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Abstract 

3D city models play an important role in multiple applications, but creating them still 

requires effort using various possible techniques. This paper proposes a new machine-

learning-based framework for generating 3D city models. With the help of conditional 

Generative Adversarial Networks and single orthographic images, segmentation and 

height estimations of buildings are achieved. The height information per pixel and the 

building coordinates were generalized using a histogram for heights and the Douglas-

Peucker algorithm. The framework was evaluated by using variations of the same dataset 

(for the city of Berlin) to show possible differences due to changes in the image size and 

representation of the heights. The evaluation reveals that it is possible to generate block 

models with a mean absolute height error of 5.53m per building, a mean absolute height 

error for the whole raster of 1.32m, and a Jaccard Index of 0.55 for the segmentation. While 

the proposed framework for generating LoD1 city models does not attain the accuracy of 

previous techniques, our work represents a step towards successfully using machine 

learning for the automatic generation of city models and building segmentation. 

Keywords: 

city models, generative adversarial networks, LoD1, segmentation 

1 Introduction  

The use of 3D city models is widespread, with applications in areas that include tourism, 

disaster management, urban environmental management and the real-estate industry (Singh, 

Jain & Mandla, 2013). Depending on the application, the models can be created with 

different levels of detail (LoDs), as shown in Figure 1. LoD1 represents a simple block 

model of a building without roof shapes; buildings with higher LoDs are more detailed. To 

create them, there are two principal techniques: photogrammetric 3D reconstruction using 

stereo imagery, and LiDAR-based laser scanning (Haala & Kada, 2010). Due to the lack of 

freely available stereo imagery or (LiDAR-based) point clouds of cities, new measurements 
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are often required. Accordingly, it would be an advantage to have open-source data from 

which height information can be extracted. Nowadays, aerial orthographic images are 

available online; however, extracting height information from them is still a non-trivial task.  

 

Figure 1: From left to right: LoD0 – LoD4 (Coors, Andrae & Böhm, 2016, p. 70) 

This is where machine-learning-based architectures can play an important role. In recent 

studies, various neural network architectures have been used to tackle the problem of 

obtaining 3D information from monocular images. The architectures used for solving this 

problem cover convolutional neural networks (Hu, Ozay, Zhang & Okatani, 2019), multi-

scale neural networks (Eigen, Puhrsch & Fergus, 2014), and linear regression (Saxena, 

Chung,& Ng, 2006). Mou and Zhu (2018) evaluated their fully residual convolutional-

deconvolutional network on digital surface models (DSM). Goodfellow et al. (2014) 

introduced a new algorithm: the Generative Adversarial Network (GAN). With large 

numbers of target images 𝑦𝑟𝑒𝑎𝑙 , the GAN learns during the training procedure to map from 

a random noise vector 𝑧 to an output image 𝑦𝑓𝑎𝑘𝑒:  

 𝐺: {𝑧} → 𝑦𝑓𝑎𝑘𝑒                                           (1) 

GANs are based on two neural networks: a generator 𝐺 and a discriminator 𝐷. While 𝐺 

learns to produce outcomes that are as realistic as possible, 𝐷 learns to distinguish between 

the outcomes of 𝐺 and the real data feeding the information back into 𝐺. This zero-sum 

game was originally introduced for creating artificial images, e.g. handwritten numbers or 

faces which should be indistinguishable from real data (Goodfellow et al., 2014). Since then, 

many new GANs with different purposes, additions and improvements have been 

introduced, such as MLGANs (Metric Learning-based GANs; Dou, 2017), 3D-ED GANs 

(3D-Encoder-Decoder GANs; Wang, Huang, You, Yang & Neumann, 2017), DCGANs 

(Deep Convolutional GANs; Radford, Metz & Chintala, 2015), and FC-GANs (Fast-

converging Conditional GANs; Li, Wang & Qi, 2018), to name but a few. But for the 

purpose of the present paper, the use of conditional GANs (cGANs) and their 

improvements by Isola, Zhu, Zhou and Efros (2017) seems suitable. This so-called ‘Pix2Pix 

GAN’ is able to map from a known image 𝑥 and a random vector 𝑧  to an output image 

