
Schabus & Scholz 

 

126 
 

Spatially-Linked Manufacturing 

Data to Support Data Analysis 

 GI_Forum 2017, Issue 1  

Page: 126 - 140 

Full Paper 

Corresponding Author: 

stefan.schabus@infineon.com  

DOI: 10.1553/giscience2017_01_s126 
 

Stefan Schabus1 and Johannes Scholz2 

1Infineon Technologies Austria AG, Villach, Austria 
2Graz University of Technology, Institute of Geodesy, Graz, Austria 

Abstract 

The paper presents a Linked Data approach within a manufacturing organization to foster 

sharing, reusing, integrating and the collaborative analysis of datasets originating from 

different business units and heterogeneous data sources. The paper relies on a 

semiconductor company that serves as case study. The authors elaborate on 

manufacturing data and their representation in a spatially-enabled graph database, and 

as Linked Data based on an ontology describing the indoor space and production 

processes. A graph database enables data sharing as well as the semantic search and 

retrieval of data utilizing web-based services. The results present the analysis of historic, 

future and spatio-temporal data as well as the analysis of similarities of semantically-

annotated linked manufacturing data. 
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1 Introduction 

In manufacturing industries, huge amounts of data with an inherent spatio-temporal 
dimension are generated during manufacturing processes. These manufacturing data satisfy 
the criteria for Big Data (De Mauro et al., 2016, p. 128): ‘Big Data is the Information asset 
characterized by such a High Volume, Velocity and Variety to require specific Technology 
and Analytical Methods for its transformation into Value.’ Manufacturing data comprise high 
volume and high velocity based on tracking of positions, processes and quality. The question 
of variety is tackled in this research, as the approach aims to solve semantic interoperability. 
Manufacturing data are necessary to support decision-making in near real-time. They are a 
result of measurement values provided by production equipment and sensors present in the 
production line. By monitoring the position of production assets using an indoor positioning 
system, spatial data are created. Combining them with manufacturing data, they become 
strongly intertwined with the spatio-temporal dimension (Davis et al., 2012; Zuehlke, 2010). 
Hence, it is important to generate knowledge from this data to support decision-making and 
learning from historical events. To do so, the data, which are created by different systems, 
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need to be connected and integrated. This raises issues of semantic interoperability: there is a 
lack of explicit semantics, because there exist hardly any semantically-annotated base data 
from manufacturing equipment. 

In order to overcome interoperability issues, the authors propose to semantically annotate 
the data, by making use of relevant ontologies in the field (Scholz & Schabus, 2014; Schabus 
& Scholz, 2015). This opens up possibilities for data- and knowledge-sharing with regard to 
existing spatio-temporal data (Klien, 2007), as has been shown for the case of Spatial Data 
Infrastructures (Lutz et al., 2009). The Linked Data paradigm is a recent shift in Geographic 
Information Science, offering a new way of structuring, publishing, discovering, accessing 
and integrating data (Kuhn et al., 2014). Linked Data are a collection of design principles and 
technologies around the Web of Data or Semantic Web. There, data are represented as 
triples (subject, predicate and object) in the Resource Description Framework (RDF) format. 
Data formatted in this way should conform to the Linked Data principles, which ensure that 
data are machine-readable, have a uniform resource identifier (URI) to denote things, and 
use the World Wide Web Consortium (W3C) standards, such as Web Ontology Language 
(OWL) or RDF. Data linking out to other data should use URIs to create an interconnected 
graph of knowledge. As RDF data are machine-readable, they seem well suited for 
information-sharing and for being shared between different applications.  

The application context is a specific indoor space – a semiconductor manufacturing 
company. The indoor environment under review looks different from buildings for office or 
residential use, as no rooms are present and there are specific cleanroom restrictions. The 
production processes carried out in the production line have highly flexible characteristics, 
which means that the manufacturing line is not of ‘conveyor belt’ type with a fixed 
processing chain. This is due to the fact that several hundred production steps are necessary 
to create the finished product. Additionally, most production steps can be carried out on 
several pieces of equipment, which are often geographically dispersed over the production 
facility.  

The research question of this paper can be summarized as: ‘Does the translation of relational 
manufacturing data into semantically-annotated linked data contribute to new knowledge-
generation based on data links and data analysis, i.e. the identification of similarities?’ The 
authors focus on Linked Data in the context of manufacturing data as a new possibility to 
overcome the interoperability issues of heterogeneous data sources in manufacturing. Linked 
manufacturing data allow the sharing of semantically-annotated data across different business 
divisions of an organization. This increases the possibility of developing a decision support 
system for a manufacturer as well as leveraging analytical ‘learning’ from historical data.  

