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Abstract 

Geocoding is a process of converting human-readable addresses into latitude and 

longitude points. Whilst most geocoders tend to perform well on structured addresses, their 

performance drops significantly in the presence of unstructured addresses, such as locations 

written in informal language. In this paper, we make an extensive comparison of geocoder 

performance on unstructured location mentions within tweets. Using nine geocoders and a 

worldwide English-language Twitter dataset, we compare the geocoders’ recall, precision, 

consensus and bias values. As in previous similar studies, Google Maps showed the highest 

overall performance. However, with the exception of Google Maps, we found that 

geocoders which use open data have higher performance than those which do not. The 

open-data geocoders showed the least per-continent bias and the highest consensus with 

Google Maps. These results suggest the possibility of improving geocoder performance on 

unstructured locations by extending or enhancing the quality of openly available datasets. 
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1 Introduction  

Geocoding is omnipresent in our day-to-day lives. Tourists searching for nearby restaurants, 

emergency responders wanting to locate victims (Singh et al. 2019), or planners wanting to 

understand traffic flows (Das & Purves, 2020), to give but a few examples, all involve 

geocoding. However, generating accurate results is not a simple task but depends on various 

factors, including, among other things, the quality of the underlying reference database and 

the geocoder’s robustness in dealing with natural language (Karimi, Durcik & Rasdorf, 2004). 

Whilst most geocoders perform well on structured addresses, their performance decreases in 

the presence of unstructured or partial addresses that may also include spelling, syntax or 

formatting errors.  

This paper seeks to evaluate geocoder performance on unstructured locations, specifically ones 

embedded within tweets. We chose to use a Twitter dataset because of the existing need to 
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increase the percentage of tweets with a geographic location (Karami et al., 2021; Singh et al., 

2019). Additionally, the presence of geotagged tweets – that is, tweets with an attached GNSS 

position – allow for validating the geocoders’ performance. 

For studies seeking to geocode unstructured locations using off-the-shelf geocoders, we show 

which geocoders perform best on unstructured data and underline how the choice of geocoder 

can have a significant impact on the analysis.  

2 Related work 

Several studies have compared geocoder performance. Whitsel et al. (2006) assessed the quality 

of four commercial geocoders on 3,615 USA addresses. The authors found differences in 

geocoder performance and concluded that there was a need for an informed selection of 

geocoder. Lovasi et al. (2007) compared two geocoders, one using a single-stage method and 

the other a multi-stage one, on 8,157 Washington State addresses. They found that the multi-

stage geocoder performed better than the single-stage one. Roongpiboonsopit and Karimi 

(2010) arrived at the same conclusion after comparing Google, Geocoder.us, Microsoft Virtual 

Earth, MapQuest and Yahoo! Maps on a sample of USA addresses. More recently, Owusu et 

al. (2017) compared Google Maps and MapQuest to validate the geocoding results obtained 

from ArcGIS. The authors found that Google Maps performed better than MapQuest. 

While earlier studies carried out their comparisons on a small number of geocoders, on 

structured addresses, and on a limited geographical area, in this study we increase the number 

of geocoders for comparison and use a worldwide dataset with unstructured locations. To the 

best of our knowledge, no study has been done that matches the number of geocoders or the 

scale of our analysis on unstructured locations. 

3 Geocoder Selection 

Our first step was to select geocoders that could geocode unstructured locations on a global 

scale. For this, we restricted our selection to geocoders that had: 

 A well-documented API with free-of-charge trial access 

 Worldwide location coverage 

 An API limit of at least 1,000 requests per day 

 A client-side implementation in GeoPy1. 

Based on these criteria, we selected nine geocoders. Table 1 provides an overview of the 

geocoders selected. The open-data category indicates whether, to the best of our knowledge, 

the geocoder uses data that is openly accessible.  

                                                           
1 https://geopy.readthedocs.io/en/stable/#  

https://geopy.readthedocs.io/en/stable/
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Table 1: Overview of the selected geocoders. A dash ( – ) in the daily limit and monthly limit rows denotes 

an instance where the geocoder does not explicitly define a limit.  

