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Abstract 

Landslides are among the most serious geological hazards in mountainous and hilly areas of 

New Zealand, where they frequently cause significant damage and landscape changes. 

Monitoring the evolution of landslides and their consequences can help to mitigate hazards 

that could arise in later reactivation phases or in similar cases. The abundance of time-series 

remote sensing data has facilitated the mapping and monitoring of landslides. By applying 

object-based image analysis (OBIA) and using Sentinel-2 satellite data from 2017 to 2021, we 

aim to semi-automatically map the evolution of the Kaiwhata landslide and the subsequent 

impacts on the upstream area in the Wairarapa region in New Zealand. The OBIA mapping 

results revealed a gradual increase in the landslide area, with two major changes in June 

2019 and November 2020. These major changes were followed by the formation of 

temporary landslide-dammed upstream lakes along the Kaiwhata river. 

Keywords: 
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1 Introduction  

Natural hazards such as landslides can cause severe damage to infrastructure, human 

settlements and land (Alexander, 2005). A landslide (or ‘landslide failure’) is defined as the 

downward or outward displacement of debris (i.e. rock, soil and sediments) due to gravity 

(Cruden, 1991). A landslide can be triggered by natural events such as volcanic eruptions, 

earthquakes and intense rainfall, or human interventions, including road construction and land 

use changes (Hölbling et al., 2016). New Zealand’s geomorphological characteristics provide 

ideal conditions for massive landslides, leading to costs of approximately $250 to $300 million 

a year (Rosser et al., 2017). The risk of landslides must not be ignored, not only because of the 

threat of damage to the immediate environment, but also because of potential knock-on 

incidents (Dabiri et al. 2020). Geomorphological features such as the Kaiwhata landslide can 
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block water courses, creating landslide-dammed lakes, resulting in a high level of risk for both 

the downstream and the upstream areas. 

Compared to traditional field measurements, which are time-consuming and expensive (Abad 

et al., 2022), Earth Observation (EO) data have enabled more efficient monitoring of 

landslides and related hazard analysis. The now-multiple sources of optical imagery (including 

high-resolution (HR) and very high-resolution (VHR) satellite images, unmanned aerial 

vehicles (UAVs), synthetic aperture radar (SAR) data, and LiDAR data) can readily be drawn 

on in studies at different scales related to landslide recognition, inventory mapping, monitoring 

and change detection, susceptibility mapping, landslide volume estimation and so on (Mondini 

et al., 2021; Guzzetti et al., 2012; Xun et al., 2022; Hölbling et al., 2017; Karantanellis et al., 

2020; Pawłuszek et al., 2019). The abundance of available satellite data highlights the value of 

EO data in enabling a better understanding of landslides, including their distribution, size and 

type, and facilitates time-series analysis of subsequent changes and the extent of damage 

(Hölbling, 2022). 

Developments in remote sensing, and semi-automated and automated image analysis have 

improved the possibility of mapping landslides with less human interaction (Amatya et al., 

2021). Object-based image analysis (OBIA) mimics human perception by aggregating a set of 

pixels into meaningful objects with defined homogeneity (Blaschke, 2010). OBIA 

demonstrates advantages over pixel-based approaches for mapping the extent, types and 

distribution of complex natural features such as landslides, which consist of twisted textures 

and extreme spectral heterogeneity (Hölbling et al., 2015). Landslide characteristics are not 

limited to their spectral signatures, and their topographic, morphological and contextual 

features must also be considered (Martha et al., 2010). The advances in OBIA stem from the 

multi-scale integration of spectral information (colour), spatial properties (e.g., size, shape), 

textural data (e.g., surface disturbance difference), and contextual information (e.g., 

relationship with neighbouring objects) (Blaschke et al., 2014). Used in conjunction with other 

datasets, such as a Digital Elevation Model (DEM) and its derivatives, OBIA has provided 

promising results in landslide mapping and change analysis (Hölbling, 2022; Martha et al., 

2016; Blaschke et al., 2014; Amatya et al., 2021; Karantanellis et al., 2020). With these 

considerations in mind, this study aims to analyse the evolution of the Kaiwhata landslide and 

its impacts on the landscape in Wairarapa, New Zealand, using semi-automated OBIA and 

time series of Sentinel-2 images from 2017 to 2021. 