𝑦𝑓𝑎𝑘𝑒: 
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 𝐺: {𝑥, 𝑧} → 𝑦𝑓𝑎𝑘𝑒                      (2) 

Extending this idea, it is also possible to map from an image to a 2.5D raster: every pixel of 

the outcome represents a height. Something similar has already been done by Ghamisi and 

Yokoya (2018). In their case, the Pix2Pix GAN learned to estimate a DSM using near-

infrared orthographic images. Their work and the present framework have in common the 

base technique of Isola et al. (2017), but instead of estimating the height of the whole 

surface, the present paper focuses on performing a building segmentation, a height 

estimation, and finally the generation of a city model with LoD1. Thus, it is no longer 

necessary, subsequently, to process whole point clouds in order to obtain city models. 

Furthermore, the present framework is based on aerial orthographic images, which are easily 

accessible. In order to create block models, generalized heights are required, as are the 

conversion of raster data into vector data, and extraction of the corner points. The extraction 

can be done using any of several algorithms, including the Harris corner detector, the 

SUSAN corner detector, the Moravec corner detection algorithm (as stated in Patel and 

Panchal (2014)), or the Douglas-Peucker algorithm (Douglas & Peucker, 1973). In order to 

achieve interoperability, one of the most common ways of storing city models is to use the 

City Geography Markup Language (CityGML), as proposed by Kolbe, Gröger and Plümer 

(2005). The segmentation can be achieved by defining a threshold in the heights. 

2 Methods 

The present approach for LoD1-generation and building segmentation consists of several 

steps:  

- creating the dataset and training the network to map from the orthographic city 

images to the 2.5D raster 

- generalizing the resulting outcome and transforming the buildings into (CityGML-

based) vector data 

- using the generalized outcome for the segmentation. 

2.1 Network architecture 

Isola et al. (2017) came up with a framework that made image-to-image translation simpler, 

in that this framework is no longer application-specific and consequently can be used for 

many different tasks. It is therefore suitable for using in our own framework as well. Just like 

the original GAN (Goodfellow et al., 2014), the basic concept consists of a generator 𝐺 and 

a discriminator 𝐷. The conditional GAN can map from a random vector 𝑧 together with an 

input image 𝑥 to an output image 𝑦𝑓𝑎𝑘𝑒 (2). 

The main objective in the Pix2Pix GAN (and thus in the present work) is: 
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G∗ = arg 𝐺  
𝑚𝑖𝑛

𝐷 
 𝑚𝑎𝑥

ℒcGAN(𝐺, 𝐷) + 𝜆 ⋅ ℒL1(𝐺)                 (3) 

with: 

ℒ𝑐𝐺𝐴𝑁  = 𝔼𝑥,𝑦𝑓𝑎𝑘𝑒
[𝑙𝑜𝑔( 𝐷(𝑥, 𝑦𝑓𝑎𝑘𝑒))]  +  𝔼𝑥,𝑧[𝑙𝑜𝑔 (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))]            (4) 

and: 

 ℒ𝐿1(G)  = 𝔼𝑥,𝑦𝑓𝑎𝑘𝑒,𝑧[||𝑦𝑓𝑎𝑘𝑒  −  𝐺(𝑥, 𝑧) ||]                  (5) 

ℒ𝐿1 and ℒ𝑐𝐺𝐴𝑁 are two different loss functions. Their impacts on the result can be adjusted 

by altering 𝜆. The functions consist of the expectations 𝔼𝑥,𝑦𝑓𝑎𝑘𝑒
, 𝔼𝑥,𝑧 and 𝔼𝑥,𝑦𝑓𝑎𝑘𝑒,𝑧. The 

exclusive use of  ℒ𝑐𝐺𝐴𝑁 would produce sharp images with more false positives, while the 

exclusive use of  ℒ𝐿1  would produce blurry images with fewer false positives (Ghamisi & 

Yokoya, 2018; Isola et al., 2017). It should be emphasized that the present framework does 

not include the random vector z. Isola et al. (2017) have shown that omitting 𝑧 does not 

result in a decreased quality of the outcome, because 𝐺 simply learns to ignore the noise 

vector. This is congruent with Mathieu, Couprie and LeCun (2015).  