Geocoder 
Bing 
Maps2 

Geolake3 
Geo-
Names4 

Google 
Maps5 

HERE6 MapTiler7 Nominatim8 
Open-
Cage9 

Tom-
Tom10 

Daily 
limit 

125,000 1,500 20,000 – 1,000 – Unlimited 2,500 2,500 

Monthly 
limit 

– – – 40,000 30,000 100,000 Unlimited 75,000 – 

Open 
data 

No No Yes No No No Yes Yes No 

4 Methodology 

The aim was to compare geocoder performance on unstructured locations mentioned within 
tweets. Figure 1 shows the overall methodology along with the corresponding sub-steps. We 
provide more details for each step in the sub-sections below. 

 

Figure 1: Five-step overall workflow  

Data extraction: We extracted a random sample of 125,000 tweets dated between August 
2021 and September 2022. To allow for evaluation of the geocoder results, we selected only 
posts with a GNSS position attached. We restricted our extraction to posts generated in 
English to minimize errors caused by multi-language models and avoid possible translation 
errors.  

                                                           
2 https://msdn.microsoft.com/en-us/library/ff701715.aspx 
3 https://geolake.com/  
4 https://www.geonames.org/  
5 https://developers.google.com/maps/documentation/geocoding/ 
6 https://www.here.com/  
7 https://www.maptiler.com/  
8 https://nominatim.org/  
9 https://opencagedata.com/api 
10 https://www.tomtom.com/  

https://msdn.microsoft.com/en-us/library/ff701715.aspx
https://geolake.com/
https://www.geonames.org/
https://developers.google.com/maps/documentation/geocoding/
https://www.here.com/
https://www.maptiler.com/
https://nominatim.org/
https://opencagedata.com/api
https://www.tomtom.com/
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Data preprocessing: Tweets are unstructured and noisy. Noisy elements in tweet text can 
degrade the performance of the models applied. We therefore pre-processed our extracted 
tweets by removing all emojis and URLs, posts that mentioned locations at some distance 
from the tweeter, posts with less than three words, and any duplicated posts. The pre-
processing step returned 113,363 tweets out of the 125,000 initially extracted.  

Location extraction: We extracted tweet locations using spaCy11, a pre-trained, syntax-based 
Named Entity Recognition Model (NER). It is an open-source library for Natural Language 
Processing and provides NER models in multiple languages and multiple sizes. For this study, 
we used spaCy version 3.1.1 (known as en_core_web_trf), a high-accuracy English-language 
model. Using spaCy, we extracted location mentions from 44,787 of the 113,363 pre-processed 
tweets.  

Location geocoding: We passed all extracted locations into our chosen geocoders (Table 1). 
Each geocoder returned a list of latitude and longitude value pairs for each successfully 
geocoded location.  

Result evaluation: We evaluated the performance of the geocoders by calculating four 
evaluation metrics, namely recall, precision, consensus and bias.  

- Recall: percentage of geocoded locations out of all locations that had been passed 
into the geocoder. 

- Precision: percentage of locations geocoded within a 100 km geodesic radius of the 
tweets’ GNSS positions out of the total number of successfully geocoded locations. 

- Consensus: percentage of locations geocoded within the same country for each pair 
of geocoders. 

- Bias: percentage of wrongly geocoded locations at continent level. 

5 Results 

Figure 2 shows the precision and recall values for the nine selected geocoders. It is apparent 
that geocoders vary in performance. Whilst MapTiler and Bing Maps showed recall values of 
over 90%, GeoNames, HERE and Geolake exhibited values of less than 60%. With regards 
to precision, whilst Google Maps returned over 82% of its geocoded locations within a 100 
km radius of the tweet’s GNSS position, MapTiler, TomTom and HERE returned less than 
50% of their geocoded locations within the same radius value. Overall, within a 100 km radius, 
Google Maps returned the highest precision value (82.50%), followed by Nominatim 
(67.33%), GeoNames (64.47%) and OpenCage (60.00%).  

 

                                                           
11 https://spacy.io/  

https://spacy.io/
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Figure 2: Precision and recall values for all geocoders over a distance of 100 km 

In the next step, we computed the consensus between each geocoder pair. Figure 3 shows the 
correlation matrix of these pairs. Overall, Nominatim and OpenCage returned the highest 
correlation value (98.24%). Geolake and HERE returned a correlation value of 96.61%. 
Google Maps returned values of 93.36% with Nominatim, 90.33% with GeoNames, 86.88% 
with OpenCage, and 85.34% with Bing Maps. The other geocoder pairs had correlation values 
of less than 85%. HERE and MapTiler showed the lowest consensus (61.5%) of all geocoders. 

