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Abstract 

Using forests as burial and ceremonial places is a long-standing cultural practice in 

Mozambique. However, this information is still not translated into land-cover and land-use 

maps. Thus the locations of these forests and their descriptions remain unknown. To address 

this gap in the knowledge, this paper presents the results of mapping 52 local heritage sites 

in Inhambane, and analysing land-cover changes of two locally protected forest patches. 

Results from spatiotemporal change analysis show that these patches experienced fewer 

disturbances in comparison to other areas of vegetation.  
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1 Introduction  

“There are vast, almost impenetrable thickets, in which the ancient chiefs have been buried. The ancestors of the 
chiefs are buried in different sectors of the forests according to their villages. These woods are taboo. It is forbidden 
to gather wood here, or to allow bushfire to enter. It is forbidden to enter unless for the guardian of the forest, a 
priest descendant of the gods of the forest. There is a general dread to go through these forests and many frightening 
tales are told about them” (Junod, 1927, Vol. II, pp. 376–84). 

Currently, knowledge on land cover and land use worldwide is derived from processing remote 
sensing data, mostly satellite images (Wondie et al., 2011; Hu & Hu, 2019). Land use evolves 
through the continuous or periodical activities that humans perform in a given type of land 
cover (Masayi et al., 2021). Land-cover changes are closely linked to past land use and cultural 
heritage, reflecting the ways in which people have managed the land historically (Wilson, 2022).  

Agapiou (2017) used satellite images and Google Earth Engine (GEE) for the monitoring and 
management of cultural heritage sites. Ochungo et al. (2022) applied satellite images in GEE 
to map traditional wells and to describe water management systems. However, not all forms 
of cultural heritage are readily interpretable in satellite images or in the land-cover patterns. 
This is the case of forests used by local communities as burial and ceremonial sites, as found 
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in a number of places worldwide (see e.g., Straka et al., 2022). This calls for combining satellite 
images with other approaches to map heritage sites in forests, or forested areas that are 
themselves heritage sites (hereafter referred to as ‘local heritage sites’). In this context, 
geonarratives (Kwan & Ding, 2008; Kwan, 2008) have the ability to shed light on past 
landscapes and give a better understanding of the transformations reflected in satellite images. 
In the case of local heritage sites that have not already been documented or spatially 
contextualized in some way, mapping is impossible without local knowledge.  

Forty percent of the land area of Mozambique is covered by some type of forest (FAO, 2020). 
Early descriptions of the cultural dimensions of forests were given by ethnographers such as 
Henri-Alexandre Junod (Junod, 1927). More recent studies (e.g., Virtanen, 2002; Izidine et al., 
2008; Ekblom et al., 2017) have suggested that there are a considerable number of forest 
patches that still function as Junod described them almost a century ago. 

Studies of land cover and land use in Mozambique (e.g., Ryan et al., 2014; Bey et al., 2020; 
Sedano et al., 2020) have omitted the history of forested areas, overlooking their cultural use 
as ceremonial and burial places. Local heritage sites therefore remain unknown, invisible in 
contemporary land-use and land-cover maps produced using satellite images. In concrete 
terms, the omission of forest heritage sites that are outside formally protected areas means that 
they are seen as potential logging areas awaiting concessions.  

This paper sought first to identify and map the location of forest heritage sites in Inhambane 
province. Taking into account that the use of forests as burial places is a long-standing practice 
(see e.g., Junod, 1927), the second aim is to exploit time-series satellite images to analyse 
changes in selected heritage sites in recent decades. In Section 2, a brief description of the 
study area is given, followed by the methodology used. The results of mapping heritage sites 
and analyses of land cover are presented in Section 3. The paper ends with a reflection on the 
importance of mapping and monitoring heritage sites, the need to close knowledge gaps, and 
ways of making local heritage sites more visible by integrating them into Mozambique’s land-
cover and land-use maps and in the national conservation network.  

2  Materials and methods  

2.1  Description of the study areas 

The over-arching study area is the province of Inhambane, located between latitudes 20° 57' 
North and 24° 51' South and longitudes 35° 34' East and 34° 41' West, within which we 
focused on two smaller areas in and around the villages of Luido and Chitanga (Figure 1). 
The coastal province covers an area of 68,615 km2, is limited by the Save River in the north, 
the Indian Ocean to the east, and Gaza province in the south and west (Moçambique, 2010). 
Inhambane has a humid tropical climate, with a rainy season from November to April and a 
dry season from May to October (Moçambique, 2010). 
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Figure 1: Geographical location of the study area and two sub-areas. Data about country subdivisions, 

administrative boundaries and national road network were derived from the National Cartography and 

Remote Sensing Centre in Mozambique. 

