
Graser

73

The State of Trajectory

Visualization in Notebook

Environments

 GI_Forum 2022, Issue 2

Page: 73 - 91

Short Paper

Corresponding Author:

anita.graser@ait.ac.at

DOI: 10.1553/giscience2022_02_s73

Anita Graser

AIT Austrian Institute of Technology, Austria

Abstract

Gaining insights from trajectory datasets is a challenging task that requires suitable visual

data representations. There is a considerable gap between the state-of-the-art

cartographic techniques presented in the literature and currently available spatial data

science toolboxes. This review paper presents the current state of geospatial visualization

tools for trajectory data, focusing on the Python and Jupyter notebooks ecosystem. The

shortcomings identified provide pointers for further scientific software development, as well

as a reference for data scientists in choosing the best-fitting tool for a specific job.

Keywords:

trajectories, movement data analysis, visual analysis, exploratory data analysis

1 Introduction

GIScience sometimes seems stuck in a continuous search for more theory to ‘justify its science
credentials’ (Gahegan, 2020). By comparison, scientific software development and data
provisioning ‘have historically been undervalued’ (Rey, 2021). As a result, many analysis and
visualization approaches developed over the years are not accessible through readily available
(proprietary, or free and open-source) software. Consequently, the potential impact of this
research on the wider data science community in academia and industry is limited.

Movement data is used in many data science domains, from health to logistics and beyond.
However, movement data is rarely collected in lab settings. Many datasets, such as floating car
data, call detail records, as well as sports, or ship- and plane-tracking data, are created for
purposes other than the scientific analyses that they are later used for. Therefore, data quality
– as in fitness for use in analyses – is rarely ideal. Understanding data quality is essential for
choosing suitable analysis methods and interpreting their results. However, gaining a proper
understanding of a dataset's potential and limitations is a time-consuming task. Graphical data
exploration tools in particular are needed to support analysts (Graser & Dragaschnig, 2020).

Multiple recent survey papers provide overviews of visualization techniques for movement
data (Chen et al., 2015; Andrienko et al., 2017; He et al., 2019). These visualization techniques
are not limited to spatial visualizations. For example, He et al. (2019) present radial icon

Graser

74

visualization, which aims to visualize multivariable attributes simultaneously. However, for the
purpose of this paper, we will focus on spatial visualizations of trajectories.

To perform a comprehensive data quality assessment, it is important to look at the raw data
and not just the processed and aggregated derivatives, which may be influenced by the
processing and aggregation steps (Graser, 2021). This paper therefore focuses on visualizations
of individual raw trajectories rather than on the numerous different aggregated visualizations.

Many approaches presented in the literature (Chen et al., 2015; Andrienko et al., 2017; He et
al., 2019) require access to dedicated visual analytics software, fully-fledged GIS software and
potential spatiotemporal extensions, or (often unpublished) research prototypes. However,
these tools are hard to integrate into everyday data scientists' workflows, which are more likely
to use general-purpose business intelligence (BI) tools, integrated development environments
(IDEs), or notebook environments such as Jupyter or RStudio. In this paper, we specifically
review the current state of the art in Python libraries, since Python is the scripting language of
choice for many scientists and data analysts, in geographic data science in particular and in data
science in general. The paper aims to provide readers (with or without a GIScience or
cartography background) with the necessary information to make informed choices when
faced with the current fragmented spatial data visualization ecosystem.

The remainder of this paper is structured as follows: Section 2 describes the visual variables
that are commonly used to visualize trajectory information. Section 3 analyses the current state
of trajectory analysis and spatial visualization libraries that are used to provide trajectory
visualizations. Finally, Section 4 draws conclusions and aims to put them in a broader context.

2 Spatial trajectory visualization

This section provides a brief overview of visual variables that can be used to visualize trajectory
data. While visual variables are a basic topic in cartography and visual/exploratory data science
curricula, it is worth revisiting these theoretical fundamentals briefly before reviewing the
implementations that are actually available.

