spatiotemporal patterns that influence carpark 
occupancy. It is also crucial to consider geospatial factors such as nearby food services or 
shopping facilities that show particular patterns (Cui et al., 2018; Rolwes & Böhm, 2021; 
Roussel et al., 2022). Geospatial factors trigger carpark occupancy at different times. 
Therefore, an understanding of this is elementary for the management of urban areas in the 
future. 

This paper expands on and extends the work of Rolwes & Böhm (2021), which focuses on an 
initial approach to identifying geospatial key factors for urban planning via a metric of 
geospatial impact. We refer to the work of Rolwes & Böhm as a model for identifying 
geospatial key factors (MIGKF). This metric describes the impact of geospatial factors; it 
combines a reachability analysis (see Figure 1) with opening hours and an attractiveness weight 
of the POI. Statistical results show spatiotemporal relationships between off-street parking 
and geospatial factors. In addition, the statistical procedures applied allow the model’s quality 
to be assessed. Reliable results increase urban planners’ trust in the geospatial relationships. 
The reliability of the model’s results therefore depends significantly on the fulfilment of 
statistical model prerequisites.  

 

Figure 1: Location-based hotspot and reachability analysis to identify geospatial factors in MIGKF. 

We further develop the geo-analytics model to increase the reliability of the results, 
investigating stabilizing corrections to the existing model based on a comprehensive 
examination of the model’s assumptions. The research question we address is: 

In order to identify geospatial key factors in smart cities, how can we stabilize and optimize 
the existing metric of the geospatial impact in an MIGKF regarding its statistical 
characteristics? 

Smart geospatial data form the basis of future cities (Coors, 2015). By optimizing the statistical 
parts of geo-analytics, urban planners can gain deeper insights into geospatial key factors and 
generate benefits for sustainable planning. We use existing real-world empirical data on parking 
occupancy to examine the research question and examine MIGKF in more detail. This 
enhanced approach we refer to as Enhanced MIGKF. 
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2 Related work and challenges 

There is ample research on identifying spatiotemporal relationships in smart mobility for urban 
planning. Common areas of application are e-mobility (Wagner et al., 2013; Wagner et al., 
2014), car sharing (Klemmer et al., 2016; Willing et al., 2017), bike sharing (Pelechrinis et al., 
2017; Reiss & Bogenberger, 2016; Roussel et al., 2022; Schimohr & Scheiner, 2021; Wang et 
al., 2021; Wang & Chen, 2020) and parking (Rolwes & Böhm, 2021). Previous studies utilize 
(historical) POI data, categorize them into geospatial factors, and analyse the spatiotemporal 
relationships in the use cases in question. These analyses often use conventional statistical 
models or machine learning algorithms. 

Our further development of these earlier studies concerns the optimization of the (geospatial) 
investigations using a structured metric. By including the opening hours of the POI in its 
metric, the MIGKF models actual usage patterns in parking behaviour over the day more 
precisely (Rolwes & Böhm, 2021). In addition, the weighting of the POI in according to the 
use case reflects the application context's actual characteristics. Carpark data from several years 
form the basis for developing a metric, which allows well-founded statements on typical 
parking behaviour. In contrast, other studies look at periods of a few weeks or months, in 
which deviations from average parking behaviour carry substantial weight. 

Considering this background, the extensive dataset of the present study offers great potential 
for in-depth findings to optimize the MIGKF. As a basis for stabilizing and optimizing the 
statistical analysis procedures of multiple regression analysis, we consider the work of Field 
(2017) and Dattalo (2013). In addition, both Field and Dattalo explain the essential model 
parameters and strategies for testing model assumptions, and highlight further test and 
correction possibilities to fulfil model requirements.  

In summary, these approaches offer a variety of procedures for testing and stabilizing statistical 
models. Regarding Enhanced MIGKF, we examine the possibility of changing target variables 
to extend the space-time analysis in the context of the parking behaviour of specific user 
groups, and focus on optimizing the analysis of geospatial impact factors to increase trust in 
spatiotemporal relationships. 

