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Abstract 

Gaining insights from trajectory datasets is a challenging task that requires suitable visual 

data representations. There is a considerable gap between the state-of-the-art 

cartographic techniques presented in the literature and currently available spatial data 

science toolboxes. This review paper presents the current state of geospatial visualization 

tools for trajectory data, focusing on the Python and Jupyter notebooks ecosystem. The 

shortcomings identified provide pointers for further scientific software development, as well 

as a reference for data scientists in choosing the best-fitting tool for a specific job. 
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1 Introduction  

GIScience sometimes seems stuck in a continuous search for more theory to ‘justify its science 
credentials’ (Gahegan, 2020). By comparison, scientific software development and data 
provisioning ‘have historically been undervalued’ (Rey, 2021). As a result, many analysis and 
visualization approaches developed over the years are not accessible through readily available 
(proprietary, or free and open-source) software. Consequently, the potential impact of this 
research on the wider data science community in academia and industry is limited.  

Movement data is used in many data science domains, from health to logistics and beyond. 
However, movement data is rarely collected in lab settings. Many datasets, such as floating car 
data, call detail records, as well as sports, or ship- and plane-tracking data, are created for 
purposes other than the scientific analyses that they are later used for. Therefore, data quality 
– as in fitness for use in analyses – is rarely ideal. Understanding data quality is essential for 
choosing suitable analysis methods and interpreting their results. However, gaining a proper 
understanding of a dataset's potential and limitations is a time-consuming task. Graphical data 
exploration tools in particular are needed to support analysts (Graser & Dragaschnig, 2020). 

Multiple recent survey papers provide overviews of visualization techniques for movement 
data (Chen et al., 2015; Andrienko et al., 2017; He et al., 2019). These visualization techniques 
are not limited to spatial visualizations. For example, He et al. (2019) present radial icon 
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visualization, which aims to visualize multivariable attributes simultaneously. However, for the 
purpose of this paper, we will focus on spatial visualizations of trajectories.  

To perform a comprehensive data quality assessment, it is important to look at the raw data 
and not just the processed and aggregated derivatives, which may be influenced by the 
processing and aggregation steps (Graser, 2021). This paper therefore focuses on visualizations 
of individual raw trajectories rather than on the numerous different aggregated visualizations.  

Many approaches presented in the literature (Chen et al., 2015; Andrienko et al., 2017; He et 
al., 2019) require access to dedicated visual analytics software, fully-fledged GIS software and 
potential spatiotemporal extensions, or (often unpublished) research prototypes. However, 
these tools are hard to integrate into everyday data scientists' workflows, which are more likely 
to use general-purpose business intelligence (BI) tools, integrated development environments 
(IDEs), or notebook environments such as Jupyter or RStudio. In this paper, we specifically 
review the current state of the art in Python libraries, since Python is the scripting language of 
choice for many scientists and data analysts, in geographic data science in particular and in data 
science in general. The paper aims to provide readers (with or without a GIScience or 
cartography background) with the necessary information to make informed choices when 
faced with the current fragmented spatial data visualization ecosystem.  

The remainder of this paper is structured as follows: Section 2 describes the visual variables 
that are commonly used to visualize trajectory information. Section 3 analyses the current state 
of trajectory analysis and spatial visualization libraries that are used to provide trajectory 
visualizations. Finally, Section 4 draws conclusions and aims to put them in a broader context.  

2 Spatial trajectory visualization 

This section provides a brief overview of visual variables that can be used to visualize trajectory 
data. While visual variables are a basic topic in cartography and visual/exploratory data science 
curricula, it is worth revisiting these theoretical fundamentals briefly before reviewing the 
implementations that are actually available.  

To understand trajectories, analysts look at spatial, temporal and potential additional thematic 
dimensions. In addition to the pure location or geographic context of the movement, key 
information of interest relates to direction and speed of movement. This information has to 
be encoded using visual variables, such as shape, size, colour (hue, value, saturation), patterns 
or orientation.  

