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Abstract

Several authors (e. g., Brüderl, Diekmann, Yamaguchi) derive hazard rate models
of event history analysis from social diffusion processes. This paper also focuses on
the integration of diffusion research and survival analysis. After a discussion of
Diekmann’s flexible diffusion model, we present an alternative approach which clar-
ifies theoretical differences between popular rate models (e. g., the exponential
model, log-logistic model, sickle model). Specifically, this approach provides a new
rationale for the generalised log-logistic model in the sense of a flexible infection
process. In cases with bell-shaped duration dependence, it thus allows a test for so-
cial contagion as a result of random contacts between actual and potential adopters.
An application to divorce data serves as an illustration.

1 Introduction

Techniques of event history modeling are increasingly used in the social sciences.
The range of applications includes labour market studies, demographic analyses,
mobility studies, studies in organisational ecology, political science, etc. Undoubt-
edly, the availability of panel and retrospective data sets (e. g., the German Socioeco-
nomic Panel, Family and Fertility Surveys), different introductory textbooks (e. g.,
Blossfeld and Rohwer 1995; Courgeau and Lelièvre 1992; Diekmann and Mitter
1984; Lancaster 1990), as well as suitable software (e. g., Rohwer’s TDA), have pro-
moted the spreading of these methods.

Parametric approaches to survival analysis have, however, at least one deficiency:
a theoretical explanation for the estimated statistical model is usually lacking. Gen-
erally, for any given event data, the shape of the empirical transition rate is deter-
mined first by using non-parametric procedures (e. g., the Kaplan Meier estimator).
This empirical evidence about the course of the so-called hazard rate or risk function
is then used for the selection of a suitable parametric model which is subsequently es-
timated above all by the maximum likelihood method, taking into account covar-
iates. Theoretical considerations rarely refer to the selected hazard rate model, but
rather to the selection and interpretation of covariates for the explanation of the risk
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process by endogenisation of at least one process parameter. This is mostly
unproblematic if the shape of the empirical risk function suggests a unique paramet-
ric model for statistical estimation.1

However, many social processes are characterised by similarly shaped rates
which can be described, from a theoretical point of view, by different models. Such a
situation results, for instance, in the case of an approximately bell-shaped hazard
rate. This form is found more or less regularly in the investigation of marriage behav-
iour, divorce risk, or mobility in firms. Different non-monotonous hazard rate mod-
els can be used for its representation. In addition to the gamma model, the log-normal
model, or the log-logistic standard model, Diekmann and Mitter’s (1983, 1984a)
sickle model and Brüderl and Diekmann’s (1995) generalised log-logistic model,
can be applied to the data. A theoretically justified selection between such alternative
models would be desirable.

In order to obtain this theoretical foundation, some authors (e. g., Brüderl and Diek-
mann 1995; Diekmann 1990, 1992; Yamaguchi 1994) link event history models with
models from diffusion research (e. g., Hamblin, Jacobsen and Miller 1973; Mahajan
and Peterson 1985; Rogers 1983). Here, the idea that the respective event history
model can be interpreted in terms of a social diffusion process is fundamental. The
common starting point of these works is in each case a general differential equation
which covers a multiplicity of diffusion hypotheses as special cases and thus supplies a
process-theoretical rationale for different hazard rate models. Similarly shaped rates
may also correspond to quite different diffusion processes so that the knowledge of the
underlying process hypotheses can in principle be helpful in the selection of a suitable
rate model. Under similar conditions (e. g., goodness of fit), preference should be
given to that event history model which is accompanied by a theoretically more plausi-
ble diffusion hypothesis for the application under consideration. If, on the other hand,
there exists a unique hazard rate model that is clearly preferable from a statistical point
of view, then the knowledge of the compatible diffusion process at least promotes an
understanding of the process under consideration.

The connection between diffusion research and event history analysis is the focus
of the present paper. After an introduction of central concepts, we discuss Diek-
mann’s (1990, 1992) flexible diffusion model (Section 2). Subsequently, we present
a more restrictive model (Section 3). This approach illustrates differences in the un-
derlying theoretical processes between established event history models (e. g., the
exponential model, log-logistic model, sickle model). Specifically, this approach
provides a new rationale for Brüderl and Diekmann’s (1995) generalised log-logistic
model in the sense of a flexible infection process. In cases with bell-shaped duration
dependence it thus allows a test for social contagion due to random contacts between
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1 Some economic models of unemployment durations and job durations have been successful in
predicting the shape of the duration dependence. However, they do not rely on diffusion pro-
cesses but model the job search behaviour with stochastically arriving job offers (see for exam-
ple the survey in Van den Berg 2001).



actual and potential adopters. An application to divorce data serves as an illustration
(Section 4). Because it is especially unlikely that divorce has much to do with social
contagion, the suggested approach of connecting diffusion research and event
history analysis can be tested to see if it leads to plausible results.

2 Foundations

2.1 Concepts

Let us consider a social system with a large number of individuals who, in a given
period of time, are confronted with a binary and absorbing event the occurrence of
which can be interpreted as a result of a decision (e. g., marriage, divorce, adopting
new technologies).2 Let T be a non-negative continuous random variable, represent-
ing the duration until the occurrence of an event (arrival time or waiting time, de-
pending upon the viewpoint) with distribution function F(t) and density function
f(t)=dF(t)/dt. Because F(t) defines the proportion of the population which has al-
ready experienced the event up to time t, 1 – F(t) represents the complementary pro-
portion without the event up to this point in time. The hazard rate h(t) = f(t)/(1 – F(t))
then gives (approximately) the conditional probability of a change in status in the
(very small) time interval [t, t +� t] if the event has still not occurred before t.