To understand trajectories, analysts look at spatial, temporal and potential additional thematic
dimensions. In addition to the pure location or geographic context of the movement, key
information of interest relates to direction and speed of movement. This information has to
be encoded using visual variables, such as shape, size, colour (hue, value, saturation), patterns
or orientation.

Raw movement data usually comes in the form of discrete timestamped location records for
which reporting intervals (regular or irregular) can vary widely, from milliseconds to years.
Most unspecialized spatial visualization tools therefore render raw movement data as points.
Depending on the reporting interval, it can be difficult to determine how these points are
connected – that is, which points are consecutive locations that belong to the same moving
object. To make the data easier to understand, movement data visualizations usually transform
the raw data from points into lines between consecutive points and render those.

Graser

75

Lines alone are insufficient to communicate movement direction. Common approaches to
visualize the movement direction therefore include:

1. Markers at start and end locations, which may be colour-coded, with one colour signifying
the trajectory start or origin and the other signifying the end or destination.

2. Arrow-shaped markers, which may be placed at the end or along the line to communicate
directionality.

3. Colour or size gradients (tapering), which can be applied to point markers or line segments.
For example, older positions (closer to the start) may be symbolized using less
saturated colours, smaller markers or thinner lines.

4. Animations, which are another intuitive way to visualize directionality. Animation
options range from a single animated marker that moves along the trajectory path
with or without leaving a visible trace, to animated line patterns.

5. 3D. When time is used as the third dimension in three-dimensional visualizations,
such as space-time cubes, directionality is given by the incline of the line.

The visual variables that can be used to communicate speed overlap with those used for
direction. This can lead to conflicts. For example, if line colour is already used to show
direction, another variable needs to be found to display speed on the same map. Common
approaches to visualize speed include:

1. Colour gradients, especially traffic-light colour gradients. These are an intuitive and
therefore popular choice, even though they are less than ideal for people with colour
blindness.

2. (Arrow) marker-based line decorations using different spacing between arrow heads or
varying line width. However, both line width and arrow spacing are potentially
ambiguous and less intuitive. Is a wide line faster than a narrow one? Or are lines with
densely spaced arrow markers faster than those with larger gaps?

3. Density maps. If trajectories are sampled with regular time intervals, density or heat
maps can be used to communicate speed, since trajectory point density will be higher
in regions of slower movement. However, when sampling intervals are irregular, heat
maps can be misleading and therefore cannot be recommended without reservation.

3 Survey of trajectory visualization tools

This section presents a survey of Python trajectory analysis libraries that provide trajectory
visualizations. Table 1 lists these trajectory analysis libraries and the visualization libraries they
depend on. The three most popular libraries (according to GitHub’s star count) are:
MovingPandas, scikit-mobility and TransBigData. While Traja and Trackintel rely on
Matplotlib and therefore only support static visualizations, all other libraries provide interactive
trajectory maps using one of three options: Folium, GeoViews or Kepler.gl.

Graser

76

Table 1: Overview of open-source Python movement analysis libraries and associated visualization

libraries, ordered chronologically from the earliest to the latest GitHub publication date.

Library name References Source code repository
(number of stars, July 2022)

Visualization
library

PyMove Oliveira (2019) https://github.com/InsightLab/PyMove
(65 stars)

Folium and
Matplotlib

MovingPandas Graser (2019) https://github.com/anitagraser/moving
pandas (834 stars)

GeoViews and
Matplotlib

Traja Shenk et al.
(2021)

https://github.com/traja-team/traja
(60 stars)

Matplotlib

Trackintel https://github.com/mie-lab/trackintel
(79 stars)

Matplotlib

scikit-
mobility

Pappalardo et
al. (2019)

https://github.com/scikit-
mobility/scikit-mobility (522 stars)

Folium

PTRAIL Haidri et al.
(2021)

https://github.com/YakshHaranwala/PTR
AIL (10 stars)

Folium

TransBigData Yu & Yuan (2022) https://github.com/ni1o1/transbigdata
(182 stars)

Kepler.gl and
Matplotlib

3.1 Trajectory analysis libraries

The following figures show plots created by the visualization functions of the trajectory
analysis libraries in Table 1. PyMove and PTRAIL are not included due to errors when calling
the visualization functions. (These errors are documented in the complete Jupyter notebook
provided on Zenodo.1) The data used in this notebook is the open science ‘Heterogeneous
Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance’ (Ray et al.,
2018). A subset of this dataset (10,000 rows) was loaded as a Pandas DataFrame, which is used
as input in all subsequent examples. As a first step, we analyse the decisions made by the
individual library development teams and the resulting visualizations. In the second step, we
compare these results.