3 Data analyses and stages of model enhancement  

Generally, we apply model exploration techniques on the MIGKF as a base model. By 
deepening our understanding of underlying model parameters, we identify areas for 
enhancement and apply four stages of model enhancement (see Figure 2). The results lead to 
an optimized and stabilized Enhanced MIGKF with improved model performance. 
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Figure 2: Model-Enhancement Stages for improved model performance in Enhanced MIGKF 

3.1 Introduction to the use case  

As a starting point, we analyse the existing MIGKF with the aim of gaining a deeper insight 
into the model. Consequently, the subsequent analyses use data consistent with previous 
research. Our use case data comprise POI and parking data originating from the city of Mainz, 
Germany. For this research, the parking occupancy rate of the Kronberger Hof carpark forms 
a representative example. Its central location close to major shopping streets enables us to 
analyse the influence of a wide range of nearby POIs. The variety of the POIs provides 
abundant opportunities for analyses that include numerous possible geospatial key factors on 
parking behaviour. 

The approach allows us to identify distinctive patterns in parking behaviour, in line with the 
findings of Rolwes & Böhm (2021) in MIGKF. At the same time, we identify areas of possible 
improvement concerning causality and model power, as well as the quality of results. For 
example, implicit knowledge of the city led us to expect the model to reveal a higher percentage 
carpark occupancy during typically busy times, reflected in higher R² values. However, as seen 
for weekday afternoons, for example, this is not always the case (see Table 1). Complementary 
analyses of typical usage patterns on Google Places confirm this observation. In addition, some 
findings exhibit unexpected POI patterns. For instance, supplementary analyses imply that 
food services are an essential geospatial key factor on Saturday evenings for Kronberger Hof 
carpark. Under the current model, however, these indicators display low scores.  
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Table 1: User Existing standardized regression results of slot-wise multiple linear regression analysis for 

Kronberger Hof carpark in MIGKF (Rolwes & Böhm, 2021). 

 

time of  
day 

services 
and 

speciality 
retail 

grocery health 
food 

services 
shopping 

adjusted  
R-squared 

W
e
e
k
d
a
y
 

00:00 - 07:00 0.114 *** 0.000  0.000  0.000  -0.071  0.005 

07:00 - 12:00 0.255 *** 0.034  0.126  0.244 *** 0.171 * 0.639 

12:00 - 18:00 -0.008  0.063  0.240 *** 0.168 *** -0.133 *** 0.058 

18:00 - 00:00 -0.009  0.020  0.049  0.405 *** 0.132  0.335 

S
a
t
u
r
d
a
y
 00:00 - 07:00 0.000  0.000  0.000  -0.109  0.114  0.003 

07:00 - 12:00 0.000  -0.195 *** 0.004  0.747 *** 0.227 * 0.658 

12:00 - 18:00 0.000  -1.478  0.343  0.033  1.616 * 0.141 

18:00 - 00:00 0.008  0.237  0.000  0.155  -0.021  0.005 

S
u
n
d
a
y
 

00:00 - 07:00 0.000  0.000  0.028  -0.044 * 0.000  0.002 

07:00 - 12:00 -0.059  0.177  -0.038  0.217 *** -0.051  0.036 

12:00 - 18:00 0.057  0.059  0.028  -0.145 *** -0.241  0.015 

18:00 - 00:00 0.158  -0.040  0.049  0.207 *** 0.004  0.090 

 Significance level at 0.001 (***), 0.01 (**), 0.05 (*), n = 43,815 observations 

We find that the MIGKF requires further investigation. The concerns lie in the limited 
plausibility of some research outcomes and the lack of model performance in some time slots. 
In Model-Enhancement Stage No. 1, we call for a detailed assessment of underlying model 
parameters in order to improve these issues. 

3.2  Exploration of statistical characteristics for model choice 

By applying model exploration techniques (Dattalo, 2013; Field, 2017), in Model-
Enhancement Stage No. 1 we aim for an improved understanding of MIGKF. With this in 
mind, we utilize statistical tests alongside visual analysis to find causes for the weaknesses in 
model performance and plausibility outlined above. The model’s accuracy relies on the 
assumption that specific model characteristics apply. For example, in adopting a linear 
relationship between geospatial key factors and parking behaviour, we assume a linear 
regression model as a basis, as found in other use cases (Klemmer et al., 2016; Willing et al., 
2017). A careful analysis of the model’s traits promises a deepened understanding of the model 
alongside more reliable results.  