These concepts were originally introduced and interpreted in the sense of event
history analysis. From the perspective of diffusion research, other terms can be used
which are at least partly borrowed from epidemiology (cf., e. g., Kramer 1988). Since
F(t) defines the proportion of prior adopters or those “infected” at time t , this quan-
tity indicates the period-specific prevalence rate. The derivative or density
dF(t)/dt = f(t) can thus be interpreted as the increase in prevalence during a (short)
additional time interval.3 Because 1 – F(t) defines the respective proportion of poten-
tial adopters (population at risk) and h(t) = f(t)/(1 – F(t)) applies this by definition, the
hazard rate h(t) can be interpreted as the “incidence rate”.4 It captures the (relative)
influx to the group of adopters during the brief time interval [t, t + �t].
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2 Biologically or technically caused events, such as deaths or damage to a machine, do not fall
into this category.

3 Because dF(t)/dt = f(t) expresses the increase in the proportion of adopters per time unit,
f(t)/F(t) indicates the respective growth rate of the prevalence.

4 According to Kramer (1988: 27–32) the prevalence rate defines the proportion of adopters in a
certain population at a fixed point in time. In contrast, the incidence rate always refers to a time
interval. It defines the proportion of non-adopters from this population who become adopters
during a certain period. In our context (ignoring absolute sizes) the incidence rate corresponds
therefore to the hazard rate h(t), while the respective prevalence rate is given by the distribu-
tion function F(t). For a very small prevalence rate of a feature (e.g., the proportion of regular
consumers of hard drugs in the total population) one can capture the incidence rate by the den-
sity function f(t), because in this case f(t) and h(t) = f(t)/1 – F(t)) are approximately equal.



Thus, a process such as spreading of behaviours (or the occurrence of events)
takes account of a connection between incidence and prevalence. In other words, a
diffusion process reflects a functional relationship between h(t) and F(t). Due to the
large number of possible relations and the definition of the hazard rate, the density
f(t) should be expressed as a sufficiently general function of the prevalence F(t). We
now turn to such an integration of diffusion research and event history analysis.

2.2 Flexible diffusion model

A general model for connecting the logic of diffusion and event history analysis is
suggested by Diekmann (1990, 1992). His model is based on a differential equation.
Accordingly, the spread of the feature under consideration, or the occurrence of the
relevant event, can be thought of as a consequence of the information flow within the
system. The adoption of a behaviour or the occurrence of an event is a result of infor-
mation that is passed on either through interaction with adopters or by sources of in-
fluence (e. g., the mass media) that are present throughout the system. To capture dif-
ferent diffusion processes, Diekmann makes the assumption that the information
transfer takes place by contacts between a subset of the already infected and not in-
fected portions of the population.5 The mixing assumption is p(t) = F(t)m(1 – F(t))n,
where m and n are arbitrarily selectable parameters not interpreted as to content. Be-
cause this product indicates the proportion of interactions between sections of the
population at t, one can view p = p(t) as the probability of an informative and thus po-
tentially infectious contact for members of the risk population at time t.6 Its weight-
ing with an arbitrarily selectable adoption rate s(t) > 0 then determines the increase
on the proportion of adopters per unit of time:

dF t

dt
s t F t F tm n( )
( ) ( ) ( – ( ))
 1 . (1)

Therefore, the corresponding hazard rate is:

h t s t F t F tm n( ) ( ) ( ) ( – ( )) –
 1 1, (2)
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5 The related assumption of a “homogeneous mixing” of the population, concerning infection
status, characterises standard models in epidemiology as well (e.g., Anderson and May 1991;
Bailey 1975). The actors do not differ with regard to age, education, sex etc. Research on so-
cially structured diffusion expanded enormously as a result of the AIDS epidemic. Morris
(1994) presents an overview and a modeling suggestion for dealing with non-homogeneous
mixing in epidemiological models which is based on log-linear methods. Strang (1991) dis-
cusses the role of event history analysis when introducing social-structural features into
models of social diffusion.

6 The function p(t) can also be related to the popular economic concept of the matching function
or meeting function in economics, specifying the flow of filled jobs as a function of the stock of
unemployed and the stock of vacancies (see e.g. the survey by Petrongolo and Pissarides
2001).



so that very different connections between incidence and prevalence are possible.7

The type of diffusion process as well as the interpretation of the adoption rate s(t) is
determined to a large degree by the selection of the parameters m and n. In particular,
we can differentiate three processes:

● The parameter combination m = 1 and n = 1 defines the probability of a potential
infection of possible adopters per unit of time through p(t) = F(t)(1 – F(t)). Indi-
vidual instances of adopting behaviour or of events can thus be interpreted as re-
sulting from coincidental interactions between prior and potential adopters. This
scenario is based on the assumption of homogeneous mixing after contagion. It
thus illustrates pure infection processes. According to Diekmann, s(t) represents
the contagion rate for interactions between actors with and without a given fea-
ture (event).8

● As a result of the parameter constellation m = 0 and n = 1 , the probability of a po-
tentially influential contact for potential adopters per unit of time arises through
p(t) = 1 – F(t), the proportion of the population at risk. Adopting a behaviour can
be understood here as a result of contacts of this part of the population with the to-
tal system. One can thus regard this as consequences of the influence of sys-
tem-wide sources (e. g., mass media), so that s(t) is interpretable in Diekmann’s
sense as a time-dependent influence rate.9

● The parameter combination m= 0 and n = 2 determines the probability of a poten-
tially influential contact for members of the risk population per unit of time
through p(t) = (1 – F(t))2. In this scenario the crucial role is played by interactions
between potential adopters. Diekmann (1990) speaks of matching processes
(e. g., a sales contract, marriage) in this case, in which s(t) is to be understood as
the time-dependent matching rate.