MovingPandas provides static plots using Matplotlib, and interactive maps using HoloViews
GeoViews (based on Bokeh). The default interactive plot of a set of trajectories (represented
by a TrajectoryCollection object) draws each trajectory in a different colour. As shown in
Figure 1, background map tiles, as well as markers for trajectory start and end locations, can
be readily added and customized. Pop-ups attached to lines and point markers provide
additional information, such as the object ID source mmsi.

Instead of using the colour to indicate object ID, other DataFrame column names (or the
keyword ‘speed’) can be specified to colour the trajectory segments, as shown in Figure 2,
where colour indicates the speed of movement.

1 https://doi.org/10.5281/zenodo.7185322

https://github.com/InsightLab/PyMove
https://github.com/anitagraser/movingpandas
https://github.com/anitagraser/movingpandas
https://github.com/traja-team/traja
https://github.com/mie-lab/trackintel
https://github.com/scikit-mobility/scikit-mobility
https://github.com/scikit-mobility/scikit-mobility
https://github.com/YakshHaranwala/PTRAIL
https://github.com/YakshHaranwala/PTRAIL
https://github.com/ni1o1/transbigdata
https://doi.org/10.5281/zenodo.7185322

Graser

77

Figure 1: MovingPandas / GeoViews plot of a TrajectoryCollection, enhanced with white markers at

trajectory start locations and black markers at end locations, superimposed on OpenStreetMap tiles. As

a pre-processing step, trajectories are generalized to improve rendering speed. On mouse over, the

interactive plot shows attribute values which can be customized using the hover_cols keyword.

Graser

78

Figure 2: MovingPandas / GeoViews plot of a TrajectoryCollection where line segments are coloured by

movement speed (values in m/s). If there is no speed column in the Trajectory DataFrame, the speed is

computed automatically based on linear interpolation between consecutive records

scikit-mobility provides interactive plots using Folium. The default plot for a TrajDataFrame
draws each trajectory in a different colour and automatically puts green and red markers at the
start and end locations respectively, as shown in Figure 3. Pop-ups attached to the start and
end location markers provide timestamp and coordinate information.

To enhance rendering performance, the plot function by default does not plot all trajectories,
and it generalizes the trajectories rendered. These preprocessing steps are communicated to
the user in the form of UserWarnings: ‘Only the trajectories of the first 10 users will be plotted.
Use the argument `max_users` to specify the desired number of users, or filter the
TrajDataFrame’ and ‘If necessary, trajectories will be down-sampled to have at most
`max_points` points. To avoid this, specify `max_points=None`.’

Graser

79

Figure 3: scikit-mobility / Folium plot of a TrajDataFrame with multiple trajectories and their start (green)

and end (red) location markers superimposed on OpenStreetMap tiles.

Trackintel provides static plots using Matplotlib. The default plot for trip legs created from
position fixes draws each trip leg in a colour indicating the moving object ID (user). As Figure
4 shows, in contrast to the previous libraries the default plot function does not provide
background maps. Instead, the function provides a plot_osm keyword that ‘will download an
OSM street network and plot below the triplegs’ (Trackintel documentation, 2022). This is
certainly useful in the context of human movement in local urban environments, but it is not
suitable for the ship movement dataset used in this example.

