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Abstract

Severd authors(e. g., Briderl, Diekmann, Yamaguchi) derive hazard rate model s
of event history analysisfrom social diffusion processes. This paper also focuses on
the integration of diffusion research and survival analysis. After a discussion of
Diekmann’sflexiblediffusion model, we present an alternative approach which clar-
ifies theoretical differences between popular rate models (e. g., the exponentia
model, log-logistic model, sickle model). Specifically, thisapproach providesanew
rationale for the generalised log-logistic model in the sense of aflexible infection
process. In cases with bell-shaped duration dependence, it thus allows atest for so-
cial contagion asaresult of random contacts between actual and potential adopters.
An application to divorce data serves as an illustration.

1 Introduction

Techniquesof event history modeling areincreasingly used inthe social sciences.
The range of applications includes labour market studies, demographic analyses,
mobility studies, studiesin organisational ecology, political science, etc. Undoubt-
edly, theavailability of panel and retrospectivedatasets(e. g., the German Socioeco-
nomic Panel, Family and Fertility Surveys), different introductory textbooks (e. g.,
Blossfeld and Rohwer 1995; Courgeau and Leliévre 1992; Diekmann and Mitter
1984; Lancaster 1990), aswell assuitable software(e. g., Rohwer’'sTDA), have pro-
moted the spreading of these methods.

Parametric approachesto survival analysishave, however, at |east onedeficiency:
atheoretical explanation for the estimated statistical model isusually lacking. Gen-
eraly, for any given event data, the shape of the empirical transition rate is deter-
mined first by using non-parametric procedures (e. g., the Kaplan Meier estimator).
Thisempirical evidence about the course of the so-called hazard rate or risk function
isthen used for the sel ection of asuitable parametric model whichissubsequently es-
timated above al by the maximum likelihood method, taking into account covar-
iates. Theoretical considerations rarely refer to the selected hazard rate model, but
rather to the selection and interpretation of covariatesfor the explanation of therisk
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process by endogenisation of at least one process parameter. This is mostly
unproblematic if the shape of the empirical risk function suggests aunique paramet-
ric model for statistical estimation.

However, many social processes are characterised by similarly shaped rates
which can be described, from atheoretical point of view, by different models. Such a
situation results, for instance, in the case of an approximately bell-shaped hazard
rate. Thisformisfound moreor lessregularly intheinvestigation of marriage behav-
iour, divorcerisk, or mobility in firms. Different non-monotonous hazard rate mod-
elscan beused for itsrepresentation. In addition to thegammamodel, thelog-normal
model, or the log-logistic standard model, Diekmann and Mitter's (1983, 1984a)
sickle model and Briiderl and Diekmann's (1995) generalised log-logistic model,
can beappliedtothedata. A theoretically justified sel ection between such alternative
models would be desirable.

Inorder to obtainthistheoretical foundation, someauthors(e. g., Briderl and Diek-
mann 1995; Diekmann 1990, 1992; Yamaguchi 1994) link event history models with
models from diffusion research (e. g., Hamblin, Jacobsen and Miller 1973; Mahajan
and Peterson 1985; Rogers 1983). Here, the idea that the respective event history
model can be interpreted in terms of a socia diffusion process is fundamental. The
common starting point of these works isin each case a genera differential equation
which coversamultiplicity of diffusion hypothesesasspecial casesand thussuppliesa
process-theoretical rationale for different hazard rate models. Similarly shaped rates
may also correspond to quite different diffusion processes so that the knowledge of the
underlying process hypotheses can in principle be hel pful inthe selection of asuitable
rate model. Under similar conditions (e. g., goodness of fit), preference should be
givento that event history model which isaccompanied by atheoretically more plausi-
ble diffusion hypothesisfor the application under consideration. If, on the other hand,
there existsaunique hazard ratemodel that isclearly preferablefrom astatistical point
of view, then the knowledge of the compatible diffusion process at least promotes an
understanding of the process under consideration.

The connection between diffusion research and event history analysisisthefocus
of the present paper. After an introduction of central concepts, we discuss Diek-
mann’s (1990, 1992) flexible diffusion model (Section 2). Subsequently, we present
amorerestrictive model (Section 3). Thisapproach illustrates differencesin the un-
derlying theoretical processes between established event history models (e. g., the
exponential model, log-logistic model, sickle model). Specifically, this approach
providesanew rationalefor Briderl and Diekmann’s(1995) generalised log-logistic
model in the sense of aflexibleinfection process. In caseswith bell-shaped duration
dependenceit thusallowsatest for social contagion dueto random contacts between

1 Some economic modelsof unemployment durations and job durations have been successful in
predicting the shape of the duration dependence. However, they do not rely on diffusion pro-
cesseshut model thejob search behaviour with stochastically arrivingjob offers (seefor exam-
plethesurvey in Van den Berg 2001).
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actual and potential adopters. An application to divorce dataservesasanillustration
(Section 4). Becauseit isespecially unlikely that divorce has much to do with social
contagion, the suggested approach of connecting diffusion research and event
history analysis can be tested to seeif it leadsto plausible results.

2 Foundations
2.1 Concepts

Let usconsider asocial system with alarge number of individualswho, inagiven
period of time, are confronted with a binary and absorbing event the occurrence of
which can beinterpreted as aresult of adecision (e. g., marriage, divorce, adopting
new technologies).? Let T be anon-negative continuous random variable, represent-
ing the duration until the occurrence of an event (arrival time or waiting time, de-
pending upon the viewpoint) with distribution function F(t) and density function
f(t)=dF(t)/dt. Because F(t) defines the proportion of the population which has al-
ready experienced the event up totimet, 1 — F(t) represents the complementary pro-
portion without the event up to thispoint in time. The hazard rate h(t) = f(t)/(1 —F(t))
then gives (approximately) the conditional probability of a change in status in the
(very small) timeinterval [t, t + A t] if the event has still not occurred beforet.