𝐷 tries to maximize the objective and 𝐺 tries to minimize it. In addition, the structure of 𝐷 

and 𝐺 is an outstanding part of the Pix2Pix GAN. 𝐺 consists of an encoder-decoder 

network, as used in earlier solutions (Pathak, Krähenbühl, Donahue, Darrell & Efros, 2016; 

Wang & Gupta, 2016; Zhou & Berg, 2016), but additionally there are skip connections 

between layers. By concatenating different layers, this addition aims to shuttle information 

across the network in order to enhance the sharing of low-level information. Another 

improvement of the Pix2Pix framework is 𝐷, which is based on a so-called ‘PatchGAN’: per 

image, this architecture evaluates N × N patches, and decides per patch whether it is real or 

fake. These probabilities are stored in the final layer. Figures 2 and 3 show a more detailed 

description of 𝐺 and 𝐷 from the Pix2Pix GAN (Isola et al., 2017) which is used in the 

framework that we propose here. The processes between the layers are represented as 

coloured arrows. In what follows, the elements of the network will be explained briefly. For 

more detailed understanding, the reader is referred to Isola et al. (2017).  
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Figure 2: Generator architecture  

Adding dropout means that each layer has a predefined probability (dropout rate) of not 

being considered for a training iteration (Srivastava, Hinton, Krizhevsky, Sutskever & 

Salakhutdinov, 2014). Additionally, batch normalization (Ioffe & Szegedy, 2015) regularizes 

and normalizes the network. This and the dropout prevent the network from overfitting 

(Ioffe & Szegedy, 2015). A convolution with stride n means that the filter kernel ignores each 

layer with a stepsize of n.  

ReLU and leaky ReLU activation functions (Maas, Hannun & Ng, 2013) are used. For the 

leaky ReLU, the following function is applied to each element of the layers:  

𝑓(𝑥)  =  𝑚𝑎𝑥{𝛼 ⋅ 𝑥, 𝑥}                    (6) 

If the ReLU is not leaky, the slope 𝛼 is set to zero. In order to train the network, a minibatch 

stochastic gradient descent is used, and the Adam solver (Kingma & Ba, 2015) is applied in 

order to optimize the network. 
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Figure 3: Discriminator architecture 

2.2 Training details 

For training, a batch size of 1, an initial learning rate of 0.0002, and 𝜆 = 100 were used. With 

 𝜆=100, the network encourages both the sharpness from ℒ𝑐𝐺𝐴𝑁  and the correctness (with 

fewer false positives) from ℒ𝐿1. The initial learning rate adjusts by how much the weights 

need to be updated, while the batch size refers to the number of samples which are used in 

one training iteration. To control the exponential decay rates of the Adam solver, the 

momentum parameters β1 = 0.5 and β2 = 0.999 were used. The dropout rate was set to 0.5; 

the slope 𝛼 was set to 0.2. In addition to the experience gained during training tests, the 

hyperparameters chosen for the present framework adhere to Isola et al. (2017), Ghamisi and 

Yokoya (2018), and Shi, Li and Zhu (2019). The network was trained for 19 hours per set (as 

defined in section 2.3), using an nVidia GTX1060 with 6GB of VRAM. The present 

framework was implemented in Python. 

2.3 Dataset 

For many machine-learning-based applications, a lot of training data is required, especially 

when it comes to complex problems. Due to the specific aim of this paper, a new dataset 

was created using freely available data from the City of Berlin. The Senate for Urban 

Development and Housing of Berlin (2019) provides digital orthographic images with a 

20cm ground resolution and a 3D city model with LoD1. In their city model, the building 

footprints are extracted from the cadastre; the heights are calculated from a DSM with a 5m 

ground resolution. In order for the height information inside the Pix2Pix GAN to be 

exploitable, the orthographic images and the city model had to be matched. Therefore, the 

height and positions were transferred from vector into raster data. In total, 1,064km2 could 

have been used for the present approach. However, an area of 4km2 was excluded from the 
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dataset for visualizing the framework results of a complete district afterwards. The training 

was done using three different representations of the same training data, called ‘sets’. Images 

were removed from these sets if they did not contain any height information. The individual 

sets are described in detail in the following sections. Because of the network architecture, the 

input images measure 256pixels × 256pixels, or 512pixels × 512pixels. This means that the 

strided convolutions result in bisecting the input size, until the last layer is reached. 

