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Abstract 

Snow avalanches threaten the safety of people and infrastructure, causing casualties and 

damage every year. Essential information about spatial distribution and size of avalanches, 

for mitigation measures, hazard mapping and forecasting, is currently incomplete. Long-

term avalanche monitoring over large regions can best be achieved using a space-borne 

synthetic aperture radar (SAR) system, which offers broad, all-weather coverage, day and 

night, ensuring data continuity. This study aims to assess the applicability of Sentinel-1 SAR 

data to semi-automatically detect avalanche debris in the western part of the Italian 

southern Tyrol, using the snow-rich period of January 2018 as a reference. Utilizing SAR data, 

avalanche debris was detected by identifying changes in backscatter caused by the rough 

snow in the avalanche’s run-out zone. Change detection was performed by comparing 

post- and pre-event Sentinel-1 SAR images and unsupervised object-based classification. 

79% of avalanches within the usable portions of the SAR images were correctly detected. 

Further investigation is required to assess the applicability of the proposed model on a 

regional scale. 
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1 Introduction  

Between 2018 and 2022, snow avalanches caused the deaths of 347 people, with 129 casualties 

in the winter season 2020–2021 alone in Europe (EAWS, 2023). Especially in densely 

populated mountainous regions, these events can be extremely destructive, endangering 

people and infrastructure (Yang et al., 2020). 

Forecasting, by predicting snow instability in space and time, is currently the most important 

measure to mitigate hazards and avoid exposure to avalanches (McClung, 2002). In the Alps, 

forecasting is implemented through a regional bulletin, issued daily during the winter months, 

which informs people about the current danger level (avalanche.report/bulletin/latest). 
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This forecasting system could be improved by integrating knowledge about past avalanche 

events. This could allow better understanding of the distribution and occurrence of avalanches 

over broader temporal and spatial scales, and the recognition of patterns and of zones with 

recurrent danger (Hafner et al., 2021), as well as hazard mapping and forecasting (Muller et al., 

2021). The resulting database containing information about avalanche debris distribution over 

an entire winter season could deepen the knowledge of danger zones, thus creating a reliable 

base to improve safety for people and infrastructure in the mountains. 

Target physical properties, such as surface roughness and dielectric properties, can affect SAR 

backscatter data (Kumar et al., 2022). Changes in backscatter values in SAR images taken 

before the avalanche happened (baseline images) and post-event can be used to distinguish 

between smooth and rough snow. Sentinel-1 SAR data can be used to detect only the run-out 

zone of an avalanche – that is, the bottom section where snow debris piles up and produces a 

rough surface that reflects radar waves differently from the surrounding undisturbed snow 

(Leinss et al., 2020). 

Hazard mapping using multitemporal SAR images for avalanche detection is not new, but in 

its early stages it relied mainly on expert interpretation (Wiesmann et al., 2001). More recently, 

classification and segmentation algorithms have been developed to automatically identify 

avalanche debris. For example Wesselink et al. (2017) used an automatic detection algorithm 

based on backscatter thresholding, but the method has the drawback of marked over-

detection. Vickers et al. (2017) used change detection and K-means classification, and applied 

improved filtering on images to obtain satisfactory detection results. Eckerstorfer et al. (2019) 

used a near-real-time detection system that achieves 79% accuracy in cases of medium to large 

avalanches. The system is already operational in some regions of Norway. Hafner et al. (2021) 

evaluate performance and completeness by comparing optical and radar imagery and confirm 

the reliability of Sentinel-1 SAR data for avalanche detection. Recent work has applied deep 

learning methods for avalanche detection in SAR images. Sinha et al. (2019), for example, used 

convolutional neural networks to locate avalanche debris signatures on SAR image patches. 

Bianchi et al. (2021) applied the same method but approached the segmentation task at the 

pixel level instead of the patch level, making the segmentation independent of the window 

size. While these methods are very promising, they rely on expert labelling, which brings 

limitations, including reliability, availability of an expert to train large datasets, and difficulties 

in differentiating between new avalanches and (still visible) old ones. Sinha et al. (2019) 

proposed deep unsupervised learning using a variational auto-encoder as a new benchmark in 

avalanche detection that outperforms previous methods. Although labelled data is required 

only in the validation phase, a form of training by an expert is still necessary.  