Before focusing on questions of model fit and reliability, we first validate the overall model 
choice by considering basic model properties. Our analysis uses parking occupancy and POI 
categories as continuous variables. Since a linear regression model may be applicable for 
continuous variables, essential characteristics justify the choice of base model as a starting 
point. To further validate the choice of a linear model, we investigate characteristics of 
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additivity and linearity. Accordingly, we assess P-P plots supplemented by residual histograms. 
For named analyses, we consider each regression model for each time slot in order to obtain 
a general picture of the characteristic in question. In our particular case study, eight out of 
twelve time slots exhibited minor weaknesses in the characteristics being examined, which 
manifested as discrete deviations from symmetrical patterns. Furthermore, we noted several 
significant deviations, far outside the mean, indicating outlier influence as a possible cause. 
Importantly, we did not observe non-linear patterns, which would have indicated the need for 
a non-linear base model. As part of an analysis of model fit, we address outliers further in the 
next section (3.3). 

Dattalo (2013) recommends evaluating autocorrelation based on statistical assumption. This 
requires the time-series data to be close to random. In our case study, the Durbin-Watson test 
statistic reveals high autocorrelation, with scores below 1 in every time slot and indicators 
displaying values between .112 and .694. Generally, autocorrelation is typical for time-series 
data. Re-occurring temporal patterns inherent in parking data result in a shifted offset in 
correlation as a measure of time. Distinctive temporal patterns become apparent over periods 
of a day or a week. Our analyses show that carparks have generally higher occupancy during 
the day than at night. However, each discrete occupancy value displays little change from one 
hourly score to another. This behaviour is part of the data, as observed in similar use 
cases (Klemmer et al., 2016; Schimohr & Scheiner, 2021). As a consequence of autocorrelation, 
temporal dependency can cause elevated alpha errors, hindering an accurate interpretation of 
the model. Autocorrelation remains a limiting factor, since it cannot be eliminated (Dattalo, 
2013). We explore appropriate correcting measures for elevated alpha errors in Section 3.3. 

Although at the end of Model-Enhancement Stage No. 1 linear regression remains a suitable 
model, we should consider limiting factors like elevated alpha errors and outlier influence when 
focusing on model fit. 

3.3 Outlier handling: investigation of factors limiting model performance 

Building on the factors hindering model performance discovered in the previous stage, in 
Model-Enhancement Stage No. 2 we focus on outlier handling. Specifically, we investigate 
outliers for their characteristics, causes and possible solutions, in order to identify areas of 
overall model optimization. With the objective of increased reliability of results paired with an 
improved model fit, we further develop the Enhanced MIGKF. To quantify the impact on the 
model caused by outliers, we focus on two model characteristics: normality in residuals and 
heteroscedasticity. 

Ideally, residuals follow a normal distribution. Accordingly, most of the observations account 
for low residuals, indicating that the model generally matches the data well. However, visual 
examination of histograms recording residual distribution shows mixed results. Half of the 
time slots exhibit skewed distributions, with outliers appearing as distinctive deviations. In 
addition, we consider characteristic values of the residual distribution. These indicate how far 
the distribution skews from average, which may correspondingly indicate the scope of outlier 
impact. Six time slots show weaknesses in this instance, with kurtosis values exceeding ±1. 
Regarding skew, two time slots display values exceeding ±1 (Field, 2017). 
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Greene (1993) and Verbeek (2017) confirm extreme values as common causes of 
heteroscedasticity. We detect an increase in variance for predicted values rising in three out of 
twelve time slots. Residuals demonstrate a fanning shape, resulting in fluctuating standard 
deviations, thus limiting the degree of reliability we achieve. We observe standard deviations 
of selected observations: up to six standard deviations falling outside the norm are paired with 
extremely low or high residuals, indicating corresponding atypical observations. However, all 
time slots show outlier influence. As a result, the presence of outliers in large numbers limits 
model reliability, because including atypical observations hinders the precise modelling of 
geospatial factors.  

To distinguish different causes for atypical occupancy rates, we identify and group outliers 
according to possible causes, by considering standardized deleted residuals (SDR). For this 
purpose, we compare the SDR values of more than 3 with supplementary data provided by 
the carpark owner (Field, 2017; Huber, 2004; Velleman & Welsch, 1981). In the process, we 
match most outliers to dates of on-site construction, events and public holidays as possible 
external factors causing atypical parking behaviour. Consequently, these values do not closely 
represent the data we intend to examine, and temporal POI characteristics cannot adequately 
model parking behaviour for these timeframes. In such cases, Field (2017) recommends the 
removal of outliers. 