2 Study Area 

The study area is located in the south of New Zealand’s North Island, in the Wairarapa region, 

east of Wellington (Figure 1). It covers 9.7 km² and is characterized by the Kaiwhata River, 

which flows southeast to the Pacific Ocean. The topography of the study area ranges from 

10m to 500m a.s.l. It is covered mainly by grassland and forest, and is accessed by the Kaiwhata 

road. 
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Figure 1: (a) Location of the study area in the south of North Island, New Zealand (background data: © 

ESRI); (b) Study area seen in a Sentinel-2 satellite image from 11 November 2020. 

The initial landslide failure that occurred in 2017 in the Kaiwhata valley was comparatively 

small. The second, in June 2019 (Figure 2), was significantly larger. According to Morgenstern 

et al. (2021), the debris formed a dam, which lasted approximately two weeks, created an 

extensive upstream lake, and closed the Kaiwhata road. Due to the rising level of the lake, 

which overtopped the dam, the formation of a minor water channel flowing down the valley, 

and the types of material that had accumulated, the dam failed, releasing around 1.1 million m³ 

of water in less than two hours to the area downstream (Morgenstern et al. 2021). 
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Figure 2: (a) South-to-north view of the second landslide failure (photograph: © B. Rosser; June 2019); 

(b) the landslide formed a dam and blocked the river (photograph: © R. Morgenstern; June 2019); (c) 

a lake was formed upstream and flooded the land and infrastructure (photograph: © R. Morgenstern; 

June 2019) (Rosser, 2019a); (d) the dam failed and an enormous amount of water was released (Rosser, 

2019b)(photograph: © R. Morgenstern; June 2019). 

 

Figure 3: (a) South-to-north view of the third landslide failure (photograph: © M. Anselm; November 

2020); (b) the landslide formed a dam and blocked the river (the landslide-dammed lake is visible on 

the left) (photograph: © Lithofile; November 2020); (c) a lake was formed upstream and flooded the 

land and infrastructure (photograph: © M. Anselm; November 2020); (d) the dam failed and an 

enormous amount of water was released (photograph: © GNS; December 2020). 
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The cycle repeated itself in November 2020 (Figure 3) when the landslide was reactivated after 
heavy rainfall, causing damage to adjacent properties, lands, the main road and other 
infrastructure (Anselm, 2020). Subsequently, the landslide-dammed lake overtopped the dam, 
and the dam failed. 

3 Data 

3.1 Optical Satellite Data 

The satellite images used in this study cover a series of Kaiwhata landslide events and 
evolutions from 2017 to 2021. We used a time series of Sentinel-2 images with 10m spatial 
resolution and Red, Green, Blue (RGB) and Near-infrared (NIR) bands. In addition, we used 
one PlanetScope satellite image, provided by Planet, with four spectral bands (RGB and NIR) 
and 3m spatial resolution (Table 1). We used the PlanetScope image because there was no 
available Sentinel-2 image with low cloud coverage showing the significant changes for the 
desired date (between 1st and 13th of June 2019). We selected the images based on visual 
inspection; changes could be seen by comparing the images from the different dates 
recognized compared to the previous date; cloud cover was taken into consideration.  