Raw movement data usually comes in the form of discrete timestamped location records for 
which reporting intervals (regular or irregular) can vary widely, from milliseconds to years. 
Most unspecialized spatial visualization tools therefore render raw movement data as points. 
Depending on the reporting interval, it can be difficult to determine how these points are 
connected – that is, which points are consecutive locations that belong to the same moving 
object. To make the data easier to understand, movement data visualizations usually transform 
the raw data from points into lines between consecutive points and render those.  
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Lines alone are insufficient to communicate movement direction. Common approaches to 
visualize the movement direction therefore include: 

1. Markers at start and end locations, which may be colour-coded, with one colour signifying 
the trajectory start or origin and the other signifying the end or destination. 

2. Arrow-shaped markers, which may be placed at the end or along the line to communicate 
directionality. 

3. Colour or size gradients (tapering), which can be applied to point markers or line segments. 
For example, older positions (closer to the start) may be symbolized using less 
saturated colours, smaller markers or thinner lines.  

4. Animations, which are another intuitive way to visualize directionality. Animation 
options range from a single animated marker that moves along the trajectory path 
with or without leaving a visible trace, to animated line patterns.  

5. 3D. When time is used as the third dimension in three-dimensional visualizations, 
such as space-time cubes, directionality is given by the incline of the line.  

The visual variables that can be used to communicate speed overlap with those used for 
direction. This can lead to conflicts. For example, if line colour is already used to show 
direction, another variable needs to be found to display speed on the same map. Common 
approaches to visualize speed include: 

1. Colour gradients, especially traffic-light colour gradients. These are an intuitive and 
therefore popular choice, even though they are less than ideal for people with colour 
blindness.  

2. (Arrow) marker-based line decorations using different spacing between arrow heads or 
varying line width. However, both line width and arrow spacing are potentially 
ambiguous and less intuitive. Is a wide line faster than a narrow one? Or are lines with 
densely spaced arrow markers faster than those with larger gaps?  

3. Density maps. If trajectories are sampled with regular time intervals, density or heat 
maps can be used to communicate speed, since trajectory point density will be higher 
in regions of slower movement. However, when sampling intervals are irregular, heat 
maps can be misleading and therefore cannot be recommended without reservation. 

3 Survey of trajectory visualization tools  

This section presents a survey of Python trajectory analysis libraries that provide trajectory 
visualizations. Table 1 lists these trajectory analysis libraries and the visualization libraries they 
depend on. The three most popular libraries (according to GitHub’s star count) are: 
MovingPandas, scikit-mobility and TransBigData. While Traja and Trackintel rely on 
Matplotlib and therefore only support static visualizations, all other libraries provide interactive 
trajectory maps using one of three options: Folium, GeoViews or Kepler.gl.  
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Table 1: Overview of open-source Python movement analysis libraries and associated visualization 

libraries, ordered chronologically from the earliest to the latest GitHub publication date. 

Library name References Source code repository  
(number of stars, July 2022) 

Visualization 
library 

PyMove Oliveira (2019) https://github.com/InsightLab/PyMove 
(65 stars)  

Folium and 
Matplotlib 

MovingPandas  Graser (2019) https://github.com/anitagraser/moving
pandas (834 stars) 

GeoViews and 
Matplotlib 

Traja Shenk et al. 
(2021) 

https://github.com/traja-team/traja 
(60 stars) 

Matplotlib 

Trackintel  https://github.com/mie-lab/trackintel 
(79 stars) 

Matplotlib 

scikit-
mobility  

Pappalardo et 
al. (2019) 

https://github.com/scikit-
mobility/scikit-mobility (522 stars) 

Folium 

PTRAIL Haidri et al. 
(2021) 

https://github.com/YakshHaranwala/PTR
AIL (10 stars) 

Folium 

TransBigData Yu & Yuan (2022) https://github.com/ni1o1/transbigdata 
(182 stars) 

Kepler.gl and 
Matplotlib 

3.1 Trajectory analysis libraries 

The following figures show plots created by the visualization functions of the trajectory 
analysis libraries in Table 1. PyMove and PTRAIL are not included due to errors when calling 
the visualization functions. (These errors are documented in the complete Jupyter notebook 
provided on Zenodo.1) The data used in this notebook is the open science ‘Heterogeneous 
Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance’ (Ray et al., 
2018). A subset of this dataset (10,000 rows) was loaded as a Pandas DataFrame, which is used 
as input in all subsequent examples. As a first step, we analyse the decisions made by the 
individual library development teams and the resulting visualizations. In the second step, we 
compare these results.  