Thus, an updated model excludes outliers for enhanced model composition. We recognize that 
excluding selected values bears the risk of introducing bias. Likewise, we recognize that 
dropping observations results in a reduced sample size. However, since each time slot 
comprises at least 1,000 data rows, we can exclude a large number of outliers without adversely 
affecting the minimum sample size (Harrell et al., 1996). We apply an iterative process to 
eliminate the outliers based on their corresponding SDR values. This case-by-case 
consideration of observations excludes only those values that risk distorting results, a process 
which allows for a maximized sample size while including a wide range of observations. 
However, we acknowledge that this leads to many minor outliers remaining in the model. 

After performing the elimination processes in Model-Enhancement Stage No. 2, we note 
enhanced model parameters overall. Values for skew and kurtosis now show patterns closer 
to normality, and four additional time slots display a normal distribution. Most importantly, 
homoscedasticity improves massively. Before eliminating outliers, three slots showed 
homoscedasticity. However, this statistic jumps to ten, exhibiting homogeneous patterns in 
seven additional time slots. Finally, linearity also shows improvements in seven slots. Overall, 
Akaike information criterion (AIC) scores become lower in every time slot, while R² scores 
improve in eight. These metrics indicate that the updated model is able to describe a higher 
percentage of parking behaviour. The model shows improved reliability and goodness of fit. 

3.4 Alpha errors: effects of correcting measures on significance levels 

After removing outliers, some unexpected results persist. For example, on weekday 
nights health appears as a significant geospatial factor (b = .119; p = .012) now. However, as 
most healthcare POIs close in the late afternoon, we would expect a lower significance. We 
attribute this lack of model plausibility to elevated risks of alpha errors, as described in the 
literature (Dattalo, 2013; Field, 2017). Alpha errors cause false identification of geospatial key 
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factors as significant, provoking non-plausible results. Consequently, as part of Model-
Enhancement Stage No. 3, we consider the application of alpha error correction to validate 
results and improve overall model reliability. 

We acknowledge that an adjustment of alpha levels may decrease statistical power (Moran, 
2003; Nakagawa, 2004). In addition, we note that the necessity of alpha error correction 
measures and their actual implementation is the subject of controversy (Armstrong, 2014; 
Cabin & Mitchell, 2000; Perneger, 1998). However, we justify correcting measures because of 
the high autocorrelation present in the use case. Applying such measures leads to increased 
reliability of relevant patterns: afterwards, for example, health shows lower significance on 
weekday nights (b = .119; p = .048). Overall, 16 different influences remain significant (p < 
.05), with 12 time slots exhibiting strong significance. Thus, in Model-Enhancement Stage No. 
3, we preserve major patterns of the previous MIGKF while improving plausibility. 

3.5 Exploration of alternatives in model composition  

Rolwes & Böhm (2021) state that multicollinearity in independent variables further limits the 
reliability of results in the MIGKF. In their use case, the limited separation of geospatial impact 
factors blurs the information expressed by each variable. As a result, geospatial impact factors 
express a reduced explanatory power individually (Field, 2017). In a further step in creating 
the Enhanced-MIGKF, we investigate this remaining issue. We differentiate measures to 
reduce multicollinearity as Model-Enhancement Stages No. 4a to 4c. As a basis for 
enhancement measures, we propose a separate evaluation of the detailed characteristics of each 
geospatial impact in order to assess the extent of multicollinearity present in the model. We 
examine variance inflation factors (VIF) and pairwise correlations for an overview. Results 
confirm high multicollinearity in ten out of twelve time slots, based on a cut-off for VIF values 
set at ten (Bowerman & O'Connell, 1990; Ziegel & Myers, 1991). We suspect the causes of 
overlapping POI information are rooted in geospatial and temporal correlation. Regarding 
spatiotemporal correlations, similarities in opening hours have a greater influence in the 
morning and decrease later in the day. Thus, nuances in temporal patterns separate influences 
of different categories: we observe lower multicollinearity for variables displaying distinctive 
opening hours. For example, food services are open until late at night, whereas health POIs such 
as doctors’ surgeries close much earlier. These stand out due to their distinctive temporal 
patterns.  

The geospatial patterns of the categories modelled also share similarities. For instance, retail 
stores and service places cluster around main roads and major shopping streets, thus providing 
many POIs within similar walking distances. As spatial interdependence constitutes a 
fundamental characteristic of geo-data in cities, we can hardly avoid multicollinearity. Bendler 
& Ratku (2014) note a high degree of linear interdependence for a similar use case. Ultimately, 
model characteristics inhibit the complete elimination of multicollinearity, while measures 
minimizing their effect remain viable. With this in mind, we proceed to Model-Enhancement 
Stages 4a to 4c. 