The structure of the paper is as follows: section 2 covers relevant work; manufacturing data 
and their representation as Linked Manufacturing Data are the subject of section 3; section 4 
presents the visualization of linked data and the analysis of similarities based on data 
semantics. Finally, we present a critical analysis of the results.  
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2 Relevant Work 

This section covers related work that contributes to fields of scientific expertise covered in 
the paper. The authors emphasize indoor geography, modelling indoor space, and indoor 
navigation. In addition, the literature covers ontologies, semantics and linked data with 
respect to manufacturing data. 

The average person spends 90% of their time inside buildings (Klepeis et al., 2001). 
Consequently, a number of research activities are currently being carried out to apply 
Geoinformation indoors. Early research elaborates on indoor modelling and pathfinding. In 
Raubal & Worboys (1999), for example, an airport serves as an example for agent-based 
indoor wayfinding. Several approaches to model indoor spaces exist, ranging from reducing 
the indoor space to a graph (e.g. Goetz & Zipf, 2011) to Building Information Models (e.g., 
Howell & Batcheler, 2005). Yang & Worboys (2015) as well as Scholz & Schabus (2014) 
employed ontologies to model indoor space. Scholz & Schabus (2014) used ontologies to 
model an indoor production environment with several requirements. Additionally, Schabus 
& Scholz (2015) proposed that space and time can help to improve decision processes in 
production environments. 

Smart manufacturing is one of the main research fields to support decision-making in indoor 
production environm6ents, and to facilitate competitiveness (Davis et al., 2012). Most 
manufacturers collect data from processes, with explicit and implicit spatio-temporal 
reference. There is therefore a need to analyse and visualize such data. Data visualization in a 
spatio-temporal manner, using geovisual analytics, enables humans to identify patterns 
(Compieta et al., 2007; Andrienko et al., 2007; von Landesberger et al., 2016). Near real-time 
visualization could be of potential interest thanks to the emergence of wearable devices for 
employees and managers (Osswald et al., 2013). These devices allow a virtual view of 
performance and states of the manufacturing environment. Furthermore, spatio-temporal 
patterns can help to develop strategies and technologies to increase manufacturing efficiency 
– i.e. cost savings and increased performance (Nyström et al., 2006).    

Semantics and ontologies are used in spatio-temporal modelling and have been discussed in 
scientific literature since the 1980s (Smith, 2001). Gruber (1993) defines an ontology as the 
formal specification of a shared conceptualization. A so-called domain ontology describes 
the specific domain in a general way, resulting in a formal description of the content and 
behaviour of a part of the physical world (Raubal & Worboys, 1999). Davis (1990) describes 
the elements of an ontology as entities, relations and applied rules. Grenon & Smith (2004) 
describe dynamic spatial ontologies that are capable of representing spatial relations. Types 
of ontologies are defined by Sowa (2014), who focuses on two in particular: a single large 
ontology or a collection of microworlds. These are described in greater detail by Yang & 
Worboys (2011). Sowa (2014) defines an upper-ontology as the most generic way to describe 
a concept at a basic level. The upper-ontology subsumes the domain ontology and the task 
ontology, which describe either the environment or the task – for example, navigation. The 
most specific ontology is the application ontology, combining the task and the domain in 
one single large ontology (Sowa, 2014).  
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3 Manufacturing Data and their Representation 

To pave the way for the representation of manufacturing data as Linked Data (LD), there are 
a number of prerequisites that have to be fulfilled to transfer raw data into RDF. This 
section elaborates on a semantic description of manufacturing data, the indoor space and 
navigation actions, by utilizing ontologies. The authors use graph databases as physical 
storage for the generic ontology, as well as for the manufacturing data. To make 
manufacturing data ready for publishing as LD and using them thereafter, several issues need 
to be resolved. First, an appropriate semantic definition of the Universe of Discourse is 
necessary. The general concept of the Universe of Discourse is described by Boole (1854, p. 
42): 

‘In every discourse, whether of the mind conversing with its own thoughts, or of the 
individual in his intercourse with others, there is an assumed or expressed limit within which 
the subjects of its operation are confined. […] Now, whatever may be the extent of the field 
within which all the objects of our discourse are found, that field may properly be termed the 
universe of discourse.’ 

In this paper, we restrict ourselves to a semiconductor manufacturing company, focusing on 
the manufacturing processes taking place in cleanroom facilities. In order to model the 
special indoor space, we utilize a navigation and indoor space ontology, describing the 
indoor space and the production processes at hand (Scholz & Schabus, 2014; Schabus & 
Scholz, 2015), referred to as IndoorOntology::Production in the remainder of this article.  