MovingPandas provides static plots using Matplotlib, and interactive maps using HoloViews 
GeoViews (based on Bokeh). The default interactive plot of a set of trajectories (represented 
by a TrajectoryCollection object) draws each trajectory in a different colour. As shown in 
Figure 1, background map tiles, as well as markers for trajectory start and end locations, can 
be readily added and customized. Pop-ups attached to lines and point markers provide 
additional information, such as the object ID source mmsi.  

Instead of using the colour to indicate object ID, other DataFrame column names (or the 
keyword ‘speed’) can be specified to colour the trajectory segments, as shown in Figure 2, 
where colour indicates the speed of movement. 

                                                           
1 https://doi.org/10.5281/zenodo.7185322  

https://github.com/InsightLab/PyMove
https://github.com/anitagraser/movingpandas
https://github.com/anitagraser/movingpandas
https://github.com/traja-team/traja
https://github.com/mie-lab/trackintel
https://github.com/scikit-mobility/scikit-mobility
https://github.com/scikit-mobility/scikit-mobility
https://github.com/YakshHaranwala/PTRAIL
https://github.com/YakshHaranwala/PTRAIL
https://github.com/ni1o1/transbigdata
https://doi.org/10.5281/zenodo.7185322
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Figure 1: MovingPandas / GeoViews plot of a TrajectoryCollection, enhanced with white markers at 

trajectory start locations and black markers at end locations, superimposed on OpenStreetMap tiles. As 

a pre-processing step, trajectories are generalized to improve rendering speed. On mouse over, the 

interactive plot shows attribute values which can be customized using the hover_cols keyword. 
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Figure 2: MovingPandas / GeoViews plot of a TrajectoryCollection where line segments are coloured by 

movement speed (values in m/s). If there is no speed column in the Trajectory DataFrame, the speed is 

computed automatically based on linear interpolation between consecutive records 

scikit-mobility provides interactive plots using Folium. The default plot for a TrajDataFrame 
draws each trajectory in a different colour and automatically puts green and red markers at the 
start and end locations respectively, as shown in Figure 3. Pop-ups attached to the start and 
end location markers provide timestamp and coordinate information.  

To enhance rendering performance, the plot function by default does not plot all trajectories, 
and it generalizes the trajectories rendered. These preprocessing steps are communicated to 
the user in the form of UserWarnings: ‘Only the trajectories of the first 10 users will be plotted. 
Use the argument `max_users` to specify the desired number of users, or filter the 
TrajDataFrame’ and ‘If necessary, trajectories will be down-sampled to have at most 
`max_points` points. To avoid this, specify `max_points=None`.’ 



Graser 

79 
 

 

Figure 3: scikit-mobility / Folium plot of a TrajDataFrame with multiple trajectories and their start (green) 

and end (red) location markers superimposed on OpenStreetMap tiles.  

Trackintel provides static plots using Matplotlib. The default plot for trip legs created from 
position fixes draws each trip leg in a colour indicating the moving object ID (user). As Figure 
4 shows, in contrast to the previous libraries the default plot function does not provide 
background maps. Instead, the function provides a plot_osm keyword that ‘will download an 
OSM street network and plot below the triplegs’ (Trackintel documentation, 2022). This is 
certainly useful in the context of human movement in local urban environments, but it is not 
suitable for the ship movement dataset used in this example.  

Traja provides different default plots for individual trajectories (TrajaDataFrame in Figure 5) 
and sets of trajectories (TrajaCollection in Figure 6). Plots for individual trajectories use 
coloured point markers to communicate the timestamp at a recorded location. In addition, 
grey lines are used to visually connect consecutive lines. Since our DataFrame contains data 
from multiple moving objects, the visualization in Figure 5 wrongly connects locations that 
belong to different moving objects. This issue is fixed by using a TrajaCollection, as shown in 
Figure 6. However, this changes the visualization, since the line and marker colours are now 
used to indicate the object ID. Therefore, all visual indicators of movement direction and 
speed are lost.  
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Figure 4: Trackintel / Matplotlib plot of trip legs computed from input position fixes, with colours indicating 

object ID. 