Beginning with Model-Enhancement Stage No. 4a, using 5 criteria we explore the inclusion of 
a supplementary geospatial key factor in the MIGKF and its potential to improve the model. 
For this purpose, we add all available geospatial factors into the MIGKF and examine the 
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results. A broader model that includes several additional geospatial factors demonstrates rising 
VIF scores combined with worse model characteristics overall. Although additional POI 
information accounts for negligible further improvement in model fit, the investigation of all 
POI data deepens our understanding of variable characteristics. Based on this, we ask which 
criteria to apply when selecting suitable supplementary variables. Referencing the MIGKF, 
Rolwes & Böhm (2021) choose POI categories based on how representative the underlying 
opening hours are. They prioritize well-recorded categories with a high percentage of POIs 
for which the opening hours are known. Accordingly, we prefer to treat the geospatial impacts 
of geospatial factors for which we have plausible or known opening hours. In this manner, 
influence scores represent actual category characteristics more accurately. 

We consider both the levels of completeness and the plausibility of temporal patterns when 
evaluating the addition of geospatial impacts. To further prioritize plausibility, for each 
geospatial factor we factor in the types and the number of POIs that are within walking 
distance. Finally, we minimize the correlation between the categories.  

Overall, we observe that geospatial factors fit the proposed criteria to varying extents. 
Examples of good fit include POIs in the category food services. Their distinctive opening hours 
make for a less correlated category. In addition, the actual POIs surrounding the carpark 
comprise many restaurants, cafés and bars. We conclude that food services is a distinctive variable 
with uniform POI characteristics. 

After careful consideration, we chose public sector as an additional variable to test for in Stage 
No. 4a. This category has high potential usage by visitors and employees of the many 
government agencies nearby. Additionally, many POIs for the public sector have distinctive 
opening hours, being closed to the public in the afternoon. Compared to other categories’ 
opening hours, they display lower VIF scores overall. We test the perceived importance of the 
variable public sector by including the relevant POIs in the model. 

The five geospatial criteria in the MIGKF listed above provide the basis for evaluating the 
impact of other geospatial impacts. Findings, however, fail to show any improvement in model 
quality. We confirm this by comparing the AIC of this model to that of the previous version 
(i.e. the version constructed in Section 3.4). Five time slots show no change in AIC, while four 
worsen. Just three slots indicate improved AIC values, and only one displays an improved R² 
score. 

To sum up the results of Model-Enhancement Stage No. 4a, we conclude that an increase in 
variables fails to improve the model's explanatory power, despite careful selection processes. 

In Model-Enhancement Stage No. 4b, we evaluate the potential benefits of reducing the 
number of geospatial factors. We combine variables as joint geospatial key factors to reduce 
multicollinearity (Field, 2017; Frost, 2020). By merging categories manually, we factor in the 
five criteria discussed above. Moreover, combining categories that share similarities in 
temporal and geospatial patterns preserves interpretability. In this case, we merge shopping and 
services and speciality retail. Our choice is justified because of the blurred category border (some 
shops may also offer speciality retail). As a result, we note a substantial overlap of the geospatial 
patterns of the two categories, which show a similar clustering along the main shopping streets. 
The POIs share further similarities in terms of opening hours and potential frequency of use. 
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After including shopping and services as a single factor in place of its two components separately, 
the combined geospatial factor displays patterns common to both initial factors. We notice an 
overall improvement in VIF values, leaving just eight slots with suboptimal correlations. 

Before combining categories, results show just one time slot with VIF values below ten. By 
combining categories, we achieve a more concise representation of model variables. At the 
same time, however, we observe worse AIC scores. To sum up the results of Model-
Enhancement Stage No. 4b: the combination of geospatial factors represents a considerable 
improvement in model reliability but at the cost of a weaker model fit. 