Diekmann’s approach certainly offers an elegant connection between diffu-
sion-theoretical logic and event-analytic methodology. However, there are also argu-
ments that justify the formulation of an alternative approach for the integration of dif-
fusion research and event history analysis:
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7 Diekmann (1990, 1992), Yamaguchi (1994), and Brüderl and Diekmann (1995) present de-
tailed discussions of special cases of this approach for integrating diffusion research and event
history analysis.

8 The example of such an infection process that is probably the most well-known is the logistic
model applied by Coleman, Katz and Menzel (1957) which results from (1) for m = n = 1 and
s(t) = �.

9 The classical example of such an influence process is the exponential model which has already
been applied by Coleman, Katz and Menzel (1957). Instead of “influence by the system”, one
frequently reads about “external influence” in the diffusion-theoretical literature (e. g.,
Mahajan and Peterson 1985), whereas infection stemming from contacts between actors with
or without the feature is referred to there as “internal influence”.



● First, it is striking that the two parameters are unlimited. According to the logic of
the diffusion approach, one can interpret p(t) = F(t)m(1 – F(t))n as the probability
of an informative contact for potential adopters. Because F(·) is a distribution
function, however, p(t) = F(t)m(1 – F(t))n � 1 must apply. This condition is possi-
bly violated with unrestricted values of m and n (example: m = – 1, n = 1 and
F = 0,4). It is fulfilled, for example, by the restrictions m � 0 and n � 0.

● If one is limited to the scenario m� 0 and n� 0, then m and n determine the inter-
acting parts of the groups of prior and potential adopters. It is unclear whether and
how the two parameters m and n can be interpreted according to their content. It is
not clear here, for instance, why m = n = 0 always means that p = 1, but m ��
and/or n �� always leads to p = 0.

● Apart from the selection of the respective interaction pattern by specification of
m and n, the approach also permits an arbitrary definition of the adoption function
s(t). In principle the number of parameters, and the functional form of s(t), can be
freely determined. This flexibility is reflected in the fact that there are different
diffusion-theoretical explanations for one and the same hazard rate model. Thus,
the log-logistic standard model can be interpreted both as an infection process
and a matching process.10 For other standard models of event history analysis
(e. g., exponential distribution, generalised log-logistic model, sickle model),
ambiguous diffusion-theoretical interpretations are also possible since one can
freely choose m, n, and s(t) (Braun 1998). In order to arrive at a unique derivative
of individual event models from (1), one could follow, e. g., Yamaguchi (1994),
and concentrate on pure contagion processes (m = n = 1) with flexible selection
of the adoption rate s(t).

In the following section we will focus on an alternative way to avoid such ambi-
guities and interpretation problems. This approach deviates substantially from
Diekmann’s approach in at least two aspects. The arbitrary adoption function s(t) is
replaced by a flexible function, and the parameters m and n which are unclear as far
as content is concerned, are eliminated in favour of an interpretable quantity. Al-
though fundamental considerations and established concepts are maintained wher-
ever possible, these differences already find expression in the model assumptions we
specify below.
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10 According to Diekmann (1992), one gets the infection theory explanation for the log-logistic
standard model by the parameter selection m = n = 1 and the infection rate s(t) = �/t in (1),
whereas the interpretation of the model as a matching process results from the specifications
m = 0, n = 2 and s(t) = ��(�t)�–1 with �� � > 0 in (1).



3 An alternative model

3.1 Model assumptions

Once again, we assume that spreading processes result from appropriate informa-
tion about the characteristic or event under consideration and the respective willing-
ness of the actors to adopt them. Sources of information are interactions between ac-
tors in the system. However, only a subset of all contacts is informative with regard to
the feature, and not every informative contact necessarily leads to the occurrence of an
event. It therefore makes sense to first determine the probability of an interaction with
an adopter per unit of time and then to specify accordingly the time-dependent adop-
tion function of potential adopters. A simple assumption for linking these quantities re-
sults finally in a flexible hazard rate function and thus in a general diffusion model.

3.1.1 Probability of informative contacts

The quantities F(t) and 1 – F(t) represent the respective proportions of prior and
potential adopters in the system. If all actors (independent of their status concerning
the event) possess the same chance of beginning an interaction, F(t) determines the
probability of an individual coincidentally meeting a prior adopter. On the other
hand, (1 – F(t)) determines the probability that such a contact is not with an adopter
and therefore uninformative with regard to the event. If one now supposes for each
actor in the system k statistically independent contacts per unit of time, then
(1 – F(t))k gives the probability that an individual has had no contact with an adopter.
Thus,

w(t) = 1 – (1 – F(t))k (3)

is the probability that at least one of k’s statistically independent contacts of any
given actor with an adopter will occur, and is therefore informative concerning the
event.11 The function w(t) increases ceteris paribus with k, the statistically independ-
ent contacts of each actor in the system per time unit: for k = 0, w(t) = 0; for k = 1, w(t)
= F(t); for k = 2, w(t) = F(t)(2–F(t)); and k � � correspondents to w(t) = 1. Under
otherwise identical conditions, w(t) increases along with the prevalence rate F(t). Be-
cause the latter usually increases with time, the probability of a potentially influen-
tial contact also tends to increase with time passed (since the beginning of the pro-
cess). There is also often a positive or negative time dependency that characterises
the willingness of potential adopters to adopt the characteristic in question.
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11 The quantity w(t) defines the probability of an informative contact for each actor in the system
independent of his status concerning the feature. Thus it differs in conception from p(t), the
probability of an informative contact for members of the risk population in Diekmann’s
approach.