Traja provides different default plots for individual trajectories (TrajaDataFrame in Figure 5)
and sets of trajectories (TrajaCollection in Figure 6). Plots for individual trajectories use
coloured point markers to communicate the timestamp at a recorded location. In addition,
grey lines are used to visually connect consecutive lines. Since our DataFrame contains data
from multiple moving objects, the visualization in Figure 5 wrongly connects locations that
belong to different moving objects. This issue is fixed by using a TrajaCollection, as shown in
Figure 6. However, this changes the visualization, since the line and marker colours are now
used to indicate the object ID. Therefore, all visual indicators of movement direction and
speed are lost.

Graser

80

Figure 4: Trackintel / Matplotlib plot of trip legs computed from input position fixes, with colours indicating

object ID.

Figure 5: Traja / Matplotlib plot for individual trajectories, with colours indicating the time at locations

along the trajectory.

Graser

81

Figure 6: Traja / Matplotlib plot for sets of trajectories, with colour indicating object ID.

TransBigData provides static and interactive plots. Static plots (Figure 7) are based on
GeoPandas and Matplotlib, since TransBigData’s points_to_traj function returns a
GeoDataFrame with LineString geometries. Users therefore need to specify the object ID
column explicitly to obtain a plot with differently-coloured lines.

The interactive plots are based on Kepler.gl, which provides dedicated trajectory support,
including animation capabilities. Trajectories can be coloured by a column. For the example in
Figure 8, this column was manually set to the object ID. Another customization option is the
trail length. This option defines how fast the trail fades out and thus provides a visual indication
of the movement speed.

Graser

82

Figure 7: TransBigData / GeoPandas plot with colour indicating object ID.

 Figure 8: TransBigData / Kepler.gl plot provides animation capabilities.

Graser

83

The example plots shown in Figures 1–8 illustrate the choices made by developers of trajectory
analysis libraries regarding the spatial visualization of trajectories.

Below is a list of the key decisions (PTRAIL is not included due to a lack of details in the
library documentation, and library import errors in the official demo notebooks on Google
Colab). Table 2 provides a summary.

1. Interactivity. It is noteworthy that not all development teams decided to implement
interactive plots (Trackintel and Traja provide only static plots). Lack of interactivity
limits the amount of information users can gain from the plots, since they cannot look
more closely at details or bring up additional information in pop-ups.

2. Background maps. PyMove, MovingPandas and scikit-mobility provide geographic
context through access to different map tile sources. This makes it possible to adapt
the background maps to different analysis contexts. Trackintel can only plot the local
OSM graph, which may be due to Trackintel’s focus on human mobility data.

3. Object identity is commonly communicated using colour. Only TransBigData does not
use colour to distinguish objects by default. Since colour is also used to communicate
other properties, such as speed (MovingPandas) or time at location (Traja), users must
choose one or the other.

4. Movement direction is communicated via markers (MovingPandas and Traja), colour
(Traja) or animation (TransBigData).

5. Speed is not readily discernible from most plots. Only MovingPandas and
TransBigData plots show speed, using colour and animation respectively.

6. Time at location is not readily discernible from most plots. Only Traja and TransBigData
show time, using colours (only for plots of single trajectories) and animation
respectively. Lack of time information makes it hard for users to distinguish whether
two or more moving objects actually met (spatiotemporal co-location), or whether
their trajectories only intersected spatially.

7. Performance optimizations. Static MatplotLib plots (Trackintel and Traja) have faster
rendering performance than interactive plots (PyMove, MovingPandas and scikit-
mobility). To avoid excessive rendering times, scikit-mobility developers have opted
to automatically perform down-sampling (i.e. reduce the number of trajectories
rendered and the number of points per trajectory), which can be customized by the
user. PyMove and MovingPandas provide multiple trajectory generalization and
down-sampling methods, but they are not applied automatically.