This study aims to create a model to semi-automatically identify avalanche debris in the 

western part of the southern Tyrol using Sentinel-1 (C-band) SAR data and unsupervised 

object-based classification. The results were compared to reference maps from officially 

reported avalanches in order to assess their accuracy and reliability.  
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Avalanche detection can also be performed successfully using optical imagery, as in the 

automatic detection model based on SPOT 6/7 data using deep learning (Hafner et al., 2022). 

However, in order to ensure data continuity and broad coverage, we deliberately focused on 

the potential of SAR data, as the applicability of optical data is limited in areas with high cloud 

coverage. Furthermore, we aimed for maximum automation of the avalanche detection model, 

which made the choice of SAR data sensible.  

2 Materials and Methods 

The study area is located in the western part of the southern Tyrol, in the northern Italian 

Alps, close to the border with Austria (Figure 1). It covers approximately 2,000 km2, 

comprising inhabited alpine valleys used for fruit tree cultivation and pastures, which are 

surrounded by peaks reaching 3,000 metres above sea level. The analysis was carried out for 

January 2018 because of the high amount of snow that fell in a short period, making the levels 

of fresh snow accumulation greater than average.  

Today’s pupils will live in cities that are organized in a fundamentally different way compared 

to present urban spaces. They will live in smart cities. Three developments have facilitated the 

spread of the smart city: more efficiently. Ideally, citizens have more influence through e-

participation in governmental decisions (Mandl & Zimmermann-Janschitz, 2014, p. 616).  

 

Figure 1: The study area, in the western part of the southern Tyrol, north-eastern Italian Alps. 
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For the investigation period, a baseline image (no avalanche) from 11/01/2018 was selected 
and compared to a post-event image from 23/01/2018. In the later image, pixels that show an 
increase in backscatter are likely to indicate a zone of avalanche debris, since scattering 
increases with surface roughness. No relevant avalanche activity could be expected on the 
11/01/2018 based on meteorological data and precipitation records. Furthermore, all reported 
avalanches were recorded after the 15/01/2018.  

We used freely available Sentinel-1 SAR data from European Space Agency Copernicus, with 
Ground Range Detected Interferometric Wide swathe, and images in vertical-vertical (VV) 
and vertical-horizontal (VH) polarizations. We used constellations from Sentinel-1 SAR A and 
B to reduce the temporal baseline to six days; the ascending flight direction (south–north) was 
chosen for analysis, since complete coverage of the investigation area is guaranteed by always 
using the same orbital path and frame for Sentinel-1 satellites A and B. The minimum mapping 
unit that Sentinel-1 SAR data make possible is directly connected to the available spatial 
resolution of 20 metres. Avalanche debris less than 20 metres wide cannot be reliably detected. 

The pre-processing of the SAR data included orbit file correction, calibration, terrain 
correction, and transforming pixel values into decibels using SNAP software. To perform 
change detection, Sentinel-1 SAR image pairs of a baseline image and a post-event image 
twelve days later (where avalanches could potentially be present) were created. A median filter 
was applied to reduce noise but preserve edges (Leinss et al., 2020). Change detection was 
done for each polarization band (i.e., VV and VH) separately, by subtracting the baseline image 
from the post-event image. In the next step, iterative self-organizing (ISO) and K-means data 
analysis techniques were applied to produce classes consisting of pixel clusters with similar 
mean backscatter values. This task was performed using the semi-automatic classification 
plugin in QGIS (Congedo, 2023). To improve the results, a classification sieve was applied, 
using a threshold size of one pixel (corresponding to 40 square metres); avalanches smaller 
than this are not considered dangerous for people (Eckerstorfer et al., 2019). This method 
removes small clusters from the classification by replacing isolated pixels with the values of 
the largest neighbour patch. The resulting classes were analysed, and a binary class of avalanche 
and non-avalanche pixels areas was created. 