3.1.2 The adoption function

In order to achieve a complete parameterisation, a sufficiently general adoption
function r(t)� 0 is introduced which determines the adoption rate per unit of time.12

This function possesses the real-number parameters c � 0, c � 0,� and � � 0:13

r(t) = ce�tt�-1, (4)

where e defines the base of the natural logarithm, and the scaling parameter c can be
re-parameterised if necessary.14 Thus, the adoption rate for � = 0 and � = 1 is a con-
stant. In all other cases it depends on the time t, though the effect is influenced sub-
stantially by the combination of the respective· parameters � and �. The elasticity
function of r(t) gives a brief summary of all possibilities. The elasticity of the adop-
tion rate is a linear function of the time passed since the beginning of the process:

dr t

dt

t

r t
t

( )

( )
( – )
 �� � �1 (5)

A one per cent increase in the time passed changes the adoption rate by approxi-
mately 100(� – 1 +�t)%. The time elasticity of the willingness of adoption is formu-
lated in the definition of diffusion processes and the corresponding hazard models
assumptions. Before this can be made clearer, we first need to introduce an assump-
tion about the determinants of the hazard rate.

3.1.3 Hazard rate

The hazard rate, or risk function h(t), indicates the conditional probability of a
status change for ‘feature-free’actors. If one assumes that a feature spreads as a result
of contacts between actors in the system, it is plausible that the risk of the occurrence
of the event will depend on the probability of an informative contact w(t) and the
adoption rate r(t). A high risk of occurrence might exist in particular when both the
probability of an interaction with an adopter and the willingness of adoption are
high. Thus, the following assumption for determinants of the hazard seems to makes
sense:

h(t) = r(t)w(t). (6)
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12 The flexible function r(t) plays a role similar to that of the arbitrary function s(t) in Diekmann’s
approach.

13 The function r(t) is elementarily integratable only for real numbers of �. It is a generalisation of
the gamma density g = (b(bt)a-1e-bt)/�(a) in which a and b are positive parameters and /�(·) rep-
resents the gamma function. Namely, r(t) = g(t) for � = a � 0, � = –b< 0 and c = ba/�(a). Due to
the characteristics of the gamma function, c = ba/(� – 1)! if � is a positive real number.

14 Typical re-parameterisations are c = �	/
 and c = �� a, whereby �, 	, 
 represent positive pa-
rameters.



The hazard rate arises then as a result of the product of the time-dependent adop-
tion rate and the probability of a contact which is informative and therefore poten-
tially consequential regarding the event or feature. We have now formulated a gen-
eral diffusion model on the basis of the postulates for r(t) and w(t), as discussed
above.

3.2 Model conclusions

The assumptions (3), (4) and (5) determine a flexible risk function which itself
implies a general diffusion equation. The model prerequisites result in the hazard
function

h(t) = ce�tt� –1 (1 – (1 – F(t))k). (7)

Before looking at the corresponding density function f(t) and thereby the general
diffusion equation, it makes sense to discuss briefly the process-theoretical implica-
tions of (7). Because h(t) = r(t)w(t), and w(t) increases with the number of the statisti-
cally independent contacts k, h(t) increases with k, assuming otherwise identical con-
ditions. If one assumes 0 � F(·) � 1, then diffusion processes can be differentiated
according to the potential of influence of interactions:

Contact-dependent spreading: If k is not very large, then w(t)�1 represents the
probability of an informative contact. Thus, apart from the adoption function r(t),
this probability influences the hazard rate h(t) and interactions therefore play a rather
important role for the spreading process.

Contact-independent spreading: In the case of innumerable contacts per unit of
time, we have the opposite result. In the borderline case k � �, w(t) = 1, the risk func-
tion h(t) is determined exclusively by the adoption function r(t). In this scenario the
occurrence of an event is independent of the probability of an informative contact
which means that interactions between the system actors play no role in the
spreading process.

The distinction between contact-dependent and contact-independent diffusion is
of course, also relevant for the density f(t) = dF(t)/dt from (7). This results from com-
bining the definition h(t) = (dF(t)/dt)/(1 – F(t)) with the hazard function (7):

dF t

dt

( )

ce�tt�–1(1 – (1 – F(t))k(1 – F(t)). (8)

Like Diekmann’s differential equation, this diffusion equation is explicitly solv-
able only for certain parameter combinations. Table 1 presents a selection according
to the diffusion-theoretical interpretation of these special cases: for k = 1 infection
processes are present; for k = 
/	, a flexible model arises in the sense of a generalised
contagion process; and for k � �, we have contact-independent propagation pro-
cesses. In addition to a brief look at the exponential model and the logistic model, we
will take a closer look at the remaining special cases from Table 1 in the following.
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Because the latter either exhibit or at least permit a bell-shaped hazard rate curve, this
discussion serves also in preparation for the application.

3.2.1 Exponential distribution

One of the process types in Table 1 is based on the assumption of innumerable in-
teractions between system actors (k ��) In this scenario there is always an informa-
tive contact concerning the feature per unit of time, so the spreading process occurs
independently of the interaction pattern. The diffusion process thus does not take
place via contagion as a result of interactions between potential and prior adopters.
Rather, it is driven exclusively by the adoption function.