 

Figure 5: Traja / Matplotlib plot for individual trajectories, with colours indicating the time at locations 

along the trajectory. 
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Figure 6: Traja / Matplotlib plot for sets of trajectories, with colour indicating object ID.  

TransBigData provides static and interactive plots. Static plots (Figure 7) are based on 
GeoPandas and Matplotlib, since TransBigData’s points_to_traj function returns a 
GeoDataFrame with LineString geometries. Users therefore need to specify the object ID 
column explicitly to obtain a plot with differently-coloured lines.  

The interactive plots are based on Kepler.gl, which provides dedicated trajectory support, 
including animation capabilities. Trajectories can be coloured by a column. For the example in 
Figure 8, this column was manually set to the object ID. Another customization option is the 
trail length. This option defines how fast the trail fades out and thus provides a visual indication 
of the movement speed.  
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Figure 7: TransBigData / GeoPandas plot with colour indicating object ID. 

 

 Figure 8: TransBigData / Kepler.gl plot provides animation capabilities. 
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The example plots shown in Figures 1–8 illustrate the choices made by developers of trajectory 
analysis libraries regarding the spatial visualization of trajectories. 

Below is a list of the key decisions (PTRAIL is not included due to a lack of details in the 
library documentation, and library import errors in the official demo notebooks on Google 
Colab). Table 2 provides a summary. 

1. Interactivity. It is noteworthy that not all development teams decided to implement 
interactive plots (Trackintel and Traja provide only static plots). Lack of interactivity 
limits the amount of information users can gain from the plots, since they cannot look 
more closely at details or bring up additional information in pop-ups.  

2. Background maps. PyMove, MovingPandas and scikit-mobility provide geographic 
context through access to different map tile sources. This makes it possible to adapt 
the background maps to different analysis contexts. Trackintel can only plot the local 
OSM graph, which may be due to Trackintel’s focus on human mobility data.  

3. Object identity is commonly communicated using colour. Only TransBigData does not 
use colour to distinguish objects by default. Since colour is also used to communicate 
other properties, such as speed (MovingPandas) or time at location (Traja), users must 
choose one or the other.  

4. Movement direction is communicated via markers (MovingPandas and Traja), colour 
(Traja) or animation (TransBigData).  

5. Speed is not readily discernible from most plots. Only MovingPandas and 
TransBigData plots show speed, using colour and animation respectively.  

6. Time at location is not readily discernible from most plots. Only Traja and TransBigData 
show time, using colours (only for plots of single trajectories) and animation 
respectively. Lack of time information makes it hard for users to distinguish whether 
two or more moving objects actually met (spatiotemporal co-location), or whether 
their trajectories only intersected spatially.  

7. Performance optimizations. Static MatplotLib plots (Trackintel and Traja) have faster 
rendering performance than interactive plots (PyMove, MovingPandas and scikit-
mobility). To avoid excessive rendering times, scikit-mobility developers have opted 
to automatically perform down-sampling (i.e. reduce the number of trajectories 
rendered and the number of points per trajectory), which can be customized by the 
user. PyMove and MovingPandas provide multiple trajectory generalization and 
down-sampling methods, but they are not applied automatically. 

  



Graser 

84 
 

Table 1: Summary of the features of default visualizations created by trajectory analysis libraries 

 PyMove* MovingPandas scikit-
mobility 

Trackintel Traja TransBigData 

Interactivity Static & 
interactive 

Static & 
interactive 

Interactive Static Static Static & 
interactive 

Background 
maps 

Misc tiles Misc tiles Misc tiles OSM graph 
only  

no yes 

Object 
identity 

Colour Colour1 Colour Colour Colour2 Colour3 

Movement 
direction 

Start/end 
markers4 

Start/end 
markers3 

Start/end 
markers4 

no See time 
at 
location 

Animation & 
tapered 
trail 

Movement 
speed 

no Colour1 no no no Animation & 
tapered 
trail 

Time at 
location 

no no no no Colour2 Animation 

Performance 
enhancements 

Misc 
generalization 
options3 

Misc 
generalization 
options3 

Downsampling4 no no no 

* Based on the PyMove documentation (2022)  
1 Either object identity or speed 
2 Either object identity or time 
3 Manual 
4 Automatic 

Of course, these choices do not necessarily reflect the full capabilities of the underlying spatial 
visualization libraries. Therefore, the following section highlights additional library 
functionalities that data scientists may find useful when dealing with movement data.  