Graser

84

Table 1: Summary of the features of default visualizations created by trajectory analysis libraries

 PyMove* MovingPandas scikit-
mobility

Trackintel Traja TransBigData

Interactivity Static &
interactive

Static &
interactive

Interactive Static Static Static &
interactive

Background
maps

Misc tiles Misc tiles Misc tiles OSM graph
only

no yes

Object
identity

Colour Colour1 Colour Colour Colour2 Colour3

Movement
direction

Start/end
markers4

Start/end
markers3

Start/end
markers4

no See time
at
location

Animation &
tapered
trail

Movement
speed

no Colour1 no no no Animation &
tapered
trail

Time at
location

no no no no Colour2 Animation

Performance
enhancements

Misc
generalization
options3

Misc
generalization
options3

Downsampling4 no no no

* Based on the PyMove documentation (2022)
1 Either object identity or speed
2 Either object identity or time
3 Manual
4 Automatic

Of course, these choices do not necessarily reflect the full capabilities of the underlying spatial
visualization libraries. Therefore, the following section highlights additional library
functionalities that data scientists may find useful when dealing with movement data.

3.2 Spatial visualization libraries

Folium brings Leaflet-based maps into Jupyter notebooks and allows easy access to a variety of
base maps to provide geographic context to movement data. Folium does not provide
dedicated trajectory visualization support. However, marker or line colour and width are
readily customizable once the trajectory is split into its individual elements, as shown in Figure
9a.

Many popular Leaflet plugins are accessible from within Folium2, including the AntPath plugin
for creating moving line patterns, Heatmap plugin (Figure 9b), PolyLineOffset plugin for
drawing with an offset specified in pixels, without modifying the actual line coordinates, and
the TimestampedGeoJson plugin. The Folium.TimestampedGeoJson plugin makes it possible
to create animated trajectory visualizations, which have an interactive time slider, as shown in

2 https://python-visualization.github.io/folium/plugins.html

https://pymove.readthedocs.io/en/latest/examples/03_Exploring_Visualization.html
https://python-visualization.github.io/folium/plugins.html

Graser

85

Figure 10. While there are multiple Leaflet plugins for creating arrows, such as leaflet-
arrowheads3 or Leaflet.PolylineDecorator4, these are not currently usable in Folium5.

Figure 9: Folium in Jupyter (a) showing directionality using a colour gradient (source: own work), and (b)

demonstrating heat map support, as implemented in PyMove (source: PyMove documentation, 2022).

3 https://github.com/slutske22/leaflet-arrowheads
4 https://github.com/bbecquet/Leaflet.PolylineDecorator
5 https://github.com/python-visualization/folium/issues/1211

https://github.com/slutske22/leaflet-arrowheads
https://github.com/bbecquet/Leaflet.PolylineDecorator
https://github.com/python-visualization/folium/issues/1211

Graser

86

Figure 10: Folium.TimestampedGeoJson plugin example trajectory visualization (source: own work).

GeoViews is built on the HoloViews library and adds geographic plot types based on the Cartopy library,

plotted using either Matplotlib or Bokeh. GeoViews supports different projections, as well as local

coordinates without a defined coordinate reference system, as shown in Figure 11.

Like Folium, GeoViews does not provide dedicated trajectory visualization support, but line
colour and width are readily customizable once the trajectory is split into its individual
elements. In contrast to Folium, however, there is no functionality to apply a line offset6.

Thanks to its tight integration with HoloViews, GeoViews plots can easily be combined with
other plots to build flexible visualizations of multidimensional data. For example, Figure 12
shows a GeoViews-based MovingPandas trajectory plot and corresponding speed histogram
that automatically updates when the trajectory generalization algorithm settings are changed
using the linked tolerance value slider and drop-down list.

6 https://github.com/holoviz/geoviews/issues/431

https://github.com/holoviz/geoviews/issues/431

Graser

87

Figure 11: GeoViews-based trajectory visualizations, as implemented in MovingPandas using local

coordinates referenced to a soccer pitch. (Source: own work)

Figure 12: Interactive data exploration panel combining GeoViews-based trajectory visualization with a

histogram of the corresponding speed values and options to change the trajectory generalization

algorithm and tolerance setting. (Source: own work)

Graser

88

A related library in the HoloViews family is Datashader. Compared to Folium and GeoViews,
Datashader can handle much larger datasets. This scalability is achieved by efficiently
implemented rasterization routines that are distributed across CPU cores and processors using
Dask, or GPUs using CUDA. This way, rasterized representations of the input dataset can be
displayed in the notebook more quickly than, for example, vector-based Folium visualizations.
It is particularly noteworthy that Datashader provides dedicated trajectory rendering support7
that can be used to create trajectory visualizations, including point and line density maps, as
shown in Figure 13 (Graser, 2021). However, there is currently no straightforward solution for
colouring individual line segments based on attributes such as speed8.