In Table 1, this type of process is, inter alia, represented by the exponential model
which frequently serves as a reference model in event history analysis. Based on (8),
this classical model of a contact-independent spreading process results from the ad-
ditional assumption of a constant adoption rate (cf., e. g., Coleman, Katz and Menzel
1957). Assuming c � 0, � = 0 and � = 1:

dF t

dt

( )

c(1 – F(t)), F(t) = 1 – e–ct, h(t) = c, (9)

Table 1:
Special cases of the diffusion model

Logistic model (spreading through infection):

k = 1 as well as c � 0, � = 0 and � = 1, so that
w(t) = F(t), r(t) = c and h(t) = cF(t)

Log-logistic model (spreading through infection):

k = 1 as well as c � 0, � = 0 and � = 0, so that
w(t) = F(t), r(t) = c/t and h(t) = (c/t)F(t)

Generalised log-logistic model (spreading through contacts):

k = 
 /	 � 0 and c = �	/
 � 0, � = 0, � = 0, so that
w(t) = 1 – (1 – F(t)���, r(t) = ��/�t
and h(t) = (�	�
t)(1 – (1 – F(t) �/�)

Sickle model (contact-independent spreading):

k � � as well as c � 0, � = -1/
 � 0 and � = 2, so that
w(t) = 1 and r(t) = cte-t/
 = h(t)

Exponential model (contact-independent spreading):

k � � as well as c � 0, � = 0 and � = 1, so that
w(t) = 1 and r(t) = c = h(t)

Note: Further model descriptions can be found in textbooks on event history analysis (e.g., Blossfeld, Hamerle and
Mayer 1989; Blossfeld and Rohwer 1995; Diekmann and Mitter 1984).
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where the integration of the density f(t) = dF(t)/dt yields the distribution function F(t)
so that the corresponding hazard rate h(t) = f(t)/(1 – F(t)) is determined by the con-
stant c.

3.2.2 Sickle models

In addition to the exponential model, TABLE 1 contains a further model for a
spreading process which does not rely on contagion by interactions between prior
and potential adopters. The constellation of the contact-independent spreading also
characterises the sickle-shaped hazard function of Diekmann and Mitter (1983,
1984a). Using the positive parameters c and 
, the “defective” distribution function
F(t) and the hazard rate h(t) of the sickle model are given by

F(t) = 1 – e
c(
 – (t+
)e–t/
), h(t) = cte–t/
� (10)

so that in the long run, “immunity” is present in the sense of F(�) � 1. The estimated
value of � thereby determines the point in time of the highest transition risk (i. e., the
maximum of the rate function with tm = �). Apart from k � �, a diffusion-theoretical
explanation for the sickle hypotheses in the sense of (8) requires the parameter speci-
fication c � 0, � = –1/
 and � = 2:

dF t

dt

( )
= cte–t/
 (1 – F(t)). (11)

If one views the sickle model on this basis, this has two consequences. On the one
hand, innumerable interactions per unit of time guarantee that only the adoption rate
plays a role in the spreading of the feature, i.e., the adoption function r(t) corresponds
to the hazard function h(t). On the other hand, the transition risk exhibits a linearly
decreasing elasticity of time (dr/dt)(t/r(t)) = 1 – (1/
)t. A one per cent increase in time
(passed since the beginning of the process), will result, up to a certain point in time
(at tm = 
), in a proportional increase in the willingness of adoption. Thereafter, how-
ever, there is a proportional decrease. After initial acceleration, the adoption ten-
dency is thus retarded once again, although contacts do not play a role in the spread-
ing process. This contrasts with the logic of infection.

3.2.3 Logistic models

Examples of social contagion processes are easy to find. The spreading of certain
modes, the acquisition of new technologies, and also the propagation of rumors can
always be understood as consequences of informative interactions. Assuming the va-
lidity of (8), infection processes result if one supposes a statistically independent
contact per unit of time (k = 1) which means that the proportion of adopters deter-
mines the probability of a given informative contact.

The logistic model indicated in Table 1, offers the classical description of infec-
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tion-like diffusion processes (e. g., Coleman, Katz and Menzel 1957). It results from
(8) if one additionally assumes a constant adoption rate and thus c � 0, � = 0 and �=1:

dF t

dt
cF t F t F t

F e

e F
h t

ct

ct

( )
( )( – ( ), ( )

( )

– ( – ) ( )
, (
 
1

0

1 1 0
) ( ).
cF t (12)

With F(0), we assume a positive initial value of the S-shaped distribution function
F(·). Because the adoption rate is determined by the constant c, the hazard function
h(t) represents only a parallel shift in the distribution function. Thus the hazard rate
of the logistic model also indicates an S-shaped process, i. e., the risk of adoption
rises with the process duration. However, there are also infection processes that are
accompanied by an entirely different course of risk.

3.2.4 Log-logistic models

Age-dependent taking up of illegal activities as a result of “bad” contacts or the
beginning of regular drug consumption due to interactions with friends who already
take drugs could be contact-dependent spreading processes with bell-shaped hazard
functions. If one concentrates first on pure infection processes (k = 1), and makes the
corollary assumption that the adoption function r(t) = c/t is constantly decreasing,
then the log-logistic standard model proves to be an example of a pure contagion pro-
cess which can be accompanied by a bell-shaped hazard function.

As Brüderl and Diekmann (1995) show, the log-logistic model can be generalised
by introducing an additional parameter 	. If we use the positive parameters �, 	 and

, the distribution function F(t) and the hazard function h(t), the generalised
log-logistic model is:

F t t h t
ß t

t
( ) – ( ( ) ) , ( )
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/
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 � 

�

1 1
1

1

�
� �

�

� � �
�

�
, (13)

which results in the log-logistic standard model for 	 = 
 � 0. For � � 1, we have a
bell-shaped curve for h(t), while � � 1 implies a constantly decreasing hazard rate
h(t).