These concepts were originally introduced and interpreted in the sense of event
history analysis. From the perspective of diffusion research, other terms can be used
which areat | east partly borrowed from epidemiology (cf., e. g., Kramer 1988). Since
F(t) definesthe proportion of prior adopters or those “infected” at timet , this quan-
tity indicates the period-specific prevalence rate. The derivative or density
dF(t)/dt = f(t) can thus be interpreted as the increase in prevalence during a (short)
additional timeinterval .2 Because 1— F(t) definesthe respective proportion of poten-
tial adopters(population at risk) and h(t) = f(t)/(1—F(t)) appliesthisby definition, the
hazard rate h(t) can beinterpreted asthe“incidencerate”.* It capturesthe (relative)
influx to the group of adopters during the brief timeinterval [t, t + At].

2 Biologically or technically caused events, such as deaths or damage to a machine, do not fall
into this category.

3 Because dF(t)/dt = f(t) expresses the increase in the proportion of adopters per time unit,
f(t)/F(t) indicates the respective growth rate of the prevalence.

4 According to Kramer (1988: 27-32) the preval ence rate definesthe proportion of adoptersina
certain population at afixed pointintime. In contrast, theincidencerateawaysrefersto atime
interval. It definesthe proportion of non-adopters from this popul ation who become adopters
during acertain period. In our context (ignoring absol ute sizes) theincidence rate corresponds
therefore to the hazard rate h(t), while the respective prevalencerate is given by the distribu-
tionfunction F(t). For avery small prevalencerate of afeature (e.g., the proportion of regular
consumersof hard drugsin thetotal population) one can capturetheincidencerate by the den-
sity function f(t), because in thiscasef(t) and h(t) = f(t)/1 — F(t)) are approximately equal .
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Thus, a process such as spreading of behaviours (or the occurrence of events)
takes account of a connection between incidence and prevalence. In other words, a
diffusion processreflectsafunctional relationship between h(t) and F(t). Dueto the
large number of possible relations and the definition of the hazard rate, the density
f(t) should be expressed as a sufficiently general function of the prevalence F(t). We
now turn to such an integration of diffusion research and event history analysis.

2.2 Flexible diffusion model

A general model for connecting thelogic of diffusionand event history analysisis
suggested by Diekmann (1990, 1992). Hismodel isbased on adifferential equation.
Accordingly, the spread of the feature under consideration, or the occurrence of the
relevant event, can be thought of asaconsequence of theinformation flow within the
system. The adoption of abehaviour or the occurrence of aneventisaresult of infor-
mation that is passed on either through interaction with adopters or by sources of in-
fluence (e. g., themassmedia) that are present throughout the system. To capturedif-
ferent diffusion processes, Diekmann makes the assumption that the information
transfer takes place by contacts between a subset of the already infected and not in-
fected portions of the population.® The mixing assumption is p(t) = F(t)™(1 — F(t))",
wheremand n arearbitrarily selectable parametersnot interpreted asto content. Be-
cause this product indicates the proportion of interactions between sections of the
population at t, one canview p = p(t) asthe probability of aninformative and thus po-
tentially infectious contact for members of the risk population at timet.® Itsweight-
ing with an arbitrarily selectable adoption rate s(t) > 0 then determines the increase
on the proportion of adopters per unit of time:

dF(t
D sormma-rao). @
Therefore, the corresponding hazard rateis:

h(t) = s(t)F ()™ (1~ F(1))", )

5 The related assumption of a*homogeneous mixing” of the population, concerning infection
status, characterises standard modelsin epidemiology aswell (e.g., Anderson and May 1991,
Bailey 1975). The actors do not differ with regard to age, education, sex etc. Research on so-
cialy structured diffusion expanded enormously as a result of the AIDS epidemic. Morris
(1994) presents an overview and a modeling suggestion for dealing with non-homogeneous
mixing in epidemiological models which is based on log-linear methods. Strang (1991) dis-
cusses the role of event history analysis when introducing social-structural features into
models of social diffusion.

6 Thefunction p(t) can also berel ated to the popul ar economic concept of the matching function
or meeting functionin economics, specifying theflow of filledjobsasafunction of the stock of
unemployed and the stock of vacancies (see e.g. the survey by Petrongolo and Pissarides
2001).
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so that very different connections between incidence and prevalence are possible.’
Thetype of diffusion processaswell astheinterpretation of the adoption rate s(t) is
determined to alarge degree by the selection of the parametersmand n. In particul ar,
we can differentiate three processes:

The parameter combination m= 1 and n = 1 definesthe probability of apotential
infection of possible adopters per unit of timethrough p(t) = F(t)(1 —F(t)). Indi-
vidual instances of adopting behaviour or of events can thus be interpreted asre-
sulting from coincidental interactions between prior and potential adopters. This
scenario is based on the assumption of homogeneous mixing after contagion. It
thusillustrates pure infection processes. According to Diekmann, s(t) represents
the contagion rate for interactions between actors with and without a given fea-
ture (event).®

Asaresult of the parameter constellationm=0 andn=1, the probability of apo-
tentially influential contact for potential adopters per unit of time arises through
p(t) = 1—F(t), the proportion of the population at risk. Adopting abehaviour can
beunderstood hereasaresult of contactsof thispart of the population with theto-
tal system. One can thus regard this as consequences of the influence of sys-
tem-wide sources (e. g., mass media), so that s(t) isinterpretable in Diekmann's
sense as atime-dependent influence rate.’

Theparameter combination m= 0 and n= 2 determinesthe probability of apoten-
tially influential contact for members of the risk population per unit of time
through p(t) = (1—F(t))% Inthisscenario the crucial roleisplayed by interactions
between potential adopters. Diekmann (1990) speaks of matching processes
(e. g., asalescontract, marriage) in this case, in which s(t) isto be understood as
the time-dependent matching rate.