3.2 Spatial visualization libraries 

Folium brings Leaflet-based maps into Jupyter notebooks and allows easy access to a variety of 
base maps to provide geographic context to movement data. Folium does not provide 
dedicated trajectory visualization support. However, marker or line colour and width are 
readily customizable once the trajectory is split into its individual elements, as shown in Figure 
9a. 

Many popular Leaflet plugins are accessible from within Folium2, including the AntPath plugin 
for creating moving line patterns, Heatmap plugin (Figure 9b), PolyLineOffset plugin for 
drawing with an offset specified in pixels, without modifying the actual line coordinates, and 
the TimestampedGeoJson plugin. The Folium.TimestampedGeoJson plugin makes it possible 
to create animated trajectory visualizations, which have an interactive time slider, as shown in 

                                                           
2 https://python-visualization.github.io/folium/plugins.html 

https://pymove.readthedocs.io/en/latest/examples/03_Exploring_Visualization.html
https://python-visualization.github.io/folium/plugins.html
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Figure 10. While there are multiple Leaflet plugins for creating arrows, such as leaflet-
arrowheads3 or Leaflet.PolylineDecorator4, these are not currently usable in Folium5. 

 

Figure 9: Folium in Jupyter (a) showing directionality using a colour gradient (source: own work), and (b) 

demonstrating heat map support, as implemented in PyMove (source: PyMove documentation, 2022). 

                                                           
3 https://github.com/slutske22/leaflet-arrowheads 
4 https://github.com/bbecquet/Leaflet.PolylineDecorator 
5 https://github.com/python-visualization/folium/issues/1211 

https://github.com/slutske22/leaflet-arrowheads
https://github.com/bbecquet/Leaflet.PolylineDecorator
https://github.com/python-visualization/folium/issues/1211
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Figure 10: Folium.TimestampedGeoJson plugin example trajectory visualization (source: own work). 

GeoViews is built on the HoloViews library and adds geographic plot types based on the Cartopy library, 

plotted using either Matplotlib or Bokeh. GeoViews supports different projections, as well as local 

coordinates without a defined coordinate reference system, as shown in Figure 11. 

Like Folium, GeoViews does not provide dedicated trajectory visualization support, but line 
colour and width are readily customizable once the trajectory is split into its individual 
elements. In contrast to Folium, however, there is no functionality to apply a line offset6. 

Thanks to its tight integration with HoloViews, GeoViews plots can easily be combined with 
other plots to build flexible visualizations of multidimensional data. For example, Figure 12 
shows a GeoViews-based MovingPandas trajectory plot and corresponding speed histogram 
that automatically updates when the trajectory generalization algorithm settings are changed 
using the linked tolerance value slider and drop-down list.  

                                                           
6 https://github.com/holoviz/geoviews/issues/431 

https://github.com/holoviz/geoviews/issues/431


Graser 

87 
 

 

Figure 11: GeoViews-based trajectory visualizations, as implemented in MovingPandas using local 

coordinates referenced to a soccer pitch. (Source: own work) 

 

Figure 12: Interactive data exploration panel combining GeoViews-based trajectory visualization with a 

histogram of the corresponding speed values and options to change the trajectory generalization 

algorithm and tolerance setting. (Source: own work) 
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A related library in the HoloViews family is Datashader. Compared to Folium and GeoViews, 
Datashader can handle much larger datasets. This scalability is achieved by efficiently 
implemented rasterization routines that are distributed across CPU cores and processors using 
Dask, or GPUs using CUDA. This way, rasterized representations of the input dataset can be 
displayed in the notebook more quickly than, for example, vector-based Folium visualizations. 
It is particularly noteworthy that Datashader provides dedicated trajectory rendering support7 
that can be used to create trajectory visualizations, including point and line density maps, as 
shown in Figure 13 (Graser, 2021). However, there is currently no straightforward solution for 
colouring individual line segments based on attributes such as speed8.  