Because the generalised log-logistic model contains the log-logistic standard
model as a special case, and the latter is infection-theoretically explicable, the gener-
alised model should be interpretable as a generalised contagion process. In fact, (8)
does permit this interpretation of the generalised log-logistic model. If one combines
the assumption k = 
/	 � 0 in (8), with the specifications c = �	/
 � 0,� = 0, and � =
0, then the density of the generalised log-logistic model can be written as a
generalised infection process:

dF t

dt t

( )



�

�

�
((1 – F(t)) – (1 – F(t))��� + F(t) (1 – F(t))���). (14)

So the generalised log-logistic model illustrates a further type of process in Ta-
ble 1. As a flexible model of a contact-dependent diffusion, it is situated between
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pure infection processes and contact-independent spreading processes. The estima-
tion results for the generalised log-logistic model thus facilitate the choice between
bell-shaped hazard rate models that are based on different process-theoretical foun-
dations. In particular, they make it possible for us to test the infection hypothesis
which justifies the log-logistic standard model: The more 	 = 
 is fulfilled, the more
appropriate is an interpretation of a bell-shaped risk process in the sense of a pure
contagion process. This reflects the fact that the infection-theoretical interpretation
of the log-logistic model for k = 1 results directly from (14), whereby a constant time
elasticity of –1 is assumed for the adoption rate r(t). In addition to the possible conta-
gion-theoretical interpretation, it is thus characteristic for log-logistic models that a
one per cent increase in time (passed since beginning of the process) will lead to a one
per cent reduction in adoption willingness. These process-theoretical differences be-
tween the log-logistic models and the similarly shaped sickle model serve to help in
the selection of the suitable statistical model. We will now show this with an
investigation of duration data concerning “divorce”.

4 An illustration: divorces

One can hardly view divorce as the consequence of social contagion processes.
An analysis of divorce data might therefore show whether our suggested approach of
connecting diffusion research and event history analysis leads to plausible results.
Our starting point is the well-known fact that divorce data can be adequately de-
scribed by a bell-shaped risk or hazard rate function (cf., e. g., Diekmann and
Engelhardt 1999; Brüderl, Diekmann and Engelhardt 1999). In the following, we
take a look at the sickle model and the generalised log-logistic model, two parametric
models that can illustrate such a shape for the transition rate although they are based
on different process-theoretical considerations. Although we orient ourselves
throughout to the traditional procedure for the employment of event-analytic meth-
ods in divorce research, the substantive findings of the data analysis are neglected to
a large extent.15 Our objective is to prove that the process-theoretical considerations
discussed above can be of use when choosing between competitive hazard rate mod-
els. After a brief description of the data and covariates, we will also deal briefly with
the statistical procedures that are usually employed in model selection.

4.1 Data and variables

This study is based on the German Family Survey from 2000 which was admin-
istered by the German Youth Institute (DJI). The DJI study is a random sample of
the entire East and West German residential population between the ages of 18 and
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55 living in private households. A total of 10,093 people participated in personal in-
terviews in which detailed information on their partnership history was collected.
2,002 of the respondents in West Germany were interviewed already a third time in a
panel starting in 1988, and 8091 persons were randomly selected. Due to high panel
mortality we focus on the cross-sectional survey. Although the response rate was rel-
atively low in the cross-sectional sample (52%), comparisons of the distributions of
socio-demographic variables with official statistics show that deviations are no
greater than in other national surveys. Women and persons not in the labour force are
somewhat overrepresented, while family and household type both correspond to of-
ficial statistics (Infratest 2000). For the following analyses we consider only first
marriages of both partners in West Germany, excluding persons born abroad,
“Aussiedler” (ethnic German repatriates, coming mainly from Russia), and migrants
from East to West who where over age 20 at the time of migration. There are
3,844 first marriages in the data of which 17,9% had ended in divorce by the time of
inquiry. Apart from the central variable “marriage duration”, the data set allows us to
control for numerous characteristics of the respondents and the couples which are
considered to be central divorce determinants (cf., e. g., Engelhardt 2002). These
characteristics can thus be included in the analysis as covariates.

4.2 Estimation and testing procedures

For estimation purposes, covariates are generally included in the respective haz-
ard rate model, with an exponential link function through selected process parame-
ters. In the sickle model the parameters c and 
 are usually defined as follows (e. g.,
Diekmann and Engelhardt 1999):

(15)

where bc0 and b
0 represent coefficients to be estimated, and the coefficient of the
jth covariate which enters the model through the process parameter c. Employing the
same notational logic, we follow the recommendation of Brüderl and Diekmann
(1995) and define for the generalised log-logistic model accordingly:

(16)

Thus covariates are included in the model through the process parameter 	. Inde-
pendently of whether we view the sickle model or the generalised log-logistic model,
the estimated coefficients of the covariates indicate the “relative risks”. The propor-
tional rate effect of the jth th covariate is given by 100(bcj – 1)%.

If the vector of covariates xi and the marriage duration ti are known for each indi-
vidual i, then the b-coefficients can be estimated, taking censored observations into
account consistently and they can be (asymptotically) normally distributed by means
of the maximum-likelihood method which enables us to employ inference-statistical
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testing methods (cf., eg., Blossfeld, Hamerle and Mayer 1989). The log-likelihood
function

(17)

which depends on the hazard function h (·) selected, is maximised with respect to the
vector of coefficients b. N defines the number of cases and di is a binary variable
which takes on the value 1 for uncensored observations. We obtain the maximum
likelihood estimations using Rohwer’s program TDA, although we used the epi-
sode-splitting technique for the time-varying covariates (cf., e. g., Blossfeld and
Rohwer 1995).