Building on the changes to the model described above, we explore a minimal model 
configuration as the final stage (Model-Enhancement Stage No. 4c), which involves a final 
selection process in which we gauge the extent of the model performance sustained while 
minimizing correlation. Field (2017) notes that all variables demonstrate high correlations in 
the face of high multicollinearity. Excluding one variable may therefore lower multicollinearity, 
but this rarely rules it out completely (Frost, 2020; Zellner et al., 2001). Nonetheless, we test 
excluding one variable, leaving a selection of the most distinctive POI categories. In doing this, 
we were aiming for lower VIF scores while maintaining model performance and decided to 
exclude grocery as a category. Earlier analyses of parking according to user groups revealed that 
customers are more likely to use supermarket and other store carparks than municipal carparks.  

If a carpark had only a small number of POIs in its immediate vicinity, we decided to categorize 
the carpark itself as a secondary destination for customers (i.e., we assumed that customers 
must be using the facility to access other POIs further away). 

After excluding just one geospatial factor, half of the time slots exhibit improved AIC and R² 
values, while the other half display worse results. Meanwhile, VIF scores sink lower. Half of 
the time slots improve significantly, finally showing acceptable VIF scores and thus lower 
multicollinearity. At the same time, other model parameters for the most part remain constant. 
We notice that the slimmer model used in Stage 4c, which uses fewer variables, shows an 
improved interpretation of the underlying effects. Lower correlation scores lead to a more 
reliable and precise interpretation of the use case. On the downside, we observe a loss in 
explanatory power when excluding variables beyond the five mentioned in MIGKF. 

In summary, to limit multicollinearity we split the exploration of variations in model 
composition into three enhancement stages. First, Model-Enhancement Stage No. 4a 
examines the inclusion of a supplementary geospatial impact. Next, in Stage No. 4b, we 
combine geospatial factors which share main characteristics. Finally, we reach a minimal model 
configuration in Stage No. 4c. Inaccuracies in our data for opening hours lead to a loss in 
precision, however. Other limiting factors include the similarities mentioned above in temporal 
and geospatial patterns. Despite these limitations, we have been able to optimize Enhanced 
MIGKF and to attribute the information derived from the model to POI categories more 
clearly. 
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4 Results and discussion  

In conclusion, we stabilize the model by exploring the different Model-Enhancement Stages. 
Identifying and excluding outliers based on their characteristics and significance for the use 
case at hand leads to improved goodness of fit. Additionally, improved residual characteristics 
indicate a more reliable model. To further enhance reliability, we apply alpha error correction. 
Lastly, combining geospatial factors minimizes multicollinearity. As a result, we are able to 
model the geospatial impact more clearly, reducing blur. 

Here, we apply three criteria for different model variations to limit multicollinearity. We 
consider the completeness of information regarding opening hours, the composition of POIs 
in this category, and correlations. Variants for which fewer variables were included showed 
lower VIF. However, as variations in model composition reach varying degrees in the 
goodness of fit, there is no ultimate or best model. We describe the resulting trade-off observed 
as follows.  

In reduced models, non-optimal correlation scores remain. Further, we observe lower model 
fit according to R² and AIC measures. Here, issues arise when a lower number of variables 
engenders misleading results, possibly implying connections not valid for a more generalized 
context. This drawback hinders a general statement concerning the underlying relationships. 
In contrast, we observe high multicollinearity in a broader model. As seen in Section 3.5, 
achieving the best choice of geospatial factors is critical in under- and overfitting. An enhanced 
(i.e. minimal) choice increases the number of significant time slots from 16 to 18 (p < .05), 
and the number of time slots with high significance increases from 12 to 15 (p < .001). In 
addition, we observe improved R² values in all but two slots, indicating improved model 
performance. Finally, we characterize the enhanced model for identifying geospatial key factors 
(see Table 2). 

Table 2 clearly shows that the geospatial factor food services indicates the highest positive effect 
on parking occupancy in the middle of the day on Saturdays (b = .767; p < .001). Consequently, 
this category represents a geospatial key factor. We infer that restaurants and other destinations 
centred on food services account for a significant portion of customers on Saturdays. For 
example, on weekday nights R² values change from .335 to .449. Other changes range from 
.658 to .759 around midday on Saturdays and from .141 to .298 on Saturday afternoons. 
Additionally, before enhancing measures are applied, health displays a single significant time 
slot on weekday afternoons (see Table 1).  
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Table 1: Standardized regression results of slot-wise multiple linear regression analysis of the Kronberger 

Hof carpark in Enhanced MIGKF. 