 

Figure 13: Datashader density map of trajectory line segments. (Source: own work) 

To the best of our knowledge, the interactive visualization libraries presented so far do not 
provide 3D plotting features that would enable the straightforward implementation of space-
time cubes, or similar 3D visualizations such as trajectory walls (Tominski et al., 2012). 

To address the lack of space-time cube visualization tools in available movement analysis 
libraries, Tenkanen (2022) turns to the Plotly library, as shown in Figure 14, because of its 

                                                           
7 https://datashader.org/user_guide/Trajectories.html 
8 https://github.com/holoviz/datashader/issues/969 

https://datashader.org/user_guide/Trajectories.html
https://github.com/holoviz/datashader/issues/969
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easy-to-use API. It is worth noting, however, that this 3D plot lacks support for base maps, 
which may be considered an important component of space-time cubes. Other 3D solutions 
that may be used include, for example, D3.js and three.js, both JavaScript libraries that could 
be leveraged in ways similar to how Folium leverages Leaflet.  

 

Figure 1: Space-time cube created with Plotly. (Source: Tenkanen, 2022) 

4 Conclusions  

In this paper, we have reviewed the current state of trajectory visualization tools in Jupyter 
notebook environments, covering seven movement analysis libraries that use four different 
spatial visualization libraries. Our review shows what the development teams of these 
movement analysis libraries chose to include in their spatial trajectory visualizations. These 
choices range from simple static plots to interactive and even animated plots that can visualize 
different trajectory properties, such as movement direction and speed, object ID, and time at 
a certain location.  

Our review summary does not attempt to rank the movement analysis libraries based on their 
visualization capabilities. This was a conscious decision, because we perceive scientific 
software engineering not as a competition but as an opportunity to learn from each other. The 
development focus of many of the libraries reviewed clearly lies on their trajectory data 
processing capabilities rather than on trajectory visualizations. Since all the libraries reviewed 
are built on Pandas, there is considerable potential for integration, both on the developer side 
and on the user side, since DataFrames can be exchanged easily between libraries.  
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The movement analysis libraries we reviewed all depend on one or two of four visualization 
libraries: Matplotlib, Folium, GeoViews and Kepler.gl. Since Matplotlib and Folium are the 
default libraries of GeoPandas for static and interactive plotting respectively, it is not surprising 
that they are also commonly used to create spatial trajectory visualizations. However, we find 
that the cartographic capabilities of these libraries still exhibit some gaps that need to be filled 
to enable better trajectory visualizations for data science workflows, including data quality 
assessment. Particularly notable shortcomings include the limited line styling options (for 
example, missing capabilities to add arrowhead markers to visualize directionality, or 
capabilities to offset lines in order to reduce overlaps), as well as the general lack of 
visualization tools that make use of the third dimension (such as space-time cubes or trajectory 
walls). The only exception is Kepler.gl, which supports 3D plots and is used in one movement 
analysis library (but only to create animations). Other 3D plotting libraries, such as the 
JavaScript libraries D3 and three.js, have not been integrated so far.  

Besides general cartographic capabilities, another important factor affecting the usability of 
visualization libraries is their performance or rendering speed. In trajectory visualizations, the 
number of individual features that have to be rendered grows quickly, particularly when each 
trajectory segment is drawn individually because we want to style the line according to the 
segment’s speed or other property. Slow rendering performance causes undesirable wait times 
and therefore risks limiting acceptance by data analysts and scientists.  

In addition to cartographic capabilities and rendering speed, developers of movement data 
visualization tools also have to strive for ease of use, since even the most powerful libraries 
will have trouble establishing a solid user base if data scientists find them too cumbersome to 
learn and use. To achieve a critical mass of users that can support sustainable development, 
future scientific software development work should ideally focus on bringing together the 
currently disjointed efforts that are spread over multiple different movement analysis and 
visualization libraries.  
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