To evaluate the degree of improvement in the estimation ensuing from the addi-
tion of further parameters or covariates, the Likelihood Ratio test is usually used. It
compares the maximised likelihood of the interesting (or unrestricted) model LU,
with the maximised likelihood of the reference (restricted) model, LR. The Likeli-
hood Ratio test statistic LR = 2(lnLU–lnLr) is asymptotically �2-distributed, with the
difference in parameters or covariates of the models under consideration as degrees
of freedom. If LR exceeds the relevant critical parameter, then the restrictions can be
rejected. Roughly speaking, the interesting model turns out to offer a significant
improvement in the estimation.

In addition, the likelihood ratio statistic offers the basis for a comparison of
non-nested models (e. g., the sickle model and the generalised log-logistic model)
using the Bayesian Information Criterion BIC (Raftery 1995). Therefore, one calcu-
lates for each model:

BIC = ln(n)z – LR

where z indicates the number of additional parameters in comparison to the selected
reference model (e. g., exponential distribution). Usually one considers the model with
the smallest BIC value to be the relatively “best” model. In the context of a selection to
be undertaken on the basis of statistical criteria, this model would be selected.

4.3 Results and model selection

We now compare the sickle model and the generalised log-logistic model on this
basis. We first consider the results of an estimation of both models without taking
covariates into account (Table 2). The estimation results from the sickle model indicate
that the maximum divorce risk occurs at approximately nine years (
= 8.884),while the
generalised log-logistic model fixes this point at somewhat over seven years.16
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Table 2:
Maximum likelihood estimations of the divorce risk for three models without covariates

Parameters and
test statistics

Sickle model log-logistic model Generalised log-
logistic model

c 0.005*** – –

� 8.884*** – –

� – 0.012*** 1.924***

	 – – 0.015***


 – 1.232*** 0.135*

– Log-likelihood 2899.702 2917.391 2897.492

LR 61.535 26.159 65.957

df 1 1 2

BIC -53.477 -18.101 -49.841

Notes: * significant for p � .05, *** significant for p � .001. LR is the likelihood-ratio statistic with df degrees of
freedom. BIC is the Bayesian Information Criterion with the exponential model without covariates as
reference model (Log-Likelihood = -2930.47). N = 3159.

In addition to the estimated values for the process parameters, TABLE 2 also in-
cludes information about the test statistics and ’goodness-of-fit’ measures we have
discussed. The exponential distribution without covariates serves in all cases as the
reference model.17 If one uses the Bayesian Information Criterion BIC for model se-
lection, then the sickle model is to be preferred to the log-logistic model and to the
generalised log-logistic model, judging from the estimated results for the scenario
without covariates.

If one includes the covariates in the analysis, this result remains stable, as can be
seen in Table 3. Regardless of whether one carries out the comparison with the expo-
nential model with or without covariates, the sickle model presents itself as the
“better” model, due to the smaller BIC value for the analysis of the divorce data under
consideration. So if one chooses among parametric hazard rate models on the basis
of statistical criteria, then the inclusion (or exclusion) of certain covariates obviously
plays a substantial role in the decision-making process.
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son to this basic model with constant rate, the relative likelihood improvement achieved with
the estimation from the Sickle model, the log-logistic model and the generalised log-logistic
model is small in each case. When using McFadden’s Pseudo-R2(=(ln LR – ln LU)/In LR) as a
conservative measure for the relative likelihood improvement, one gets the value 0.01 for the
sickle and the generalised log-logistic model and 0.04 for the log-logistic model. If one consid-
ers also the covariates mentioned, this results in a Pseudo-R2 of about 0.012 for the sickle
model and the generalised log-logistic model and 0.02 for the log-logistic model.



Table 3:
Maximum likelihood estmations of the divorce risk for three models with covariates

Covariates, parameters and
test statistics

Sickle
model

log-logistic
model

Generalised
log-logistic model

Constant 0.060*** 0.170*** 0.002

Married 1971–80 (=1, 0 else) 1.292+ 1.322** 2.671**

Married 1981–90 (=1, 0 else) 2.285*** 2.108*** 13.867***

Married 1991–2000 (=1, 0 else) 2.870*** 2.283*** 19.627***

Catholic couple (=1, 0 else) 0.694** 0.776** 0.425**

Non religious couple (=1, 0 else) 0.742 0.805 2.281***

Mix of religions (=1, 0 else) 1.124 1.078 1.325

Mix of nationalities (=1, 0 else) 0.990 0.934 0.894

Years of cohabitation 0.968 0.982 0.930

Child before marriage (=1, 0 else) 0.968*** 0.545*** 0.160***

First child (time dependent) (=1, 0 else 0.438*** 0.377*** 0.160***

Husband: age at marriage 0.990 0.992 0.978

Wife: age at marriage 0.944** 0.958** 0.873**

Wife is 2+ years older (=1, 0 else) 1.129 1.155 1.341

Husband: years of education 0.954 0.972 1.061

Wife: Years of education 1.025 1.019 0.894

Marriage in church (=1, 0 else) 0.488*** 0.581*** 0.181***

No siblings (=1, 0 else) 1.028 1.058 1.080

Father: Abitur (=1, 0 else) 1.224 1.152 1.519**

Grown up without parents (=1, 0 else) 1.775+ 1.490 1.607**

Grown up with widowed parent (=1, 0 else) 0.970 0.945 0.904

Grown up with divorces parents (=1, 0 else) 2.416*** 1.831*** 7.909***

Grown up with single parent (=1, 0 else) 1.841+ 1.431 4.098+

Mating: strong ties (=1, 0 else) 0.831+ 0.865+ 0.647+

Mating: weak ties (=1, 0 else) 0.736* 0.788** 0.489*

c par. – –

� 12.449 – –

� – 1.579*** 1.424***

� – – 1.670

� par. par.