Diekmann’s approach certainly offers an elegant connection between diffu-

sion-theoretical | ogic and event-anal ytic methodol ogy. However, there are al so argu-
mentsthat justify theformul ation of an aternative approach for theintegration of dif-
fusion research and event history analysis:

7

Diekmann (1990, 1992), Y amaguchi (1994), and Bruderl and Diekmann (1995) present de-
tailed discussionsof special casesof thisapproach for integrating diffusion research and event
history analysis.

The example of such aninfection processthat is probably the most well-known isthelogistic
model applied by Coleman, Katz and Menzel (1957) which resultsfrom (1) form=n= 1and
st) =a.

Theclassical exampleof such aninfluence processisthe exponential model which hasalready
been applied by Coleman, Katz and Menzel (1957). Instead of “influence by the system”, one
frequently reads about “externa influence” in the diffusion-theoretical literature (e. g.,
Mahajan and Peterson 1985), whereas infection stemming from contacts between actorswith
or without the feature isreferred to there as “internal influence”.
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o First, itisstriking that the two parametersare unlimited. According to thelogic of
the diffusion approach, one can interpret p(t) = F(t)"(1 — F(t))" asthe probability
of an informative contact for potential adopters. Because F(+) is a distribution
function, however, p(t) = F(1)"(1—F(t))" < 1 must apply. Thiscondition ispossi-
bly violated with unrestricted values of mand n (example: m=-1, n=1 and
F = 0,4). Itisfulfilled, for example, by therestrictionsm = 0andn = 0.

o If oneislimitedtothescenariom= 0andn = 0, then mand n determinetheinter-
acting partsof thegroupsof prior and potential adopters. Itisunclear whether and
how thetwo parametersmand n can beinterpreted according totheir content. Itis
not clear here, for instance, why m=n= 0awaysmeansthatp= 1, but m—-oo
and/or n -« awaysleadstop = 0.

o Apart from the selection of the respective interaction pattern by specification of
mand n, theapproach also permitsan arbitrary definition of theadoption function
s(t). In principle the number of parameters, and the functional form of (t), can be
freely determined. This flexibility is reflected in the fact that there are different
diffusion-theoretical explanationsfor one and the same hazard rate model. Thus,
the log-logistic standard model can be interpreted both as an infection process
and a matching process.”® For other standard models of event history anaysis
(e. g., exponential distribution, generalised log-logistic model, sickle model),
ambiguous diffusion-theoretical interpretations are also possible since one can
freely choosem, n, and s(t) (Braun 1998). In order to arrive at aunique derivative
of individual event modelsfrom (1), one could follow, e. g., Yamaguchi (1994),
and concentrate on pure contagion processes (m= n= 1) with flexible selection
of the adoption rate s(t).

In the following section we will focus on an aternative way to avoid such ambi-
guities and interpretation problems. This approach deviates substantialy from
Diekmann’s approach in at least two aspects. The arbitrary adoption function s(t) is
replaced by aflexible function, and the parameters mand n which are unclear asfar
as content is concerned, are eliminated in favour of an interpretable quantity. Al-
though fundamental considerations and established concepts are maintained wher-
ever possible, these differencesalready find expression in the model assumptionswe
specify below.

10 According to Diekmann (1992), one gets the infection theory explanation for the log-logistic
standard model by the parameter selection m= n = 1 and the infection rate s(t) = a/t in (1),
whereas the interpretation of the model as a matching process results from the specifications
m= 0, n= 2and s(t) = ay(yt)** witha,y >0in(1).
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3 An alternative model
3.1 Model assumptions

Once again, we assume that spreading processes result from appropriate informa-
tion about the characteristic or event under consideration and the respective willing-
ness of the actors to adopt them. Sources of information are interactions between ac-
torsin the system. However, only asubset of al contactsisinformative with regard to
thefeature, and not every informative contact necessarily leadsto the occurrence of an
event. It therefore makes senseto first determine the probability of an interaction with
an adopter per unit of time and then to specify accordingly the time-dependent adop-
tionfunction of potential adopters. A s mpleassumptionfor linking thesequantitiesre-
sultsfinaly in aflexible hazard rate function and thusin ageneral diffusion model.

3.1.1 Probability of informative contacts

The quantities F(t) and 1 —F(t) represent the respective proportions of prior and
potential adoptersin the system. If al actors (independent of their status concerning
the event) possess the same chance of beginning an interaction, F(t) determines the
probability of an individual coincidentally meeting a prior adopter. On the other
hand, (1 — F(t)) determines the probability that such acontact is not with an adopter
and therefore uninformative with regard to the event. If one now supposes for each
actor in the system k statistically independent contacts per unit of time, then
(1—F(t)) givesthe probability that an individual hashad no contact with an adopter.
Thus,

w(t) = 1~ (1-F(1)" ©)

is the probability that at least one of k's statistically independent contacts of any
given actor with an adopter will occur, and is therefore informative concerning the
event.™ Thefunction w(t) increases ceteris paribus with k, the statistically independ-
ent contactsof each actor inthe system per timeunit: for k= 0, w(t) =0; for k=1, w(t)
=F(t); for k=2, w(t) = F(t)(2—F(t)); and k = o correspondents to w(t) = 1. Under
otherwiseidentical conditions, w(t) increasesalongwith the prevalencerate F(t). Be-
cause the latter usually increases with time, the probability of a potentially influen-
tial contact also tends to increase with time passed (since the beginning of the pro-
cess). There is also often a positive or negative time dependency that characterises
the willingness of potential adopters to adopt the characteristic in question.