Table 1: Satellite images used for the analysis 

Sensor, Product Date Event Description 

Sentinel-2B MSI, Level 1-C  13 October 2017 First Landslide Failure 

Sentinel-2B MSI, Level 1-C 16 January 2018 

Sentinel-2A MSI, Level 1-C 13 September 2018 

Sentinel-2A MSI, Level 1-C 12 November 2018 

PlanetScope MSI 8 June 2019 Second Landslide Failure  

Sentinel-2A MSI, Level 1-C 18 September 2019 

Sentinel-2B MSI, Level 1-C 12 December 2019 

Sentinel-2A MSI, Level 1-C 11 November 2020 Third Landslide Failure 

Sentinel-2A MSI, Level 1-C 1 December 2020 

Sentinel-2B MSI, Level 1-C 15 January 2021 

3.2 Topographic Data 

The Land Information New Zealand (LINZ) Data Service provides open-source topographic 
and cadastral data, in addition to various other datasets. Through this platform, we acquired 
the Wellington region DEM with 1m spatial resolution, derived from LiDAR data from 2013 
and 2014. Although the available data do not cover the overall timeframe of interest, the DEM 
and its derivatives, such as slope and aspect, were inserted as auxiliary data and helped to 
distinguish landslide and landslide-dammed lake areas from other areas. 
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4 Methodology 

OBIA was applied to semi-automatically map the Kaiwhata landslide on each Sentinel-2 and 
PlanetScope image. In this context, ‘semi-automatic approach’ refers to a process that involves 
a combination of automated and manual steps to analyse image data (Blaschke, 2010). It entails 
using computer algorithms to automatically segment an image into meaningful objects and to 
define classification parameters based on expert knowledge and visual interpretation. The 
analyses were executed using eCognition (Trimble) software. The workflow consisted of multi-
scale segmentation and knowledge-based classification rules to map the landslide and the 
landslide-dammed lake on each image. The classification rules and parameters were developed 
continuously from the first image to the subsequent ones, following the evolution of the 
landslide and the landslide-dammed lake area themselves.  

In the first step, the normalized difference vegetation index (NDVI), normalized difference 
water index (NDWI), soil-adjusted vegetation index (SAVI), and brightness layer were 
calculated. Next, we applied multi-resolution segmentation (Baatz & Schäpe, 2000) to create 
image objects as the basis for classification. The scale parameter and homogeneity criteria 
(shape vs. colour, compactness vs. smoothness) define the size and shape of the image objects. 
The segmentation parameters were determined based on expert trial and error and visual 
assessment of the image objects, and taking the spatial resolution of the images into 
consideration (Table 2). 

Table 2: Segmentation and classification parameters used for object-based landslide and landslide-

dammed lake mapping 

Event 
Description 

Data Class Parameters for 
Multiresolution 
Seg2mentation 

Layers for 
Segmentation 

Main 
Classification 
Parameters 

First 
Landslide 
Activity 

Sentinel-2 
(13 October 

2017) 

Landslide Scale Parameter: 
250; 

Shape criterion: 
0.1; 

Compactness 
criterion: 0.4 

blue, green, 
red, NIR, 
brightness 

NDVI < 0.5 
DEM > 200 

Sentinel-2 
(16 January 

2018) 

Landslide Scale Parameter: 
250; 

Shape criterion: 
0.1; 

Compactness 
criterion: 0.4 

blue, green, 
red, NIR, 
brightness 

NDVI < 0.45 
DEM > 195 

Sentinel-2 
(13 

September 
2018) 

Landslide Scale Parameter: 
250; 

Shape criterion: 
0.1; 

Compactness 
criterion: 0.4 

blue, green, 
red, NIR, 
brightness 

NDVI < 0.45 
DEM > 195 
Slope > 24 
Aspect < 185 
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Sentinel-2 
(12 

November 
2018) 

Landslide Scale Parameter: 
250; 

Shape criterion: 
0.1; 

Compactness 
criterion: 0.4 

blue, green, 
red, NIR, 
brightness 

First Part: 
NDVI < 0.5 
DEM > 190 

 
Second Part: 
NDVI < 0.5 

Mean Slope > 
30 

DEM > 30 
Mean Aspect < 

190 
Relative 

Border First 
Border = 0 

Mean 
Brightness > 

1000 
Distance to 
First Part < 

0.5 km 

Second 
Landslide 
Activity 

PlanetScope 
(8 June 
2019) 