The province is part of the Southern Zanzibar-Inhambane Coastal Forest Mosaic or 
Swahilian/Maputaland regional transition zone (Clarke, 1998) and hosts more than 50 endemic 
plant taxa (Darbyshire et al., 2019). The forests of Inhambane are comprised mostly of tree 
species that are in high demand (e.g. Androstachys johnsonii  and Afzelia quanzensis), and 
consequently there is pressure on the forests (Mozambique, 2017). Inhambane province has 
fourteen districts; Chitanga in Mabote district and Luido in Govuro district were defined as 
sub-areas for study. 

2.2 Methodological workflow  

Identification and mapping of forest patches with cultural values  

The process of mapping heritage sites started with the presentation of a research project to 
the national, provincial and district authorities dealing with cultural heritage management in 
Mozambique. This guaranteed smooth access to local communities for consent to conduct the 
project in their localities, and it was the local authorities and communities who showed us their 
local burial and ceremonial sites, and forests that are locally protected. Using the description 
given by Junod (1927) quoted at the start of this paper, communities were asked to indicate 
locally protected forests. This was the first phase of field work, an interactive process involving 
several visits to the different localities, walking with community members into the forests, 



Gota 

72 
 

documenting oral histories of the forests, and recording the narratives of the custodians of the 
local heritage sites. Additionally, the coordinates of all heritage sites in and around locally 
protected forests in Inhambane province were recorded using a Garmin64 GPS unit. A 
reference dataset was created from the local narratives and observations in the field to train 
and validate satellite images. 

Classification of satellite images covering Chitanga and Luido 

The classification of satellite images was performed in the GEE environment. Satellite images 
from Landsat were selected from the GEE Data Catalogue. The sub-areas of study are covered 
by path 167 and row 075 within the worldwide reference system for Landsat data. In total, 
three cloud-free satellite images were selected. Two images are from Landsat-5_TM, acquired 
in 1984 (1 June) and 2007 (20 August); the third is from Landsat-8_ OLI_TIRS (9 July 2015). 
All the images had a 30-metre spatial resolution with tier-1 processing level, radiometrically 
calibrated with systematic geometric corrections.  

 

Figure 2: Methodological workflow 

Five land-cover classes were specified to classify satellite images, namely: (1) evergreen forests, 
defined as areas with a large quantity of Androstachys johnsonii, Carpodiptera Africana and 
Brachystegia speciformis trees; (2) deciduous forests, with a high occurrence of trees such as 
Strychnos spinosa, Strychno spungens and Afzelia quanzensis; (3) Scattered tree grasslands were 
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defined as areas dominated by grasses but with Acacia nigrescens, Cordyla africana and Combretum 
imberbe trees; (4) open land comprised villages, rocky areas and sparse habitation, including 
areas that during the rainy season have seasonal lakes; (5) water bodies. 

Very high resolution satellite imagery which is built in in GEE and historical imagery from 
Google Earth Pro were used alongside the reference dataset collected in the first phase of field 
work. This allowed the identification of more reference data points, mostly in the areas that 
were inaccessible during field work due to taller vegetation. For the collection of training 
samples, research suggests that for areas covering a maximum of 4,046.9 km2 and 12 land-
cover classes, a minimum of 50 samples should be taken for each land-cover class (Deribew 
& Dalacho, 2019; Basheer et al., 2022). Taking into account the size of the sub-area (6,603.82 
km2), each land-cover class had a minimum of 150 training points. 70% of the total points in 
the dataset were employed to classify the satellite images (Ochungo et al., 2022). The 
Classification and Regression Trees (CART) algorithm was applied alongside the training 
points to produce land-cover maps for 1984, 2007 and 2015.  