11 The quantity w(t) definesthe probability of aninformative contact for each actor inthe system
independent of his status concerning the feature. Thus it differsin conception from p(t), the
probability of an informative contact for members of the risk population in Diekmann's
approach.
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3.1.2 The adoption function

In order to achieve a compl ete parameterisation, a sufficiently general adoption
function r(t) > Oisintroduced which determines the adoption rate per unit of time.*?
This function possesses the real-number parametersc > 0,¢ > 0,0 ande = 0:2

r(t) = ce'tt?, 4

where e defines the base of the natural logarithm, and the scaling parameter ¢ can be
re-parameterised if necessary. Thus, the adoption ratefor 0 = Oand e = 1isacon-
stant. In all other casesit depends on the timet, though the effect isinfluenced sub-
stantially by the combination of the respective- parameters 6 and ¢. The elasticity
function of r(t) givesabrief summary of all possibilities. The elasticity of the adop-
tion rateisalinear function of the time passed since the beginning of the process:
dr(t) t
TN (e =1+ ot. (5)
A one per cent increasein the time passed changes the adoption rate by approxi-
mately 100(¢e — 1 +0t)%. Thetimeelasticity of the willingness of adoption isformu-
lated in the definition of diffusion processes and the corresponding hazard models
assumptions. Before this can be made clearer, we first need to introduce an assump-
tion about the determinants of the hazard rate.

3.1.3 Hazard rate

The hazard rate, or risk function h(t), indicates the conditional probability of a
statuschangefor ‘ feature-free’ actors. If oneassumesthat afeature spreadsasaresult
of contacts between actorsinthesystem, itisplausiblethat therisk of the occurrence
of the event will depend on the probability of an informative contact w(t) and the
adoption rater(t). A high risk of occurrence might exist in particular when both the
probability of an interaction with an adopter and the willingness of adoption are
high. Thus, the following assumption for determinants of the hazard seemsto makes
sense:

h(t) = rt)w(t). (6)

12" Theflexiblefunctionr(t) playsarolesimilar tothat of thearbitrary function s(t) in Diekmann’s
approach.

13 Thefunctionr(t) iselementarily integratableonly for real numbersof e. Itisageneralisation of
thegammadensity g= (b(bt)21e™)/T'(a) inwhich aand b are positive parametersand /T'(-) rep-
resentsthegammafunction. Namely, r(t) =g(t) fore =a> 0,0 = -b< Oand c= b¥/T'(a). Dueto
the characteristics of the gammafunction, c = b¥/(e — 1)! if ¢ isapositive real number.

14 Typical re-parameterisations are ¢ = affy and ¢ = ay 2, whereby «, 3, y represent positive pa-
rameters.
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The hazard rate arisesthen asaresult of the product of the time-dependent adop-
tion rate and the probability of a contact which isinformative and therefore poten-
tially consequential regarding the event or feature. We have now formulated a gen-
eral diffusion model on the basis of the postulates for r(t) and w(t), as discussed
above.

3.2 Model conclusions

The assumptions (3), (4) and (5) determine aflexible risk function which itself
implies a general diffusion equation. The model prerequisites result in the hazard
function

h(t) = ce®tt 1 (1 — (1L - F(1)"). (7)

Beforelooking at the corresponding density function f(t) and thereby the general
diffusion equation, it makes senseto discuss briefly the process-theoretical implica-
tionsof (7). Because h(t) = r(t)w(t), and w(t) increaseswith the number of the statisti-
cally independent contactsk, h(t) increaseswith k, assuming otherwiseidentical con-
ditions. If oneassumes0 < F(+) < 1, then diffusion processes can be differentiated
according to the potential of influence of interactions:

Contact-dependent spreading: If kisnot very large, thenw(t) < 1representsthe
probability of an informative contact. Thus, apart from the adoption function r(t),
thisprobability influencesthe hazard rate h(t) and interactionstherefore play arather
important role for the spreading process.

Contact-independent spreading: Inthe caseof innumerabl e contactsper unit of
time, wehavetheoppositeresult. Inthe borderline casek = oo, w(t) = 1, therisk func-
tion h(t) is determined exclusively by the adoption function r(t). In this scenario the
occurrence of an event is independent of the probability of an informative contact
which means that interactions between the system actors play no role in the
spreading process.

The distinction between contact-dependent and contact-independent diffusionis
of course, also relevant for thedensity f(t) = dF(t)/dt from (7). Thisresultsfrom com-
bining the definition h(t) = (dF(t)/dt)/(1 — F(t)) with the hazard function (7):

dF(t)
dt

Like Diekmann’s differential equation, this diffusion equation isexplicitly solv-
ableonly for certain parameter combinations. Table 1 presents aselection according
to the diffusion-theoretical interpretation of these special cases: for k = 1 infection
processesare present; for k= v/, aflexiblemodel arisesin the sense of ageneralised
contagion process; and for k = o, we have contact-independent propagation pro-
cesses. Inadditionto abrief look at the exponential model and thelogistic model, we
will take a closer look at the remaining special casesfrom Table 1 in the following.

et (1 — (1 - F()X(1 - F(1)). (8)
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Becausethelatter either exhibit or at | east permit abell-shaped hazard rate curve, this
discussion serves also in preparation for the application.

3.2.1 Exponential distribution

Oneof the processtypesin Table 1 isbased on the assumption of innumerablein-
teractions between system actors (k= «) Inthisscenario thereisalwaysaninforma-
tive contact concerning the feature per unit of time, so the spreading process occurs
independently of the interaction pattern. The diffusion process thus does not take
place via contagion as aresult of interactions between potential and prior adopters.
Rather, it isdriven exclusively by the adoption function.