 
 
 
 
 

Landslide Scale Parameter: 
50; 

Shape criterion: 
0.3; 

Compactness 
criterion: 0.6 

blue, green, 
red, NIR, 

brightness, 
NDVI, SAVI 

NDVI < 0.5 
DEM > 30 

Slope > 24 
Aspect < 201 
SAVI < 0.7 

Landslide-
dammed 
Lake 

Scale Parameter: 
25; 

Shape criterion: 
0.1; 

Compactness 
criterion: 0.4 

NDWI, DEM, 
slope 

NDVI < 0.5 
NIR < 1300 
NDWI > -0.5 

Sentinel-2 
(18 

September 
2019) 

Landslide First part: 
Scale Parameter: 

250; 
Shape criterion: 

0.1; 
Compactness 

criterion: 0.4 
 
 

Second part: 
Scale Parameter: 

10; 
Shape criterion: 

0.1; 
Compactness 

criterion: 0.4 

blue, green, 
red, NIR, 
brightness 

 
 
 
 
NDVI, NDWI 

NDVI < 0.5 
DEM > 30 

Slope > 24 
Aspect < 201 

Mean 
Brightness > 

700 
 

NDVI < 0.3 
NDWI < 0 

Slope < 24 
DEM < 200 
Relative 
Border to 

First part > 
0.25 

 

Sentinel-2 
(12 

December 
2019) 

Landslide First part: 
Scale Parameter: 

250; 
Shape criterion: 

0.1; 
Compactness 

criterion: 0.4 

blue, green, 
red, NIR, 
brightness 

NDVI < 0.5 
DEM > 30 

Slope > 24 
Aspect < 225 

Mean 
Brightness > 

700 
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Second part: 

Scale Parameter: 
10; 

Shape criterion: 
0.1; 

Compactness 
criterion: 0.4 

 
NDVI, NDWI 

 
NDVI < 0.3 
NDWI < 0 

Slope < 24 
DEM < 200 
Relative 
Border to 

First part > 
0.25 

Third 
Landslide 
Activity 

Sentinel-2 
( 11 

November 
2020; 1 
December 
2020; 15 
January 
2021) 

Landslide First part: 
Scale Parameter: 

250; 
Shape criterion: 

0.1; 
Compactness 

criterion: 0.4 

blue, green, 
red, NIR, 
brightness 

NDVI < 0.5 
DEM > 30 

Slope > 24 
Aspect < 225 

Mean 
Brightness > 

700 

 
Second part: 

Scale Parameter: 
10; 

Shape criterion: 
0.1; 

Compactness 
criterion: 0.4 

 
NDVI, NDWI 

 
NDVI < 0.3 
NDWI < 0 

Slope < 24 
DEM < 200 
Relative 
Border to 

First part > 
0.25 

Landslide-
dammed 
Lake 

Scale Parameter: 
10; 

Shape criterion: 
0.1; 

Compactness 
criterion: 0.4 

NDWI, DEM, 
slope 

NDVI < 0.5 
NIR < 1300 
NDWI > -0.5 

For segmentation of the landslide area, we used the four multispectral bands and the brightness 
layer. Since the characteristics of the deposition zone of the landslide area and the riverbed 
were similar, we executed another segmentation on the unclassified objects to create 
homogeneous objects based on the NDWI and NDVI indices. This helped us to better map 
the total landslide area. We also applied a further segmentation on the unclassified objects for 
the landslide-dammed lake area based on the NDWI, the DEM and the slope. 