– Log-likelihood 2534.209 2536.612 2548.363

LR 92.745 87.9406 64.435

df 1 1 2

BIC -184.251 -79.928 -48.411

Notes: + significant for p � .1, * significant for p � .05,** significant for p � .01*** significant for p � .001.
Reported are the b-coefficients of the covariates which determine the “par.”-marked process parameters. Reference
categories: marriage cohort 1971–80, Protestant couple, same nationalities, no child before marriage, no first child,
wife is not 2+ more years older, not married in church, siblings, father has no Abitur, lived with both parents up to age
15, mating: no ties. LR is the likelihood-ratio statistic with df degrees of freedom. BIC is the Bayesian Information
Criterion with the exponential model with covariates as reference model (Log-likelihood = -2580.582). A
comparison with the exponential model without covariates yields LR (BIC) = 384.552 (-184.251) for the sickle
model, LR (BIC) = 379.746 (-179.446) for the log-logistic model, and LR (BIC) = 356.241 (-147.928) for the
generalised log-logistic model. N = 3017; number of splits = 5161.
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Family demographers are now particularly interested in the effects of covariates.
One could take a pragmatic point of view and point out that the effects of covariates
are practically identical at least in the sickle and in the log-logistic model. In the
three-parametric generalised-log-logistic model, the estimated coefficients differ
substantially. From this perspective, the question of model selection between the
two-parametric models appears irrelevant in the case that the list of the covariates is
fixed. However, this line of argumentation is not entirely convincing. The covariates
can be compatible sooner with a certain type of the propagation than with another
type. The covariates from Table 3 refer to individual and couple-specific characteris-
tics but not to relations with other persons and their characteristics. In this applica-
tion, interactions with unmarried or already divorced actors should therefore not be
crucial components of the propagation process which is determined by the choice of
the estimate model. Given the list of covariates, the assumption of a contact-indepen-
dent propagation process seems appropriate for this example.

Furthermore, covariate effects are frequently interpreted with the help of theories
that refer, more or less explicitly, to the individual decision behaviour concerning the
event under consideration (e. g., divorce). For reasons of consistency, this theoreti-
cally founded micro-interpretation of covariate effects should not collide with the
macro-process which is specified by the choice of parametric event model. Even if
the covariates are fixed, for an adequate interpretation of their effects a process
model has to be estimated that is compatible with the initial theoretical con-
siderations.

Therefore, it seems useful to consider the process-theoretical implications dis-
cussed above when choosing the model. It is well known that the generalised log-lo-
gistic model illustrates a generalised infection process which is reduced to a pure in-
fection scenario (log-logistic model), given a certain parameter constellation (k = 
�	
= 1). It thus offers a test for whether the application under consideration can be inter-
preted as being a case of social infection. The estimated values of the � and 
 for the
scenario without covariates in Table 2 then exclude an infection-theoretical interpre-
tation of the divorce data (k � 15).

Instead, these values indicate, as expected, that the divorce risk depends less on
interactions with third persons than on the adoption function which is substantially
determined by individual characteristics of the spouses and intra-couple processes.
Moreover, if one considers the estimated results from Table 3, most covariates ex-
hibit significant and more or less strong effects on the risk of divorce. In all models,
this risk increases in comparison to the reference category (see Section 4.1) if the in-
terviewed person grew up in a broken home, with a single parent, or without parents.
Furthermore, the risk of divorce increases for younger marriage cohorts. In contrast,
the affiliation of both husband and wife to the Catholic Church, church marriage and
the birth of the first conjugal child decrease the risk. The risk is also reduced for cou-
ples who met incidentally without a social network (e. g., friends or relatives) in-
volved.

Overall, these results are in agreement with the basic intuition that divorces result
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mainly from characteristics of the couple and intra-couple processes. With increas-
ing time spent together, one acquires additional information about positive and nega-
tive characteristics of one’s partner and conflicts, boredom or indifference can come
about; factors that manifest themselves in an increasing inclination on the part of at
least one of the partners to separate. These considerations are in keeping with exist-
ing theories of divorce research which form the basis of interpretations of the
covariate effects. For example, according to Becker’s economic theory of divorce
(1991) it is the information about one’s spouse acquired in the course of time which
increases the likelihood of divorce. A general sense of disillusionment about one’s
spouse can arise as a result of additional experiences, or a mismatch can be
diagnosed, so that an end to the relationship ultimately appears as the lesser evil.

In the analysis of divorce data, the effects of covariates are frequently interpreted
in the sense of Becker’s family economics. From a process-theoretical perspective,
such an interpretation is most likely compatible with the assumption of a contact-in-
dependent propagation. Accordingly, if one considers the event “divorce”, it makes
sense to use the sickle model. If the underlying logic of spreading is unclear in some
other application with bell-shaped rate process, such doubts might well be elimi-
nated by the estimation of the generalised log-logistic model. Indeed, according to
the model for connecting diffusion research and event analysis presented here, pro-
cess-theoretical considerations facilitate the choice among competitive hazard rate
models, if statistical criteria do not offer us a clear basis for decision.
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