For the IndoorOntology::Production, Scholz & Schabus (2014) developed a two-folded 
ontology in order to represent the indoor space and the manufacturing processes:  

 Task ontology: indoor navigation ontology 

 Domain ontology: production environment. 
 
The main elements of the indoor space covered by the domain ontology are: 

 ProductionUnit: describes the equipment pieces necessary for carrying out 
manufacturing processes; it is also used for facilities to store or deposit production 
assets; 

 Corridor: denotes the spaces in a cleanroom that are walkable by humans and traversable 
by production assets;  

 Barrier: limits the movement behaviour in the production line; 

 Restriction: denotes specific restrictions that are due to cleanroom quality, 
contamination risks or maintenance, or to production data; 

 Accessnode: links indoor and outdoor space (Schabus et al., 2015)  

 NavigationAgent: the production asset. 

The elements of the task ontology are navigation tasks and events (e.g. turn left or right), a 
graph-based structure with nodes and edges that enable routing in the indoor space. 
Additionally, the ontology includes the indoor space and affordances of production assets 
(i.e. the NavigationAgents). An example of such an affordance is that a staircase does not 
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allow traversing a box of a specific product type, whereas an elevator does, which is due to 
the risk of damaging the production assets.  

Linked Data concept for Manufacturing Data 

In this section, we aim to show how heterogeneous manufacturing data, created by a number 
of heterogeneous systems and sensors, can be represented as LD. This section highlights the 
general concept and relations between IndoorOntology::Production, manufacturing and 
spatial data. In addition, the raw datasets are briefly described as a basis for understanding 
the LD concept. 

In this study, the manufacturing data at hand describe the manufacturing process, the 
necessary equipment, the sequence of manufacturing processes and the production assets. 
Production assets are collected in boxes, and the production assets in the production ‘line’ 
may be at different levels of completion. In the production environment under review, a 
great number of different products are manufactured, and each product undergoes several 
hundred production steps (Osswald et al., 2013). The planned sequence of manufacturing 
operations for each product are subsumed in a so-called route. Each manufacturing 
operation can be carried out in several production units, which may be geographically 
dispersed over the cleanroom environment. The data of each executed manufacturing 
production process are stored in a relational database. The movement of each asset is tracked 
by an indoor positioning system based on ultrasound that logs its precise position 
throughout the entire production process (Dierkes & Fleisch, 2006). The indoor positioning 
system stores the data in a separate database/solution.  

Spatial data for indoor manufacturing purposes are quite scarce; the spatial dimension has 
only recently become a focus for manufacturing industries. Hence, manufacturing equipment 
and sensors in the production line do not report the precise position. In order to overcome 
this lack of spatial data, we created a spatial dataset, representing the manufacturing 
environment under review, based on a dataset originating from a computer-aided design 
system. This spatial dataset (Scholz & Schabus, 2014; Schabus & Scholz, 2015) enables the 
possibility of linking non-spatial attributive data and the spatial dimension, which paves the 
way for spatial analysis capabilities. For indoor navigation purposes, we derived a network 
representation – i.e. a graph consisting of edges and nodes.  

The general concept of the LD approach in this paper, which combines three datasets, is 
depicted in Figure 1. First, the IndoorOntology::Production (in blue) serves as a semantic 
reference for the LD. Second, the manufacturing data (in yellow) are compiled from 
different data sources. Spatial data (in green) are cross-sectional, and show defined links from 
the indoor ontology and the manufacturing data. These links ensure that each phenomenon 
described by LD can be referenced to the spatial dimension.  

In detail, spatial data exist for: 

 the indoor space, for routing purposes (nodes and edges) 

 each production asset's trajectory (as points in a temporal sequence) 

 each manufacturing device (and the connection to the indoor space – i.e. nodes) 

 restrictions. 



Schabus & Scholz 

 

131 
 

This approach facilitates an integrated spatio-temporal analysis of manufacturing data, as well 
as an exchange of data and information. Because attributive data are linked to the ontology, 
each individual dataset is amended with semantic information, which is necessary to link 
datasets from different systems (e.g. quality assurance vs. manufacturing system). 

 

Figure 1: LD approach for manufacturing data. The indoor navigation ontology is marked in blue, the 

manufacturing data in yellow, and the spatial data in green. The arrows denote typed links between 

datasets and classes. 

Linked Manufacturing Data – a Detailed View 

This section highlights details of the data and the chosen LD approach, and shows the 
relations to the indoor ontology and the spatial data at hand. We restrict ourselves to 
significant examples that show the complexity present in this area of application.  