Figure 13: Datashader density map of trajectory line segments. (Source: own work)

To the best of our knowledge, the interactive visualization libraries presented so far do not
provide 3D plotting features that would enable the straightforward implementation of space-
time cubes, or similar 3D visualizations such as trajectory walls (Tominski et al., 2012).

To address the lack of space-time cube visualization tools in available movement analysis
libraries, Tenkanen (2022) turns to the Plotly library, as shown in Figure 14, because of its

7 https://datashader.org/user_guide/Trajectories.html
8 https://github.com/holoviz/datashader/issues/969

https://datashader.org/user_guide/Trajectories.html
https://github.com/holoviz/datashader/issues/969

Graser

89

easy-to-use API. It is worth noting, however, that this 3D plot lacks support for base maps,
which may be considered an important component of space-time cubes. Other 3D solutions
that may be used include, for example, D3.js and three.js, both JavaScript libraries that could
be leveraged in ways similar to how Folium leverages Leaflet.

Figure 1: Space-time cube created with Plotly. (Source: Tenkanen, 2022)

4 Conclusions

In this paper, we have reviewed the current state of trajectory visualization tools in Jupyter
notebook environments, covering seven movement analysis libraries that use four different
spatial visualization libraries. Our review shows what the development teams of these
movement analysis libraries chose to include in their spatial trajectory visualizations. These
choices range from simple static plots to interactive and even animated plots that can visualize
different trajectory properties, such as movement direction and speed, object ID, and time at
a certain location.

Our review summary does not attempt to rank the movement analysis libraries based on their
visualization capabilities. This was a conscious decision, because we perceive scientific
software engineering not as a competition but as an opportunity to learn from each other. The
development focus of many of the libraries reviewed clearly lies on their trajectory data
processing capabilities rather than on trajectory visualizations. Since all the libraries reviewed
are built on Pandas, there is considerable potential for integration, both on the developer side
and on the user side, since DataFrames can be exchanged easily between libraries.

Graser

90

The movement analysis libraries we reviewed all depend on one or two of four visualization
libraries: Matplotlib, Folium, GeoViews and Kepler.gl. Since Matplotlib and Folium are the
default libraries of GeoPandas for static and interactive plotting respectively, it is not surprising
that they are also commonly used to create spatial trajectory visualizations. However, we find
that the cartographic capabilities of these libraries still exhibit some gaps that need to be filled
to enable better trajectory visualizations for data science workflows, including data quality
assessment. Particularly notable shortcomings include the limited line styling options (for
example, missing capabilities to add arrowhead markers to visualize directionality, or
capabilities to offset lines in order to reduce overlaps), as well as the general lack of
visualization tools that make use of the third dimension (such as space-time cubes or trajectory
walls). The only exception is Kepler.gl, which supports 3D plots and is used in one movement
analysis library (but only to create animations). Other 3D plotting libraries, such as the
JavaScript libraries D3 and three.js, have not been integrated so far.

Besides general cartographic capabilities, another important factor affecting the usability of
visualization libraries is their performance or rendering speed. In trajectory visualizations, the
number of individual features that have to be rendered grows quickly, particularly when each
trajectory segment is drawn individually because we want to style the line according to the
segment’s speed or other property. Slow rendering performance causes undesirable wait times
and therefore risks limiting acceptance by data analysts and scientists.