In the next step, classification results were refined by minimizing the errors due to (a) 
topography, and (b) SAR side-looking geometry. For the former, information was derived 
from a very-high-resolution digital elevation model (DEM) showing slope and run-out zones 
(where debris is likely to be found). To minimize geometry-related error, information for 
shadow and layover was used (i.e. where the SAR signal could not reach the earth’s surface). 
Some slopes are too steep for avalanche debris to accumulate. Consequently, except for very 
small avalanches, the limit can be set at 35° (Bühler et al., 2009). Slopes steeper than that were 
masked out. An avalanche run-out zone can be inferred using a dedicated toolbox, ‘Terrain 
Analysis Using Digital Elevation Models’ (TauDEM) (Tarboton, 2023) and the potential 
release area (PRA). The TauDEM toolbox comprises tools for extracting and analysing 
hydrological information from topography; it also has a specialized function that evaluates 
potential avalanche run-out zones. PRA is calculated using a Python script (Bertschinger, 
2022), based on Bühler et al. (2018), which uses parameters such as terrain slope and curvature. 
The avalanche run-out zone is therefore the target area for the semi-automatic avalanche 
debris detection. Finally, shadow and layover areas in the satellite image, where the SAR signal 
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could not reach the earth’s surface due to the angle of the radar beam in relation to the 
mountainous terrain, were masked out, since they contain no useful data. The methodology 
workflow is summarized in Figure 2.  

 

Figure 2: Overall methodology applied to Sentiel-1 SAR images to obtain avalanche debris polygons 

3 Results 

After a significant amount of snow fell within a few days, 23 avalanches were reported within 
the investigation area on 22 January 2018. However, as only events causing damage or 
casualties are reported, it is possible that many more avalanches occurred during those few 
days.  

The results showed that 20% more avalanches could be correctly identified using the VH 
cross-polarization band compared to the VV co-polarization band. These results are in line 
with the literature (e.g. Wesselink et al. (2017)), which states that VH polarization is generally 
more susceptible than VV polarization to surface scattering produced by rough avalanche 
debris. 

A visual inspection of the results showed that a large number of avalanches were located at 
lower altitudes, beneath densely forested areas. These lower altitudes often coincide with 
cultivated meadows that are known to be sensitive to changes in backscatter values when 
covered by snow (Eckerstorfer et al., 2019), a sensitivity which could lead to false positives in 
the detection of avalanches at these lower levels. The results were therefore refined by masking 
out the avalanches below the forests (the forests in this region grow at approximately 2,000m 
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upwards). The knock-on effect of this measure is that avalanches occurring below 2,000m will 
be missed. 

Of the avalanches reported, 30% were correctly detected, 13% were missed, and 21% lay 
within the masked-out areas. 34% of avalanches were partially detected. A partial detection 
happens when small, discontinuous patches of avalanche debris are identified within the 
confines of a reported avalanche, without them covering the whole expected run-out zone. 

An example of a correctly identified avalanche can be seen in Figures 3 and 4. 

 

Figure 3: Avalanche debris identified by the classification process. Hillshade background derived from 

a 5-metre DEM made available by the local authorities (Suedtiroler Buergernetz, 2023). 
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Figure 4: Avalanche debris identified by the classification process. Hillshade background derived from 

a 5-metre DEM made available by the local authorities (Suedtiroler Buergernetz, 2023). 

Figure 5 shows how avalanche debris identification is carried out using SAR data. In this case, 
a composite colour image has been used to show increase in backscatter values in green, and 
decrease in backscatter values in purple. In the manual avalanche detection process, referred 
to as RGB differentiation, a composite image is constructed of the red and blue channels 
(containing the reference image), and the green channel (which contains the avalanche activity 
image). Pixels that show increased backscatter values between the baseline image and post-
event image appear green; pixels with decreased backscatter appear purple; pixels that 
witnessed no change appear grey. The red polygon represents a reported avalanche and is used 
as a reference to show where increased values of backscatter are to be expected. 
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Figure 5: Comparison of a reported avalanche (left) with two SAR images, in false colour composite. 

Green shows an increase in backscatter values, purple a decrease in backscatter values. Centre: VV 

polarization; right: VH polarization.  