Production assets are the main objects of interest in this manufacturing environment. In the 
case of this specific semiconductor manufacturing company, relevant datasets for production 
assets are mostly stored in various systems or in unconnected databases. Figure 2 depicts the 
LD approach for each production asset. Each asset is connected with typed links to a single 
route, which describes the sequence of manufacturing operations to be carried out. In 
addition, each manufacturing operation can be executed by one or more pieces of equipment 
(see also Figure 4). In the cleanroom, manufacturing devices are geographically dispersed 
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over the production hall. Thus, the position of each device and the position of the 
production asset is of particular interest for finding the nearest machine for the next 
operation to be carried out. Therefore, the trajectory is linked to each production asset, 
including the spatio-temporal dimension. This guarantees a temporally ordered sequence of 
points with coordinates. The trajectory of an asset subsumes tracked asset positions, 
representing the movement of the asset through the production line. In addition, the 
manufacturing processes carried out and the corresponding equipment are linked to the 
production asset to offer the possibility of retrieving historic information for analysis.  

 

Figure 2: Datasets linked to each individual production asset. 

Figure 3 gives a digital representation of a production asset, highlighting the linked 
information for each production asset. The figure is similar to Figure 2, but shows the typed 
linkages between the pieces of information, as well as the link to the abstract class 
‘ProductionAsset’ (in blue) – which is a result of the IndoorOntology::Production. An 
individual production asset is equivalent to an individual in the ontology used. This is similar 
to an instance of an abstract class in software engineering. In addition, the structure of the 
attached trajectories is given, with points given in temporal order by the ‘nextPosition’ link. 
Executed processes (in red), are also stored in a temporal sequence, but here the system 
calculates the ordering by looking at the start and end times of each process.  
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Figure 3: Digital representation of production assets and their linked datasets. Each individual 

production asset (in yellow) has a unique trajectory (in light green), where the points (in light yellow) 

are stored in a temporal sequence, denoted with the typed link ‘nextPosition’. A unique Route is part 

of each production asset (in green). Each production asset has properties, which are marked in grey. 

Executed Processes are marked in light red. 

Figure 4 shows a detailed view of the routes. Each production asset has a unique route, 
representing the manufacturing operations to be carried out. The example of a specific route, 
named ‘Route_X’, is linked to three operations/processes via the typed link ‘hasOperation’. 
The temporal sequence of the operations is determined by the typed link ‘nextOperation’. 
The execution of each operation is not restricted to one single manufacturing device, but can 
be done on several pieces of equipment, shown in yellow circles.  
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Figure 4: Detailed outline of a production asset and the associated Route. Here the specific Route, 

‘Route-X’, has a number of attached operations, linked with ‘hasOperation’. The operations are in 

sequence, shown by the typed links ‘nextOperation’. Each operation is additionally linked to the 

devices that are capable of executing the specific task. 

Implementation 

In this section, we elaborate on the implementation of a spatial graph database, which is a 
digital representation of the Universe of Discourse as LD.  

A general introduction to graph databases can be found in Robinson et al. (2015). 
Lampoltshammer and Wiegand (2015) show a successful combination of ontologies and 
graph databases in the context of GIScience. In this research, we use the graph database 
Neo4j to implement the LD approach described above. The spatial graph database we 
developed includes the semantic description of the manufacturing data, the indoor space and 
the navigation processes. It also incorporates space and time (Cattuto et al., 2013; Pluciennik 
& Pluciennik-Psota, 2014). The capability of Neo4j to store and query data with a spatio-
temporal dimension leverages the potential for spatio-temporal analysis.  

The Sesame framework (Broekstra et al., 2002) is suited for storing and querying RDF data 
residing in a graph database, in particular a Neo4j database. (This framework has recently 
been moved to the successor project, RDF4J 
(https://projects.eclipse.org/projects/technology.rdf4j).) The framework allows the querying 
of RDF data using SPARQL, or via RESTful services.  

4 Data Analysis based on Linked Manufacturing Data 

This section explores analysis examples of linked manufacturing data. The examples 
presented are based on the LD stored in the Neo4j spatial graph database. The data analysis 
focuses on the one hand on historic information, processing information and network 
routing capabilities, and on the other hand on the analysis of similarities based on data 
semantics and the spatial graph database developed during research. 