In addition to cartographic capabilities and rendering speed, developers of movement data
visualization tools also have to strive for ease of use, since even the most powerful libraries
will have trouble establishing a solid user base if data scientists find them too cumbersome to
learn and use. To achieve a critical mass of users that can support sustainable development,
future scientific software development work should ideally focus on bringing together the
currently disjointed efforts that are spread over multiple different movement analysis and
visualization libraries.

References

Andrienko, G., Andrienko, N., Chen, W., Maciejewski, R., & Zhao, Y. (2017). Visual analytics of
mobility and transportation: State of the art and further research directions. IEEE Transactions on
Intelligent Transportation Systems, 18(8), 2232-2249.

Chen, W., Guo, F., & Wang, F. Y. (2015). A survey of traffic data visualization. IEEE Transactions on
Intelligent Transportation Systems, 16(6), 2970-2984.

Gahegan, M. (2020) Fourth paradigm GIScience? Prospects for automated discovery and explanation
from data, International Journal of Geographical Information Science, 34:1, 1-21, DOI:
10.1080/13658816.2019.1652304

Graser, A. (2019). MovingPandas: Efficient Structures for Movement Data in Python. GI_Forum ‒
Journal of Geographic Information Science 2019, 1-2019, 54-68.

Graser, A. (2021). An exploratory data analysis protocol for identifying problems in continuous
movement data. Journal of Location Based Services, 15(2), 89-117.

Graser, A. & Dragaschnig, M. (2020). Open Geospatial Tools for Movement Data Exploration. KN ‒
Journal of Cartography and Geographic Information, 70(1), 3-10. doi:10.1007/s42489-020-00039-
y.

Graser

91

Haidri, S., Haranwala, Y. J., Bogorny, V., Renso, C., da Fonseca, V. P., & Soares, A. (2021). PTRAIL--
A python package for parallel trajectory data preprocessing. arXiv preprint arXiv:2108.13202.

He, J., Chen, H., Chen, Y., Tang, X., & Zou, Y. (2019). Diverse visualization techniques and methods
of moving-object-trajectory data: a review. ISPRS International Journal of Geo-Information, 8(2), 63.

Oliveira, A. F. D. (2019). Uma arquitetura e implementação do módulo de visualização para biblioteca
PyMove. Bachelor's thesis. Universidade Federal Do Ceará.

Pappalardo, L., Simini, F., Barlacchi, G., & Pellungrini, R. (2019). scikit-mobility: A Python library for
the analysis, generation and risk assessment of mobility data. arXiv preprint arXiv:1907.07062.3

PyMove documentation. (2022). Retrieved from:
https://pymove.readthedocs.io/en/latest/examples/03_Exploring_Visualization.html

Ray, C., Dreo, R., Camossi, E., & Jousselme, A.-L. (2018). Heterogeneous Integrated Dataset for
Maritime Intelligence, Surveillance, and Reconnaissance (0.1) [Data set]. Zenodo. Retrieved from:
https://doi.org/10.5281/zenodo.1167595

Rey, S. (2021), Geographical Analysis: Reflections of a Recovering Editor. Geogr. Anal., 53: 38-46.
https://doi.org/10.1111/gean.12193

Shenk, J., Byttner, W., Nambusubramaniyan, S., & Zoeller, A. (2021). Traja: A Python toolbox for
animal trajectory analysis. Journal of Open Source Software, 6(63), 3202.

Tenkanen, H. (2022) Spatial data science for sustainable development course. Tutorial 3 - Trajectory
data mining in Python. Retrieved from: https://sustainability-
gis.readthedocs.io/en/latest/lessons/L3/mobility-analytics.html

Tominski, C., Andrienko, N., Andrienko, N., & Andrienko, N. (2012) Stacking-based visualization of
trajectory attribute data. IEEE Trans. Vis. Comput. Graph. 2012, 18, 2565–2574.

Trackintel documentation. (2022). Retrieved from:
https://trackintel.readthedocs.io/en/latest/modules/visualization.html

Yu, Q., & Yuan, J. (2022). TransBigData: A Python package for transportation spatio-temporal big
data processing, analysis and visualization. Journal of Open Source Software, 7(71), 4021.