In Table 1, thistype of processis, inter alia, represented by the exponential model
which frequently servesasareference model in event history analysis. Based on (8),
this classical model of a contact-independent spreading process results from the ad-
ditional assumption of aconstant adoption rate(cf., e. g., Coleman, Katz and Menzel

1957). Assumingc > 0,0 = Oande = 1:
dl;it)= c(1-F(), Ft)=1-€e, h(t) =c, 9)

Table 1:
Special cases of the diffusion model

Logistic model (spreading through infection):
k=laswell asc > 0,0 = Oand ¢ = 1, so that
w(t) = F(t), r(t) = cand h(t) = cF(t)
Log-logistic model (spreading through infection):
k= laswell asc > 0,0 = 0and ¢ = 0, so that
w(t) = F(t), r(t) = c/t and h(t) = (c/t)F(t)
Generalised log-logistic model (spreading through contacts):
k=ylg>0andc=afly >0,0=0,¢e=0, sothat
w(t) = 1—(1—=F)”, r(t) = aBiyt
and h(t) = (ap/yt)(1 - (1 -F(t) ")
Sickle model (contact-independent spreading):
k- o aswellasc > 0,0 = -1U/A < Oande = 2, sothat
w(t) = Land r(t) = cte™ = h(t)
Exponential model (contact-independent spreading):
k- o aswellasc> 0,0 =0ande = 1, sothat
w(t) =1 and r(t) = c = h(t)

Note: Further model descriptions can be found in textbooks on event history analysis (e.g., Blossfeld, Hamerle and
Mayer 1989; Blossfeld and Rohwer 1995; Diekmann and Mitter 1984).
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wheretheintegration of thedensity f(t) = dF(t)/dt yiel dsthedistribution function F(t)
so that the corresponding hazard rate h(t) = f(t)/(1 — F(t)) is determined by the con-
Stant c.

3.2.2 Sickle models

In addition to the exponential model, TABLE 1 contains a further model for a
spreading process which does not rely on contagion by interactions between prior
and potential adopters. The constellation of the contact-independent spreading also
characterises the sickle-shaped hazard function of Diekmann and Mitter (1983,
1984a). Using the positive parameters ¢ and A, the “defective” distribution function
F(t) and the hazard rate h(t) of the sickle model are given by

F(t) = 1— -0 ) = e, (10)

sothatinthelongrun, “immunity” ispresent inthe senseof F(«) < 1. Theestimated
value of 4 thereby determinesthe point intime of the highest transitionrisk (i. ., the
maximum of theratefunction witht,,=1). Apart fromk — oo, adiffusion-theoretical
explanation for the sickle hypothesesin the sense of (8) requiresthe parameter speci-
ficationc> 0,0 =—1/Aand ¢ = 2

dF(t) _
dt

If oneviewsthesicklemodel onthisbasis, thishastwo consequences. Ontheone
hand, innumerableinteractions per unit of time guaranteethat only the adoption rate
playsaroleinthespreading of thefeature, i.e., theadoption functionr(t) corresponds
to the hazard function h(t). On the other hand, the transition risk exhibits alinearly
decreasing elasticity of time (dr/dt)(t/r(t)) = 1—(1/A)t. A oneper centincreaseintime
(passed since the beginning of the process), will result, up to acertain point in time
(att,=A),inaproportional increasein thewillingness of adoption. Thereafter, how-
ever, there is a proportional decrease. After initial acceleration, the adoption ten-
dency isthusretarded once again, although contacts do not play arolein the spread-
ing process. This contrasts with the logic of infection.

cte ¥ (1 —F(t)). (11)

3.2.3 Logistic models

Examplesof social contagion processesareeasy to find. The spreading of certain
modes, the acquisition of new technol ogies, and also the propagation of rumors can
alwaysbeunderstood asconsequencesof informativeinteractions. Assuming theva-
lidity of (8), infection processes result if one supposes a statistically independent
contact per unit of time (k = 1) which means that the proportion of adopters deter-
mines the probability of agiven informative contact.

Thelogistic model indicated in Table 1, offersthe classical description of infec-
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tion-like diffusion processes (e. g., Coleman, Katz and Menzel 1957). It resultsfrom
(8) if oneadditionally assumesaconstant adoptionrateand thusc > 0,0 =0ande=1:

FO_ e m@-Fo.FO=— 2 hy=cF©. (12

dt 1-(1-e®)F(0)
With F(0), weassumeapositiveinitial valueof the S-shaped distribution function
F(+). Because the adoption rate is determined by the constant c, the hazard function
h(t) represents only aparallel shift in the distribution function. Thusthe hazard rate
of the logistic model also indicates an S-shaped process, i. €., the risk of adoption
rises with the process duration. However, there are al so infection processes that are
accompanied by an entirely different course of risk.

3.2.4 Log-logistic models

Age-dependent taking up of illegal activities as aresult of “bad” contacts or the
beginning of regular drug consumption dueto interactionswith friends who already
take drugs could be contact-dependent spreading processes with bell-shaped hazard
functions. If one concentratesfirst on pureinfection processes (k = 1), and makesthe
corollary assumption that the adoption function r(t) = ¢/t is constantly decreasing,
thenthelog-logistic standard model provesto bean exampleof apure contagion pro-
cess which can be accompanied by a bell-shaped hazard function.

AsBruderl and Diekmann (1995) show, thelog-logistic model can begeneralised
by introducing an additional parameter . If we use the positive parametersa, g and
y, the distribution function F(t) and the hazard function h(t), the generalised
log-logistic moddl is:

alyt)™

1+ ()«
which resultsin the log-logistic standard model for 3 = y > 0. Fora > 1, wehavea
bell-shaped curve for h(t), whilea < 1 implies aconstantly decreasing hazard rate
h(t).