4 Discussion and Conclusions 

The avalanche detection model is able to locate only the run-out zone of an avalanche, i.e. the 
lower third, where snow stops and piles up (Figure 3). The model proves to be reliable, since 
79% of the officially reported avalanches were detected from SAR images. This is in line with 
Hafner et al. (2021) who, using the same methodology, reported that 50%–74% of avalanches 
were correctly identified. Missed detection of avalanche debris, amounting to 21% of the total 
reported avalanches, could be due to avalanche debris shape and size, or SAR imagery 
limitations such as shadow and overlay. Avalanche debris that is sub-pixel level in size cannot 
be detected reliably (Eckerstorfer et al., 2019). Therefore, avalanche debris less than 40m wide 
was eliminated to reduce the false alarm rate. This may, however, have led to missed avalanche 
detections. Higher spatial resolution SAR data needs to be investigated to address this issue. 
Furthermore, avalanche debris that is elongated in shape cannot be detected, even if its size is 
considerable.  

Of the avalanches identified, 46% were fully detected, while 54% were partially detected. As 
21% of reported avalanches lay within the masked-out areas, only 13% of the total were missed 
entirely. Classifications performed using the ISO and K-means methods produced very similar 
results: K-means clustering identified 2% more pixels belonging to the class ‘avalanche’; 
however, the final number of avalanches identified was the same whether ISO or K-means 
was used. 

The analysis revealed some limitations in avalanche detection, as described in more detail 
below.  

False positives: One major problem are avalanches spotted on agricultural land: as the 
method is sensitive to surface roughness change, it can lead to false positives because it is not 
possible to determine whether the ground is covered with dry snow or no snow based on C-
band SAR data (Eckerstorfer et al., 2019). Another cause for false detection is the 
transformation of snow from wet to dry due to meteorological conditions. Since the snow-
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pack tends to become consolidated in dry conditions, such days could be excluded from 
analysis as avalanches can generally be ruled out in these conditions (Tompkin & Leinss, 2021). 

Verification: Officially reported and mapped avalanches are too few in number to produce a 
reliable verification process. Field validation would be needed to confirm the results of the 
model, but the remoteness and inaccessibility of the areas analysed are major obstacles. High-
resolution (less than 10m) space-borne optical images could be used to confirm detected 
events. Data from the Pléiades-HR satellite launched by the French National Centre for Space 
Studies with 0.5m resolution could be used for this purpose. 

The model tested in this research returns satisfactory results and could be applied regionally 
for the semi-automatic detection of avalanches. However, further improvements are needed 
to assess its reliability. For example, local resolution weighting could be applied on backscatter 
images to increase avalanche brightness, and to improve image coverage and resolution before 
classification (Tompkin & Leinss, 2021). Another approach that promises improved 
performance involves the application of K-means classification to SAR images before change 
detection is performed (Vickers et al., 2017). Lastly, the reliability of the proposed workflow 
should be assessed by applying it on larger spatial and temporal scales, e.g. for the whole region 
of the southern Tyrol during an entire winter season. 

References  

Bertschinger, T. (2022). Automated mapping of potential snow avalanche release areas (PRAs). 
https://github.com/unibe-geodata-modelling/2018-snow-avalanches-sources 

Bianchi, F.M., Grahn, J., Eckerstorfer, M., Malnes, E. and Vickers, H. (2021). Snow Avalanche 
Segmentation in SAR Images with Fully Convolutional Neural Networks. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 14, pp. 75–82. Available at: 
https://doi.org/10.1109/JSTARS.2020.3036914. 

Bühler, Y., Hüni, A., Christen, M., Meister, R., & Kellenberger, T. (2009). Automated detection and 
mapping of avalanche deposits using airborne optical remote sensing data. Cold Regions Science and 
Technology, 57(2–3), 99–106. https://doi.org/10.1016/j.coldregions.2009.02.007 

Bühler, Y., von Rickenbach, D., Stoffel, A., Margreth, S., Stoffel, L., & Christen, M. (2018). 
Automated snow avalanche release area delineation – validation of existing algorithms and 
proposition of a new object-based approach for large-scale hazard indication mapping. Natural 
Hazards and Earth System Sciences, 18(12), 3235–3251. https://doi.org/10.5194/nhess-18-3235-2018 

Congedo, L. (2023). Semi-Automatic Classification Plugin. 
https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/ 

EAWS. (2023). European Avalanche Warning Services. Fatalities. https://www.avalanches.org/fatalities/ 
Eckerstorfer, M., Vickers, H., Malnes, E., & Grahn, J. (2019). Near-Real Time Automatic Snow 