The most frequently used method to assess the classification performance of satellite images 
is a confusion matrix containing producer accuracy, consumer accuracy, overall accuracy and 
kappa coefficient (Yang et al., 2021; Basheer et al., 2022). The remaining 30% of the points 
(validation points) were applied to compute a confusion matrix comparing all three land-cover 
maps to their reference points (Basheer et al., 2022; Ochungo et al., 2022). Producer accuracy, 
consumer accuracy, overall accuracy and kappa coefficient were also computed for each land-
cover class for all three maps. 

Two techniques were applied to detect and analyse land-cover changes: visual inspection of 
the images, and image differencing (Abdo & Prakash, 2020). Visual inspection was done by 
indentifying areas that had changed between the land-cover maps of 1984 and 2007, and then 
between 2007 and the map of 2015. Next, image differencing was performed by subtracting 
the land cover shown in the 2007 map from the land cover shown in the 1984 map. The same 
procedure was then used for the 2015 and 2007 maps. These techniques provided information 
about the changes in all land-cover classes in the sub-areas between 1984 and 2015.  

In the second phase of fieldwork, the information derived from the three maps was taken into 
the field. This allowed for a better understanding of the changes indentified in the maps, and 
for local communities to give their narratives and perceptions about past use of the landscape. 
The community was asked about extreme events. For instance, in the land cover of 1984 the 
surface of Banamana Lake, a great saline lake, is represented as dried out, but in the maps of 
2007 and 2015 it has water. Elders were also asked about natural remarkable events (extreme 
floods, droughts and fires) which took place in the 1980s (during the civil war) and the 2000s. 
They were also asked about settlements and agricultural areas before and after the civil war. 
Together with members of their communities, the elders made sketch maps of their territories, 
pointing out places where their ancestors are buried. Data from the sketch maps was 
incorporated in the webmap of forest patches in Inhambane that have cultural value. 

The GEE was heavily used to host the whole process of classifying satellite images. It was also 
used to calculate the area of different land-cover classes in the satellite images and to compute 
statistics for land-cover changes. Other data sources (geonarratives, spatial data of heritage 
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sites, sketch maps) were integrated directly or indirectly in the GEE environment. The 
interactive webmap was produced using the qgis2web plugin. 

3 Results and discussion  

3.1 Forest patches with cultural value and other heritage sites in Inhambane 
province  

The results of the identification and mapping of heritage sites in Inhambane are presented in 
Figure 3. For a more detailed view, the reader is referred to the web version of the map at 
https://doi.org/10.5281/zenodo.7811782. Figure 3 indicates that the northwestern part of the 
province has the largest number of archaeological sites, followed by the northeast.  

 
 
Figure 3: Identification of forest patches with cultural value and other heritage sites in Inhambane 

province. The background map is from Google and is available as a built-in basemap in the Quantum 

GIS plugin. Data about archaeological sites were derived from Adamowicz and Nhatule (2011). Data 

about protected areas were derived from the National Cartography and Remote Sensing Centre in 

Mozambique. 

 
Fifty-two heritage sites are widely distributed in the province and follow a pattern that is linked 
with the distribution of the villages. Apart from one forest patch (Gudogudo) that is located 
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inside Zinave National Park, none of the local heritage sites mapped fall within Mozambique’s 
national conservation network. In this context, the heritage sites were incorporated in the same 
scripts as those used in the classification of satellite images. The scripts are available at: 
https://code.earthengine.google.com/fc6f1ab1e0477d069440f684dcd8ea44 

3.2 Land-cover classification  

The statistics for the accuracy of the land-cover classification (1984, 2007 and 2015) are 
presented in Table 1.Water bodies were the most accurately classified class, with both producer 
and consumer accuracies of more than 97%, followed by evergreen forests, open land, 
deciduous forest, and grassland with scattered trees. 

Table 1: Confusion matrix, overall accuracy and Kappa coefficient of land-cover maps for the years 

1984, 2007 and 2015.  