Because the generalised log-logistic model contains the log-logistic standard
model asaspecial case, and thelatter isinfection-theoretically explicable, the gener-
alised model should be interpretable as a generalised contagion process. In fact, (8)
doespermit thisinterpretation of the generalised |og-1ogistic model. If one combines
theassumptionk=y/8 > 0in(8), with the specificationsc= af/ly > 0,0 = 0,and ¢ =
0, then the density of the generalised log-logistic model can be written as a
generalised infection process:

dF(t
o a0 -A-FO FO oM. (9

So the generalised log-logistic model illustrates a further type of processin Ta-

ble 1. As aflexible model of a contact-dependent diffusion, it is situated between

F(t)=1-(1+ (yt)*)?"” h(t) = (13)
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pureinfection processes and contact-independent spreading processes. The estima-
tion resultsfor the generalised log-logistic model thus facilitate the choice between
bell-shaped hazard rate model s that are based on different process-theoretical foun-
dations. In particular, they make it possible for us to test the infection hypothesis
which justifiesthe log-logistic standard model: The moref = y isfulfilled, the more
appropriate is an interpretation of a bell-shaped risk process in the sense of a pure
contagion process. Thisreflects the fact that the infection-theoretical interpretation
of thelog-logistic model for k= 1 resultsdirectly from (14), whereby aconstant time
elasticity of —1 isassumed for the adoption rater(t). I n addition to the possible conta-
gion-theoretical interpretation, it isthus characteristic for log-logistic modelsthat a
oneper centincreaseintime (passed since beginning of the process) will leadtoaone
per cent reduction in adoption willingness. These process-theoretical differencesbe-
tween the log-logistic models and the similarly shaped sickle model servetohelpin
the selection of the suitable statistical model. We will now show this with an
investigation of duration data concerning “divorce”.

4 An illustration: divorces

One can hardly view divorce as the consequence of social contagion processes.
Ananalysisof divorce datamight therefore show whether our suggested approach of
connecting diffusion research and event history analysis leads to plausible results.
Our starting point is the well-known fact that divorce data can be adequately de-
scribed by a bell-shaped risk or hazard rate function (cf., e. g., Diekmann and
Engelhardt 1999; Briderl, Diekmann and Engelhardt 1999). In the following, we
takealook at thesicklemodel and the generalised | og-logistic model, two parametric
modelsthat canillustrate such ashapefor the transition rate although they are based
on different process-theoretical considerations. Although we orient ourselves
throughout to the traditional procedure for the employment of event-analytic meth-
odsin divorce research, the substantive findings of the data analysis are neglected to
alarge extent.™ Our objectiveisto prove that the process-theoretical considerations
discussed above can be of use when choosing between competitive hazard rate mod-
els. After abrief description of the dataand covariates, wewill also deal briefly with
the statistical procedures that are usually employed in model selection.

4 1 Data and variables

Thisstudy isbased on the German Family Survey from 2000 which was admin-
istered by the German Youth Institute (DJI). The DJI study is arandom sample of
the entire East and West German residential popul ation between the agesof 18 and

15 Detailed interpretations of the content of similar estimation results can be found in Briiderl,
Diekmann and Engelhardt (1997), aswell asin Diekmann and Engelhardt (1999).
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55 living in private households. A total of 10,093 people participated in personal in-
terviews in which detailed information on their partnership history was collected.
2,002 of the respondentsin West Germany wereinterviewed aready athirdtimeina
panel starting in 1988, and 8091 persons were randomly selected. Dueto high panel
mortality wefocuson the cross-sectional survey. Although theresponseratewasrel -
atively low in the cross-sectional sample (52%), comparisons of the distributions of
socio-demographic variables with official statistics show that deviations are no
greater than in other national surveys. \Women and persons not inthelabour forceare
somewhat overrepresented, while family and household type both correspond to of-
ficial statistics (Infratest 2000). For the following analyses we consider only first
marriages of both partners in West Germany, excluding persons born abroad,
“Aussiedler” (ethnic German repatriates, coming mainly from Russia), and migrants
from East to West who where over age 20 at the time of migration. There are
3,844 first marriagesin the data of which 17,9% had ended in divorce by the time of
inquiry. Apart from the central variable® marriageduration”, the dataset allowsusto
control for numerous characteristics of the respondents and the couples which are
considered to be central divorce determinants (cf., e. g., Engelhardt 2002). These
characteristics can thus be included in the analysis as covariates.

4.2 Estimation and testing procedures

For estimation purposes, covariates are generally included in the respective haz-
ard rate model, with an exponential link function through selected process parame-
ters. Inthe sickle model the parameters c and A are usually defined asfollows (e. g.,
Diekmann and Engelhardt 1999):

q
=g, [J 00 A = b, (15)
j=1

where b, and b, , represent coefficientsto be estimated, and the coefficient of the
jth covariate which entersthe model through the process parameter c. Employing the
same notational logic, we follow the recommendation of Briderl and Diekmann
(1995) and define for the generalised log-logistic model accordingly:

q
= bay, 3 = bg, [ [ 05-7 = bros (16)
j=1

Thus covariates areincluded in the model through the process parameter 5. Inde-
pendently of whether weview the sicklemodel or the generalised | og-logistic model,
the estimated coefficients of the covariatesindicate the “relative risks’. The propor-
tional rate effect of the jth th covariate is given by 100(b;; — 1)%.

If the vector of covariates x; and the marriage duration t; are known for each indi-
vidual i, then the b-coefficients can be estimated, taking censored observationsinto
account consistently and they can be (asymptotically) normally distributed by means
of the maximum-likelihood method which enablesusto employ inference-statistical
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testing methods (cf., eg., Blossfeld, Hamerle and Mayer 1989). The log-likelihood
function

N i

InL(b;t,x) = Z <di In h(t;]x;, b) — / h(v|z;, b)dz)) , a7)

i=1 vo
which depends on the hazard function h (-) sel ected, ismaximised with respect to the
vector of coefficients b. N defines the number of cases and d; is a binary variable
which takes on the value 1 for uncensored observations. We obtain the maximum
likelihood estimations using Rohwer’s program TDA, athough we used the epi-
sode-splitting technique for the time-varying covariates (cf., e. g., Blossfeld and
Rohwer 1995).