Avalanche Activity Monitoring System Using Sentinel-1 SAR Data in Norway. Remote Sensing, 
11(23), 2863. https://doi.org/10.3390/rs11232863 

Hafner, E. D., Barton, P., Daudt, R. C., Wegner, J. D., Schindler, K., & Bühler, Y. (2022). Automated 
avalanche mapping from SPOT 6/7 satellite imagery with deep learning: Results, evaluation, 
potential and limitations. The Cryosphere, 16(9), 3517–3530. https://doi.org/10.5194/tc-16-3517-
2022 

Hafner, E. D., Techel, F., Leinss, S., & Bühler, Y. (2021). Mapping avalanches with satellites – 
evaluation of performance and completeness. The Cryosphere, 15(2), 983–1004. 
https://doi.org/10.5194/tc-15-983-2021 



Sartori et al. 

68 
 

Kumar, S., Narayan, A., Mehta, D., & Snehmani. (2022). Snow cover characterization using C-band 
polarimetric SAR in parts of the Himalaya. Advances in Space Research, 70(12), 3959–3974. 
https://doi.org/10.1016/j.asr.2022.10.012 

Leinss, S., Wicki, R., Holenstein, S., Baffelli, S., & Bühler, Y. (2020). Snow avalanche detection and 
mapping in multitemporal and multiorbital radar images from TerraSAR-X and Sentinel-1. Natural 
Hazards and Earth System Sciences, 20(6), 1783–1803. https://doi.org/10.5194/nhess-20-1783-2020 

McClung, D. M. (2002). The Elements of Applied Avalanche Forecasting, Part II: The Physical Issues 
and the Rules of Applied Avalanche Forecasting. Natural Hazards, 26(2), 131–146. 

https://doi.org/10.1023/A:1015604600361 
Muller, K., Eckerstorfer, M., Grahn, J., Malnes, E., Engeset, R., Humstad, T., & Widforss, A. (2021). 

Norway’s Operational Avalanche Activity Monitoring System Using Sentinel-1. 2021 IEEE 
International Geoscience and Remote Sensing Symposium IGARSS, 236–238. 
https://doi.org/10.1109/IGARSS47720.2021.9553152 

Sinha (2019). Can Avalanche Deposits be Effectively Detected by Deep Learning on Sentinel-1 
Satellite SAR Images? 

Suedtiroler Buergernetz. (2023). GeoKatalog. http://geokatalog.buergernetz.bz.it/geokatalog/#! 
Tarboton, D. (2023). Terrain Analysis Using Digital Elevation Models (TauDEM). 

https://hydrology.usu.edu/taudem/taudem5/ 
Tompkin, C., & Leinss, S. (2021). Backscatter Characteristics of Snow Avalanches for Mapping With 

Local Resolution Weighting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, 14, 4452–4464. https://doi.org/10.1109/JSTARS.2021.3074418 

Vickers, H., Eckerstorfer, M., Malnes, E., & Doulgeris, A. (2017). Synthetic Aperture Radar (SAR) 
Monitoring of Avalanche Activity: An Automated Detection Scheme. In P. Sharma & F. M. 
Bianchi (Eds.), Image Analysis (Vol. 10270, pp. 136–46). Springer International Publishing. 
https://doi.org/10.1007/978-3-319-59129-2_12 

Wesselink, D.S., Malnes, E., Eckerstorfer, M. and Lindenbergh, R.C. (2017). Automatic detection of 
snow avalanche debris in central Svalbard using C-band SAR data. Polar Research, 36(1), p. 1333236. 
Available at: https://doi.org/10.1080/17518369.2017.1333236. 

Wiesmann, A., Wegmuller, U., Honikel, M., Strozzi, T., & Werner, C. L. (2001). Potential and 
methodology of satellite based SAR for hazard mapping. IGARSS 2001. Scanning the Present and 
Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. 
No.01CH37217), 7, 3262–64. https://doi.org/10.1109/IGARSS.2001.978322 

Yang, J., Li, C., Li, L., Ding, J., Zhang, R., Han, T., & Liu, Y. (2020). Automatic Detection of Regional 
Snow Avalanches with Scattering and Interference of C-band SAR Data. Remote Sensing, 12(17), 
2781. https://doi.org/10.3390/rs12172781 

 