 

time of  
day 

shopping  
and  

services 

food 

services 
health 

adjusted  
R-squared 

W
e
e
k
d
a
y
 

00:00 - 07:00 0.093  -0.044  0.000  0.002 

07:00 - 12:00 0.500 *** 0.267 *** 0.167 *** 0.814 

12:00 - 18:00 -0.165 *** 0.253 *** 0.338 *** 0.111 

18:00 - 00:00 0.146 ** 0.484 *** 0.061  0.449 

S
a
t
u
r
d
a
y
 00:00 - 07:00 0.000  -0.002  0.000  0.001 

07:00 - 12:00 0.250 *** 0.767 *** -0.166 *** 0.759 

12:00 - 18:00 0.575 *** 0.002  -0.028  0.298 

18:00 - 00:00 -0.522  0.411 *** 0.523  0.181 

S
u
n
d
a
y
 

00:00 - 07:00 0.000  -0.054  0.031  0.004 

07:00 - 12:00 0.165  0.064  -0.008  0.035 

12:00 - 18:00 -0.338 * -0.182 *** 0.346 * 0.037 

18:00 - 00:00 0.172 *** 0.186 *** 0.065  0.103 

Significance level at 0.001 (***), 0.01 (**), 0.05 (*), n = 34,846 
observations 

After enhancement, four significant time slots become apparent (p < .05). However, we 
acknowledge that non-plausible results persist to some extent, notably two significant time 
slots for health POIs on Sundays when none of them are open. We see this as an indication of 
spurious correlations. In addition, some patterns still pair with low R² values, although the 
remaining significant time slots display plausible patterns overall. For example, the highest 
coefficient for food services appears on Saturday noon (b = .767; p < .001), pairing with an R² 
value of .759. Other plausible examples include Saturday evenings (b = .411; p < .001). 

In conclusion, shopping and services, health and food services greatly influence occupancy rates for 
this carpark. Applying the statistical adaptations that we have described, our Enhanced 
MIGKF displays these patterns more clearly and reliably: reliable geospatial key factors 
influencing parking behaviour emerge using Enhanced MIGKF. We recommend the approach 
for application scenarios with a linear base model and comparable model composition. The 
results can be used by urban planners for better and more reliable identification of geospatial 
relationships.  

5 Conclusion and future work 

Sustainable resource management remains an essential issue in growing cities. Resource 
management and the lack of sustainably designed areas present urban planners with challenges 
in the design of transport space, including parking. Urban planners and domain experts 



Rolwes et al. 

44 
 

therefore seek to understand geospatial key factors determining parking behaviour. For 
improved decision-making in carpark management, we propose an enhanced model for the 
identification of geospatial key factors which includes adjusted spatial core data. We stabilize 
existing approaches by applying different correcting measures and merging distinctive 
geospatial key factors. Overall, the Enhanced MIGKF offers tools to improve the reliability 
of geo-analytics and the utilization of underlying geodata. Our approach improves knowledge 
of urban geospatial key factors that affect parking behaviour. Using our approach, urban 
planners can better understand spatiotemporal relationships and mobility dynamics, i.e. why a 
carpark has high or low occupancy at different times. Our analysis can add value to decisions 
around innercity changes, as in location optimization or site planning. Decisions such as where 
to build new carparks or which can be closed can be supported in part by information on the 
spatial environment. Taking into consideration the opening hours of customers’ possible 
destinations remains an advantage in optimized geo-analytics models, but the model is not 
limited to carparks: it could be applied, for example, to bike-sharing services or charging 
stations for electric vehicles. 

The model versions with differing compositions achieve improvement in multicollinearity and 
goodness of fit, if to different degrees. We therefore suggest adapting geospatial key factors 
concerning data completeness to improve the model’s temporal patterns. Building on this, 
future research might conclude that other combinations of POI categories or merged POI 
categories create a more fitting model. Integrating statistical approaches benefits a wide range 
of use cases. To this end, we recommend ongoing dialogue with experts in the field. In general, 
we emphasize the need for geo-visualization to support urban planning. Communicating 
results with visualizations increases their accessibility to experts, thereby facilitating their 
practical application based on a deepened and enhanced understanding of geospatial key 
factors. Furthermore, we recommend an exploratory approach by offering domain experts the 
possibility of changing input parameters, for example testing a different combination of 
geospatial factors or changing model variables. As geo-analytics become more accessible, trust 
in practical applications resulting from its findings will increase, while attention to feedback 
from experts will allow further research and development. Overall, our results contribute 
considerably to an improved decision-making process in smart city design and resource 
management. 
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