Land cover EF DF STG WB OL 
Consumer 
accuracy 
(%) 

Year 1984 

Evergreen forest (EF) 64 3 0 0 0 96 

Deciduous forest (DF) 3 42 5 0 0 89 

Scattered tree grassland 
(STG) 

0 2 54 0 3 86 

Water body (WB) 0 0 1 63 0 100 

Open land (OL) 0 0 3 0 96 97 

Producer accuracy (%) 95 84 91 98 97  

Overall Accuracy (%) 94 Kappa Coefficient (%) 92 

Year 2007 

Evergreen Forest 75 0 0 0 0 97 

Deciduous Forest 2 56 14 0 0 85 

Scattered tree grassland 0 9 79 0 5 79 

Water body 0 0 0 78 0 100 

Open land 0 1 7 0 75 94 

Producer accuracy (%) 100 78 85 100 90  

Overall Accuracy (%) 90 Kappa Coefficient (%) 88 

Year 2015 

Evergreen Forest 71 1 0 0 0 100 

Deciduous Forest 0 66 2 0 0 99 

Scattered tree grassland 0 0 46 0 9 85 

Water body 0 0 0 52 0 100 

Open land 0 0 6 0 54 86 

Producer accuracy (%) 99 97 84 100 90  

Overall Accuracy (%) 94 Kappa Coefficient (%) 92 

 

https://code.earthengine.google.com/fc6f1ab1e0477d069440f684dcd8ea44
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Scattered tree grassland was the least accurately classified land-cover class across all three years 
because of confusion with deciduous forest and open land. This mis-classification reflects the 
complex mosaics in Inhambane, which show a correlation between grassland, open land and 
deciduous forests. In the same table, the results for overall accuracy and kappa coefficient 
show that all land-cover classes being described in this study were classified with high accuracy. 

Land-cover change  

Images describing land-cover change from 1984 to 2015 are presented in Figures 4 and 5. 
Visual analysis indicates that evergreen forests are located mostly in the central, western and 
northeastern parts of the sub-areas (Figure 4, maps 1, 6 and 11). In comparison to the land-
cover maps of 1984 and 2015, in 2007 there was an increase in the area of evergreen (map 6). 
Moreover, the distribution of the evergreen forests remained visible in the three maps, and 
there was no great change affecting the core locations of these forests (Figure 5).  

 

Figure 4: Maps 1–15 represent the spatial distribution of five land-cover classes in the study’s sub-areas 

for 1984, 2007 and 2015. Maps 16–17 show information about the distribution of lakes, wells and 

archaeological sites in the same areas. 
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Figure 5: Results of land-cover change analysis between 1984 and 2015 in the study’s sub-areas. 

Deciduous forests are the main land-cover class during the whole timeframe; they are 
distributed throughout the sub-areas of the study (Figure 4, maps 2, 7 and 12). However, it 
can be noted that the 2007 map shows an expansion of scattered tree grassland areas and a 
decrease of deciduous forests (see also Figure 5). Interestingly, also in 2007, in the northeast 
there is an increase of deciduous forests surrounding evergreen forest (Figure 4, map 12). This 
pattern changed by 2015: a visual analysis shows that most of the areas are fragmented, 
reflecting an increase of scattered tree grassland and open land areas (Figure 4, map 13). 

Although in the 1984 map areas of open land are visible only in the southeast, representing a 
dried-up lake (Figure 4, map 5), from 1984 to 2007 there is a clear appearance of areas of open 
land in the central part of the map, which continued to be visible in the 2015 map (Figure 5, 
and Figure 4 maps 5, 10 and 15). Open-land areas reflect the presence of settlements. In this 
case, the open areas are surrounding evergreen forest, scattered tree grassland and deciduous 
forests. True colour images from Landsat 5 employed to produce land-cover maps were then 
used for a basemap to represent ancillary data (maps 16 and 17). These data show lakes and 
wells distributed widely across archaeological sites that are concentrated in the central and 
southern parts of the study areas. 

Statistical analyses of land-cover change 

Statistics describing land-cover changes between 1984 and 2015 are presented in Table 2. 
Evergreen forests represented 10% of the total land (6,603.82km2) in 1984. From 2007 to 
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2015, this class registered an increase in 2% and maintained overall stability during the entire 
period under analysis. 