The knowledge-based classification was based mainly on the spectral indices calculated. The 
main feature of the landslide area is the absence of vegetation. Such landslide-affected areas 
can be distinguished from their surroundings by applying spectral indices such as NDVI and 
the brightness layer. We also used the relatively low NDWI value to distinguish the deposition 
area of the landslide from the riverbed. For the mapping of the lake area, we applied relatively 
low near-infrared and NDVI values, and higher NDWI values. The DEM and its derivatives 
were used as auxiliary data to avoid the classification of false positives – for example, to 
distinguish the landslide area from the riverbed. The classification parameters and values were 
assigned based on expert knowledge, information from the literature, and trial and error. 
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5 Results and Discussion 

5.1 OBIA Landslide Mapping 

The results of the semi-automatically mapped Kaiwhata landslide and landslide-dammed lake 
areas are shown in Figure 4. The figure shows the significant changes in the landslide area, the 
formation of the landslide-dammed lake, and the changes in the lake area during the landslide 
evolution. The PlanetScope image for 8 June 2019 used in the analysis is visualized as a false-
colour image to better show the flooded area. Most of the landslide area is covered by shadows 
during the summer, due to its particular topography. 

The images from 2017 and 2018 reflect slight changes in the extent of the initial landslide, 
showing how it evolved continuously. The landslide was activated in two separate but adjacent 
areas. Over time, these areas evolved and the vegetation between them became more sparse. 
The image from 16 January 2018 shows that the two separate landslides had reached each 
other; however, vegetation persisted between the adjacent parts and we excluded it from the 
landslide. The vegetated area had diminished in the image from 13 September 2018 and the 
landslide had become relatively unmixed. The topographic features of the area and the 
precipitation created two streams of water from the upper part, which caused erosion and 
incision, resulting in new small landslips that are visible in the image from 12 November 2018. 
The erosion continued over time and destabilized the entire slope, probably leading to the 
second landslide failure. 

The second landslide failure, in summer 2019, resulted in the formation of a landslide-dammed 
lake, because the debris flow reached the Kaiwhata riverbed and blocked the stream. The main 
landslide expanded and merged into the smaller ones. According to Morgenstern et al. (2021), 
intense rainfall triggered the landslide and hence created the landslide-dammed lake, which 
existed for two weeks. This scenario also occurred in 2020, with a third landslide failure and a 
larger lake, which this time persisted for more than six weeks until the dam failed. Figure 5 
presents information regarding the evolution of the Kaiwhata landslide and the landslide-
dammed lake area for each date. 
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Figure 4: OBIA landslide mapping results for Kaiwhata, showing the evolution of the landslide from 2017 

to 2021, and the landslide-dammed lake detected in 2019 and 2020. 
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Figure 5: Time series showing the evolution of the Kaiwhata landslide and landslide-dammed lake. 

5.2 Validation 

The semi-automated OBIA results were compared with the results from the visual 
interpretation to assess the accuracy of the mapped areas. To do this, we performed a 
comparison of all results but chose mainly the images that highlight significant differences 
between OBIA and manual digitization. To validate the landslide and landslide-dammed lake 
areas, manual digitization was performed at a scale of 1:10,000. The producer’s accuracy was 
calculated by dividing the overlap area by the area of the reference data (i.e., the manual 
mapping result); the user’s accuracy was calculated by dividing the overlap area by the OBIA 
mapping result. 

Table 3: OBIA and manual mapping (MM) results, the difference between OBIA and MM results, 

overlapping area, and producer's and user's accuracies for the selected image. 