To evaluate the degree of improvement in the estimation ensuing from the addi-
tion of further parameters or covariates, the Likelihood Ratio test isusually used. It
compares the maximised likelihood of the interesting (or unrestricted) model L,
with the maximised likelihood of the reference (restricted) model, Lg. The Likeli-
hood Ratio test statistic LR= 2(InL—InL,) isasymptotically y-distributed, with the
difference in parameters or covariates of the models under consideration as degrees
of freedom. If LR exceedstherelevant critical parameter, then the restrictions can be
rejected. Roughly speaking, the interesting model turns out to offer a significant
improvement in the estimation.

In addition, the likelihood ratio statistic offers the basis for a comparison of
non-nested models (e. g., the sickle model and the generalised log-logistic model)
using the Bayesian Information Criterion BIC (Raftery 1995). Therefore, one calcu-
lates for each model:

BIC=In(n)z—LR

where z indicates the number of additional parameters in comparison to the selected
referencemode (e. g., exponential distribution). Usually one considersthemodel with
thesmallest BIC valueto betherelatively “best” model. Inthe context of aselectionto
be undertaken on the basis of statistical criteria, this model would be selected.

4.3 Results and model selection

We now compare the sickle model and the generalised |og-logistic model on this
basis. We first consider the results of an estimation of both models without taking
covariatesinto account (Table2). Theestimation resultsfrom thesicklemodel indicate
that the maximum divorcerisk occursat approximately nineyears (1= 8.884),whilethe
generalised log-logistic model fixes this point at somewhat over seven years.'®

16 According to Briiderl and Diekmann (1995), in the case of the generalised log-logistic model,
the timing of the maximal divorcerisk isat t,,= (L/y)(a — 1)¥¢ When using the estimated re-
sults, one getst, = 7.109.
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-I\I;Ia:frﬁum likelihood estimations of the divorcerisk for three modelswithout covariates
Parameters and Sickle model log-logistic model Generalised log-
test statistics logistic model
c 0.005*** - -

p) 8.884*** - -

a - 0.012%** 1.924%**
B - - 0.015%**
y - 1.232%%* 0.135*

— Log-likelihood 2899.702 2917.391 2897.492
LR 61.535 26.159 65.957
df 1 1 2
BIC -53.477 -18.101 -49.841

Notes: * significant for p < .05, *** significant for p < .001. LRisthe likelihood-ratio statistic with df degrees of
freedom. BIC is the Bayesian Information Criterion with the exponential model without covariates as
reference model (Log-Likelihood =-2930.47). N = 3159.

In addition to the estimated values for the process parameters, TABLE 2 also in-
cludesinformation about the test statistics and ' goodness-of -fit’ measures we have
discussed. The exponential distribution without covariates servesin all cases asthe
reference model.*’ If one usesthe Bayesian I nformation Criterion BIC for model se-
lection, then the sickle model isto be preferred to the log-logistic model and to the
generalised log-logistic model, judging from the estimated results for the scenario
without covariates.

If oneincludesthe covariatesin the analysis, thisresult remains stable, ascan be
seenin Table 3. Regardless of whether one carries out the comparison with the expo-
nential model with or without covariates, the sickle model presents itself as the
“better” model, duetothesmaller BIC valuefor theanalysisof thedivorce dataunder
consideration. So if one chooses among parametric hazard rate models on the basis
of statistical criteria, thentheinclusion (or exclusion) of certain covariatesobviously
plays asubstantial role in the decision-making process.

17" The estimated val ue of the constant hazard ratein the exponential model is0.011. In compari-
son to this basic model with constant rate, the relative likelihood improvement achieved with
the estimation from the Sickle model, the log-logistic model and the generalised log-logistic
model is small in each case. When using McFadden’s Pseudo-R?(=(In Lg—In L,)/InLg) asa
conservative measure for the relative likelihood improvement, one getsthe value 0.01 for the
sickleand thegeneralised |og-logistic model and 0.04 for thelog-logistic model. If oneconsid-
ers also the covariates mentioned, this results in a Pseudo-R? of about 0.012 for the sickle
model and the generalised log-logistic model and 0.02 for the log-logistic model.
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Table3:

Maximum likelihood estmations of the divorcerisk for three modelswith covariates
Covariates, parametersand Sickle log-logistic Generalised
test statistics model model log-logistic model
Constant 0.060*** 0.170*** 0.002
Married 1971-80 (=1, O else) 1.292+ 1.322%* 2.671**
Married 1981-90 (=1, O else) 2.285%** 2.108*** 13.867***
Married 1991-2000 (=1, O else) 2.870%** 2.283*** 190.627***
Catholic couple (=1, 0 else) 0.694** 0.776** 0.425**
Non religious couple (=1, O else) 0.742 0.805 2.281*%**
Mix of religions (=1, O else) 1.124 1.078 1.325
Mix of nationalities (=1, 0 else) 0.990 0.934 0.894
Y ears of cohabitation 0.968 0.982 0.930
Child before marriage (=1, 0 else) 0.968*** 0.545%** 0.160***
First child (time dependent) (=1, 0 else 0.438*** 0.377*** 0.160***
Husband: age at marriage 0.990 0.992 0.978
Wife: age at marriage 0.944** 0.958** 0.873**
Wifeis 2+ yearsolder (=1, 0 else) 1.129 1.155 1.341
Husband: years of education 0.954 0.972 1.061
Wife: Y ears of education 1.025 1.019 0.89%4
Marriage in church (=1, 0 else) 0.488*** 0.581*** 0.181***
No siblings (=1, 0 else) 1.028 1.058 1.080
Father: Abitur (=1, 0 else) 1.224 1.152 1.519**
Grown up without parents (=1, 0 else) 1.775+ 1.490 1.607**
Grown up with widowed parent (=1, 0 else) 0.970 0.945 0.904
Grown up with divorces parents (=1, 0 else)  2.416*** 1.831*** 7.909***
Grown up with single parent (=1, 0 else) 1.841+ 1431 4,098+
Mating: strong ties (=1, 0 else) 0.831+ 0.865+ 0.647+
Mating: weak ties (=1, 0 else) 0.736* 0.788** 0.489*

c par. - -

A 12.449 - -

a - 1.579%** 1.424%**
B - - 1.670

y par. par.