Table 2: Change of land-cover classes between 1984 and 2015 in the study’s sub-areas 

Land-cover classes 
1984 2007 2015 

km2 % km2 % km2 % 

Evergreen Forest 682.23 10.33 802.65 12.15 803.15 12.16 

Deciduous Forest 4,099.48 62.08 3,403.46 51.54 3,059.55 46.33 

Scattered tree grassland 1,730.20 26.20 1,918.32 29.05 2,168.30 32.83 

Water body 5.91 0.09 24.16 0.37 24.88 0.38 

Open land 86.00 1.30 455.23 6.89 547.93 8.30 

Total area  6,603.82 100 6,603.82 100 6,603.82 100 

Deciduous forest was the dominant land-cover class in 1984 (62%). This class remained the 
most dominant and was always followed by areas of grassland with scattered trees (occupying 
26% in 1984 and 33% in 2015). Water bodies are the smallest land-cover class, taking up less 
than 1% of the land during the whole period. In 1984, 1.3% of the land was open areas. This 
increased significantly in the following years. In 2015, open areas were estimated to cover 
around 8.3% of the study’s sub-areas. Overall, there was also a decrease of deciduous forest 
areas. 

3.3 Zooming in on forest patches of Chitanga and Luido villages 

In Chitanga village, most of the heritage sites are located in deciduous forests. However, the 
burial place of Chitanga (the village’s founding father) is located in the evergreen forest named 
after him. Chitanga village has ten heritage sites, of which four are locally protected forest 
patches; all have burial places (Figure 6). A close view of the land-cover map of Chitanga in 
1984 shows a landscape covered mostly by deciduous forests. During the period under analysis 
there was a change in the vegetation composition, but most of the areas of evergreen forest 
are still visible in the 2015 map. In the maps of 2007 and 2015, there are increases of scattered 
trees and grassland areas. In both maps (2007 and 2015), areas of open land are clearly visible; 
these contain many ceremonial places. 
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Figure 6: Close view of the location of heritage sites in Chitanga and Luido villages. Forest patches and 

burial (and ceremonial) places are placed in the context of land-cover maps.  

In the case of Luido community, in 1984 there were areas of grassland with scattered trees. 
These areas were reduced by the expansion of evergreen forest in 2007. Culturally, Luido 
possesses two forests (Mafai and Nyamuwuka). Although local narratives describe these as 
different forests, a visual analysis shows them as part of the same ecosystem. Compared to 
Chitanga forest, Luido registered much greater change in land cover, from land covered mostly 
by deciduous trees (1984) to evergreen (2007) and then deciduous (2015). Most of the heritage 
sites in Luido are located in the core areas of the forest. 

Several scholars have identified locally protected forests as single heritage sites (e.g., Virtanen, 
2002; Cruz, 2014; Simbine, 2020). None of these scholars carried out a spatiotemporal analysis 
of land-cover change in the protected forests. Thus the present research stands as a pilot study 
for understanding land-cover changes of locally protected areas more broadly, and the results 
presented here can serve as a roadmap for a much larger analysis of local heritage sites in 
Inhambane province. 

4  Conclusions 

Gaps in knowledge of local heritage sites, land use and land cover result in part from not 
integrating different methods and approaches, or not exploiting their synergies 
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(geoinformatics, geonarratives, satellite images, and remote sensing techniques). Without local 
knowledge, mapping forest patches with cultural values is impossible, as is locating a particular 
heritage site in the forest using satellite images. This scenario makes patches with cultural 
values invisible to policy makers. As a consequence, decisions taken only in accordance with 
land-cover and land-use maps, without the integration of local knowledge, might translate into 
policies that superimpose those maps on local communities’ perspectives on forest use (see 
discussion in Fairhead & Leach, 1996; Yuliani et al., 2022). As well as mapping local heritage 
sites, this paper aims to contribute to closing that gap. The combination of methods used here 
made it possible to identify and map local heritage sites in Inhambane. Combining those data 
with local knowledge in a process of engaging local people’s ‘spatial knowledge or perception’ 
(Kwan, 2008), an analysis of relatively recent land-cover changes targeting heritage sites was 
made possible.  

Mapping heritage sites in Inhambane revealed that local uses of forests by communities as 
burial and ceremonial places, as described by early scholars, continue. Locally, these forests are 
considered heritage sites and are actively managed by the communities. In the face of current 
pressures on forests, the reasonably stable boundaries of forests patches, as evidenced by land-
cover maps, show that the conservation of local heritage has a positive effect on the continued 
existence of forests. Considering that swidden agriculture is widely practised in Inhambane 
and a plethora of local human needs depend on forests products, forests that are both outside 
formally protected areas and without a recognized cultural value are likely to be felled. It is to 
be hoped that the results from this study will help policy makers and practitioners to integrate 
such culturally important places in the network of formally protected areas in Mozambique. 
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