 

https://projects.eclipse.org/projects/technology.rdf4j
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Analysis of Linked Manufacturing Data 

In order to show the linkage of a route, the associated operations and the possible processing 
equipment are illustrated in Figure 5. On the left-hand side, the displayed route, “Route_Y”, 
is linked to three operations via the relationship ‘hasOperation’. The sequence of operations 
is shown via the relationship ‘nextOperation’. The relationship ‘PROCESSES’ links 
operations to possible processing equipment. The right-hand side of the figure illustrates 
how devices can carry out either a single operation or a variety of operations, and, vice versa, 
how an operation can be executed by a variety of devices. 

 

Figure 5: Manufacturing data showing the linkage from a production asset’s route, the corresponding 

sequence of equipment, and possible processing equipment. 

Historic information is necessary for quality assurance, monitoring and reporting. Therefore, 
Figure 6 shows the production asset as the focal point of the visualization. A production 
asset has several executed processes, and each executed process is linked via the relationship 
‘hasExecutedProcess’. The stored executed processes include the temporal order, given via 
timestamps for the processing tasks carried out, to enable successful monitoring. Via the 
relationship ‘ProcessedBy’, the spatial graph database stores the link to the device which 
processed the asset. Figure 6 illustrates how one device was used in several manufacturing 
steps. 
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Figure 6: A single production asset ‘ProductionAsset_X’ and its executed processes, showing that some 

processes are executed by the same production device. 

Network information is important for smart manufacturing purposes and thus especially for 
the autonomous transportation of production assets within a production line. Figure 7 
illustrates the modelling of a routable graph-based network. This network which consists 
mainly of non-spatial nodes and relationships in the graph database that enable monitoring. 
For routing purposes, the network is established via the red edges, visualized in Figure 7, and 
grey nodes (corridor nodes, device nodes) that are semantically annotated. Each of these 
nodes is linked via the relationship ‘hasSpatialNode’ to a spatial object in order to enable 
visualization and analysis. Similarly, the relationship ‘linkedTo’ binds the incoming/outgoing 
edges to each node for the spatial view, which is then added via the relationship 
‘hasSpatialEdge’. 
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Figure 7: Routable Network in the spatial graph database and a link to spatial information, including 

the capability to link spatial suitability to and corresponding affordances to a potential route 

optimization. 

Similarity Analysis of Linked Manufacturing Data 

Figure 8 shows an example of a similarity analysis based on semantically annotated linked 
manufacturing data. This figure focuses on the similarity of the types of production assets. 
Therefore, the spatial graph database is queried to identify paths between assets based on 
typed links such as ‘fromType’ and ‘hasSubType’. By assuming that the length of the path or 
the edge count between assets is affecting the similarity of assets, Asset_1 and Asset_2 (3-
Edges) are more similar than Asset_1 and Asset_3 (4-Edges). In addition, Asset_1 and 
Asset_5 are completely different, as there is no possible connection via the defined 
relationships. This type of similarity analysis can be useful for monitoring quality issues and 
identifying assets affected after a possible incident. 
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Figure 8: Similarity Example based on the Semantic Annotation of Asset (Sub)-Types. 

5 Conclusion and Discussion 

This paper elaborates on an approach to migrate manufacturing data into a LD approach. 
This utilizes the expressive power of semantics to annotate manufacturing data. The 
approach makes use of an ontology that describes the indoor space and the manufacturing 
process, including real-world objects and processes such as transport, navigation, production 
assets and devices. The research includes the representation of manufacturing data in a 
spatial graph database and publishes them to support RESTful services: as ‘raw’ data in the 
spatial graph database (queryable via Cypher). Because the data in the graph database are 
accessible via web-based services (i.e. RESTful services), the data can be reused within an 
organization. Currently, data discovery and/or data sharing present shortcomings in 
manufacturing organizations. These issues could be resolved to some degree with the help of 
semantic interoperability. The analysis capabilities support the evaluation of historical data as 
well as the autonomous transport of production assets in a smart manufacturing 
environment.  

In answer to the research question ‘Does the translation of relational manufacturing data into 
semantically annotated linked data contribute to new knowledge generation based on data 
links and data analysis, i.e. identification of similarities?’, the authors conclude that a LD 
approach can contribute to an increase of the spatio-temporal analysis capabilities. The 
conclusion is justified by the possibility of the LD approach to share data, using a 
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standardized interface via web-based services. The LD approach may be beneficial for large 
manufacturers with vast amounts of data who could utilize semantically tagged data. This 
enables any user to gain new insights and extract similarities for a given question, based on 
the explicit semantics of the data. The LD approach can be used to query – and combine – 
datasets from servers which are geographically dispersed. Machines are able to collect data 
automatically, and perform reasoning tasks with the help of the semantics. In combination 
with web-based services, this enables seamless data-sharing, overcoming organizational 
borders in both the syntactic and the semantic dimensions. 
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