Image Class OBIA 
Mapping 
(ha) 

Manual 
Mapping 
(ha) 

Differen
ce OBIA-
MM (%) 

Overlap 
Area 
(ha) 

Producer’s 
Accuracy 
(%) 

User’s 
Accuracy 
(%) 

13 October 
2017 

Landslide 1.98 2.21 - 10.41 1.84 83.25 92.92 

12 
November 
2018 

Landslide 4.45 4.24 4.72 3.94 92.92 88.53 

8 June 
2019 

Landslide 7.20 7.10 1.39 6.50 91.54 90.27 

Landslide-
dammed Lake 

14.91 19.76 - 24.55 13.45 68.09 90.20 

11 
November 
2020 

Landslide 12.29 12.58 - 2.31 12.04 95.7 97.96 

Landslide-
dammed Lake 

25.88 32.73 - 20.92 24.28 74.18 93.81 
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15 January 
2021 

Landslide 13.32 13.67 - 2.57 12.66 92.61 90.54 

Landslide-
dammed Lake 

5.76 5.05 12.24 4.55 90.09 78.99 

The producer’s and user’s accuracies for the landslide and landslide-dammed lake areas 
resulted in different values. The mixture of sparse vegetation and the landslide area, and the 
uncertain border between the landslide and the lake, influenced the validation results. 
Moreover, the subjectivity inherent in manual interpretation may have influenced the accuracy 
values.  

The largest difference between OBIA and manual mapping for the landslide relates to the 
image from 13 October 2017. The high user’s accuracy value on this date confirms the 
assumption that manual mapping includes larger areas. This is why the producer’s accuracy 
related to this date is the lowest. The values related to 12 November 2018 show that the 
producer mapped a larger extent than our semi-automatically delineated areas and ignored the 
small, separated landslips. This is why the producer’s accuracy is much higher than the user’s 
accuracy. The lower producer’s accuracy for the landslide-dammed lake on 8 June 2019 and 
11 November 2020 results from the existence of dense vegetation along the river. These are 
the dates when the lake reached its greatest extent, and the mixture of vegetation and water 
was relatively high. The manual delineation identified vegetated areas mixed with flooded areas 
as landslide-dammed lake. The OBIA mapping excluded vegetated areas because of their high 
NDVI and low NDWI values and their rather large extent. This indicates that the manual 
reference shows a degree of generalization. Thus, the comparison between OBIA results and 
manual mapping should be considered with caution because any manual reference data comes 
with a certain degree of uncertainty. 

6 Conclusion and Outlook 

OBIA allows the integration of abundant satellite images with topographic data, guided by 
explicit knowledge, to achieve customized classification results. This technique offers an 
efficient toolset to semi-automatically map the evolution of landslides, although few 
researchers have applied OBIA to analyse a time series of satellite images to monitor the 
evolution of a major landslide. Our workflow was designed to be transferable to all the images 
used and adaptive to landslide evolution. Consequently, only minor modifications were 
required to address the complexity of the landslide mapping. Applying multiresolution 
segmentation using different image layers and spectral indices in multiple steps allowed us to 
reach high classification accuracies. We used mainly spectral indices with the support of DEM 
data and its derivatives to classify the landslide and landslide-dammed lake areas. The DEM 
data helped to remove false classifications, despite the fact that the DEM shows the pre-
landslide status of the terrain. 

The Sentinel-2 satellite time-series images provided us with suitable material to analyse the 
evolution of the Kaiwhata landslide and landslide-dammed areas. Following the second 
landslide, cloud cover (a general problem with optical imagery) limited the choice of the most 
suitable images for change-identification. In addition, the topography of the area and the angle 
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of the sun during spring and summer limited the acquisition of shadow-free images. Several 
studies have demonstrated the suitability of synthetic aperture radar (SAR) data, such as 
Sentinel-1 data, for landslide mapping and analysis (Dabiri et al., 2020; Xun et al., 2022). 
Therefore, complementing the OBIA workflow with Sentinel-1 data in future studies could 
help address the area’s probable landscape changes more efficiently. 

Landslides in New Zealand, triggered by rainfall, snowmelt and earthquakes, often result in 
significant landscape changes (Korup, 2004). Our study revealed the gradual changes over time 
to both the landslides themselves and the areas around them. Future research should assess 
the possible correlation between heavy precipitation and landslide reactivation over time. 
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