— Log-likelihood 2534.209 2536.612 2548.363
LR 92.745 87.9406 64.435
df 1 1 2

BIC -184.251 -79.928 -48.411

Notes: + significant for p < .1, * significant for p < .05,** significant for p < .01*** significant for p < .001.
Reported are the b-coefficients of the covariates which determine the “ par.” -marked process parameters. Reference
categories: marriage cohort 1971-80, Protestant couple, same nationalities, no child before marriage, nofirst child,
wifeisnot 2+ moreyearsolder, not marriedin church, siblings, father hasno Abitur, lived with both parentsup to age
15, mating: no ties. LRisthe likelihood-ratio statistic with df degrees of freedom. BIC isthe Bayesian Information
Criterion with the exponential model with covariates as reference model (Log-likelihood = -2580.582). A
comparison with the exponential model without covariates yields LR (BIC) = 384.552 (-184.251) for the sickle
model, LR (BIC) = 379.746 (-179.446) for the log-logistic model, and LR (BIC) = 356.241 (-147.928) for the
generalised log-logistic model. N = 3017; number of splits=5161.
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Family demographers are now particularly interested in the effects of covariates.
One could take a pragmatic point of view and point out that the effects of covariates
are practically identical at least in the sickle and in the log-logistic model. In the
three-parametric generalised-log-logistic model, the estimated coefficients differ
substantially. From this perspective, the question of model selection between the
two-parametric models appearsirrelevant in the case that thelist of the covariatesis
fixed. However, thisline of argumentation isnot entirely convincing. The covariates
can be compatible sooner with a certain type of the propagation than with another
type. Thecovariatesfrom Table 3refer toindividual and couple-specific characteris-
tics but not to relations with other persons and their characteristics. In this applica
tion, interactions with unmarried or already divorced actors should therefore not be
crucia components of the propagation processwhich isdetermined by the choice of
the estimatemodel. Giventhelist of covariates, the assumption of acontact-indepen-
dent propagation process seems appropriate for this example.

Furthermore, covariate effectsarefrequently interpreted with the hel p of theories
that refer, moreor lessexplicitly, to theindividual decision behaviour concerning the
event under consideration (e. g., divorce). For reasons of consistency, this theoreti-
cally founded micro-interpretation of covariate effects should not collide with the
macro-process which is specified by the choice of parametric event model. Even if
the covariates are fixed, for an adequate interpretation of their effects a process
model has to be estimated that is compatible with the initial theoretical con-
siderations.

Therefore, it seems useful to consider the process-theoretical implications dis-
cussed above when choosing the model. Itiswell known that the generalised log-lo-
gistic model illustrates ageneralised infection processwhich isreduced to apurein-
fection scenario (log-logistic model), given acertain parameter constellation (k= y/3
= 1). Itthusoffersatest for whether the application under consideration can beinter-
preted asbeing acase of socia infection. The estimated values of the 8 and y for the
scenario without covariatesin Table 2 then exclude an infection-theoretical interpre-
tation of the divorce data (k = 15).

Instead, these values indicate, as expected, that the divorce risk depends less on
interactions with third persons than on the adoption function which is substantially
determined by individual characteristics of the spouses and intra-couple processes.
Moreover, if one considers the estimated results from Table 3, most covariates ex-
hibit significant and more or less strong effects on therisk of divorce. Inall models,
thisrisk increasesin comparison to the reference category (see Section 4.1) if thein-
terviewed person grew up in abroken home, with asingle parent, or without parents.
Furthermore, therisk of divorceincreasesfor younger marriage cohorts. In contrast,
the affiliation of both husband and wife to the Catholic Church, church marriage and
thebirth of thefirst conjugal child decreasetherisk. Therisk isalso reduced for cou-
ples who met incidentally without a socia network (e. g., friends or relatives) in-
volved.

Overall, theseresultsarein agreement with the basic intuition that divorcesresult
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mainly from characteristics of the couple and intra-couple processes. With increas-
ing time spent together, one acquires additional information about positive and nega-
tive characteristics of one’s partner and conflicts, boredom or indifference can come
about; factors that manifest themselvesin an increasing inclination on the part of at
least one of the partnersto separate. These considerations are in keeping with exist-
ing theories of divorce research which form the basis of interpretations of the
covariate effects. For example, according to Becker’s economic theory of divorce
(1991) it isthe information about one's spouse acquired in the course of timewhich
increases the likelihood of divorce. A genera sense of disillusionment about one’s
spouse can arise as a result of additional experiences, or a mismatch can be
diagnosed, so that an end to the relationship ultimately appears as the lesser evil.

Intheanalysisof divorcedata, the effects of covariates are frequently interpreted
in the sense of Becker’s family economics. From a process-theoretical perspective,
such aninterpretation ismost likely compatible with the assumption of acontact-in-
dependent propagation. Accordingly, if one considersthe event “divorce”, it makes
senseto usethe sicklemodel. If the underlying logic of spreading isunclear in some
other application with bell-shaped rate process, such doubts might well be elimi-
nated by the estimation of the generalised log-logistic model. Indeed, according to
the model for connecting diffusion research and event analysis presented here, pro-
cess-theoretical considerations facilitate the choice among competitive hazard rate
models, if statistical criteriado not offer usaclear basisfor decision.
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