 

Figure 3: Correlation matrix of country-level consensus values. The values on the tiles indicate the 

percentage of locations that the corresponding pair of geocoders classified into the same country. 
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Next, we computed the geocoder bias at continent level (see Figure 2). It is apparent that 
Geolake and HERE were highly biased towards North America. Geolake had about 14 times 
more bias and HERE approximately four times more bias towards North America in 
comparison to other continents. The other geocoders showed a lower magnitude of difference 
per continent: Google Maps and TomTom were more biased towards North America; 
Nominatim, MapTiler, Bing Maps and OpenCage were more biased towards Europe, and 
GeoNames towards Asia. 

 

Figure 2: Bias of geocoders at continent level. Higher values indicate a higher percentage of locations 

falsely classified into a particular continent. The continents are sorted by decreasing number of 

extracted tweets. 

6 Discussion and Conclusion 

The aim of this paper was to compare geocoder performance on unstructured locations. We 
compared nine geocoders on 44,747 unstructured locations extracted from a worldwide 
Twitter dataset. As already observed in previous studies, here too we found large differences 
in geocoder performance. Probably the most intriguing finding to emerge from our study 
was the high performance of open-data geocoders compared to geocoders with closed data, a 
finding that will be of interest to researchers seeking to enhance geocoder performance.  

With the exception of Google Maps, the three highest-performing geocoders are open-data 
based, namely Nominatim (67.3%), GeoNames (64.5%) and OpenCage (60.0%). This finding 
suggests the possibility of enhancing geocoder performance by improving the quality of openly 
available datasets such as the on-going OpenStreetMap mapping project. 
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Looking at geocoder consensus, it was interesting to see which geocoders had a high degree 
of agreement with Google Maps, the geocoder with the highest precision. Again, we found 
that the geocoders based on open data – Nominatim (93.4%), GeoNames (90.3%) and 
OpenCage (86.9%) – showed the highest levels of consensus. 

Geolake and HERE had the overall highest geocoder bias values, of 18.9% and 15.7% 
respectively. Both wrongly assigned a larger percentage of locations to North America, proving 
that some geocoders are biased towards certain geographical regions (Whitsel et al., 2006). We 
would like to stress that, whilst geocoder bias indicates in this case bias towards continents (i.e. 
assigning a location to the wrong continent), areas with low or zero bias do not indicate that 
the geocoder performs well in those areas. It could be that the geocoder fails to cover those 
regions and thus does not return any location (either correct or incorrect). This might be the 
case for Antarctica and Oceania, where the bias was mostly zero. 

With regards to the overall performance of each geocoder, we would like to point out that the 
values reported in this study relate exclusively to our input dataset. Changes in input data, by 
correcting location mentions (Clemens, 2018), dropping some locations, or using locations 
extracted from a different dataset, would produce different results (Whitsel et al., 2006). 

Although we aimed for a robust analysis, there were limitations in our workflow that may 
have affected the geocoders’ precision and recall values. We filtered remote locations (i.e. 
locations that do not coincide with the tweeters’ positions) using a list of keyword phrases 
adopted from Serere, Resch and Havas (2023). This method is not robust, however, and has a 
high miss rate which impacts geocoder precision. Future studies should consider more robust 
approaches, such as grammatical or syntax-based filtering.  

We used a syntax-based model, spaCy, to extract location mentions, which has the advantage 
of not being affected by spelling errors. A disadvantage, however, is that there is a substantial 
risk of false-positive locations, which then impacts the geocoder recall values. Future studies 
could consider cross-checking extracted locations by fuzzy-matching the extracted locations 
to a gazetteer before geocoding. 

In conclusion, the results of our study can be used as a guide for selecting the geocoder to use 
for unstructured locations. Using the right geocoder to geotag social media posts correctly 
would help increase the robustness of various spatial applications such as disaster mapping, 
mapping of refugee movements, or user sentiment analysis. Furthermore, geocoder providers 
could also make use of our findings to see where they might improve their services.  
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