Set 1 

Each pixel directly stores height information in the pixel intensity, resulting in a greyscale 

image. Due to this conversion, the height information became discrete. The 256pixel × 

256pixel resolution of the images represents 51.2m × 51.2m on the ground. In total, 152,393 

images were created, of which 137,154 were used for training, 7,619 for testing during the 

training, and 7,620 for the evaluation. 

Set 2 

As in set 1, each pixel contains height information directly in its intensity, but compared to 

set 1, the resolution differs: the input images measure 512pixels × 512pixels, which represent 

102.4m × 102.4m on the ground. 46,383 images were created in total, of which 41,742 were 

used for training, 2,318 for testing during the training, and 2,319 for the evaluation. 

Set 3 

Instead of representing the height h directly in the pixel intensity, an extended conversion 

into the HSV (hue, saturation, value) colour space was used. The lightness and the saturation 

were set to 100%, and the height was converted into hue. The RGB (red, green, blue) values 

can be calculated, as e.g. in Kaur and Banga (2013). Because of larger differences in the 

colour space for small height differences and the small number of buildings with a height of 

over 100m in Berlin (compared to the total dataset), the maximum height was set to 100m: 

 ℎ = {
  ℎ,           ℎ < 100
100,        ℎ ≥ 100

                                                  (7) 

And then: 

 ℎ𝑢𝑒 =  ℎ ⋅ 3.6                (8) 

Thus, a height of 0m would represent [255,0,0] in the RGB colour space, while a height of 

33.3m would result in [0,255,0]. As in set 2, the resolution of the dataset is 512pixels × 

512pixels. Therefore, 46,383 images were created, of which 41,742 were used for training, 

2,318 for testing during the training, and 2,319 for the evaluation.  

The two ways of representing height (height → intensity, and height → hue) can be seen in 

Figure 4. 
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Figure 4: From left to right: Orthographic image, greyscale representation and hue representation of 

the height 

2.4 Generalization of the outcome 

After training has been completed, what the generator learned can be applied: to map from 

an input image to a 2.5D raster. The next task was to process the height information in order 

to obtain generalized buildings. First, the height information from the raster had to be 

extracted. Thanks to the direct conversion of height into intensity, the height information 

can be extracted directly from sets 1 and 2. Set 3 was transformed from the RGB colour 

space back into the HSV colour space, and hue was used for the height. 

In order to enhance the accuracy of the result, two morphological filters were applied. First, 

a morphological opening was used in order to erase small image artefacts which were not 

part of any building. In other words, a threshold for a minimum building size was created. 

Second, a morphological closing was used to fill in small holes in the border or inside a 

polygon (Maragos, 1987). Thus, the shape had a continuous border. The kernel measured 

5pixels × 5pixels, which represents 1m × 1m for set 1, and 2m × 2m for sets 2 and 3.  

By extracting the contours of the resulting polygons, a 2.5D representation of the building 

would already have been possible, but with one coordinate per pixel on the boundary, there 

would have been too many coordinates. Therefore, only the most important vertices for each 

boundary were extracted. For some cases, a convex hull algorithm would have been 

sufficient, but due to the presence of some concave-shaped buildings, this generalization 

would not have fitted all our needs. Therefore, the Douglas-Peucker algorithm was used, 

which is a simple but effective recursive algorithm (van Kreveld, Löffler & Wiratma, 2018). 

In our case, the algorithm adds vertices from the building contours to a list of points, as long 

as the computed line-segment between two points lies within a specific distance of a vertex. 

This list of points represents the most important points of the buildings. If the global 

coordinates of one pixel and the ground resolution are given, the transformation from image 

to world coordinates can be made for every pixel. Subsequently, just one height per building 

was needed to generate LoD1 city models. This single height was calculated with the help of 

a histogram of all heights inside one building polygon: the height which occurs most often 

was chosen for the whole building. For simplification reasons, only one height per building 
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was used, even if a building consisted of several parts with different heights. The conversion 

into CityGML was done automatically by storing the vertices and the height in the correct 

format, as in Kolbe et al. (2005). 

2.5 Segmentation 

Since the present framework was intended to estimate a height only if there was a building, 

the segmentation was achieved by applying a threshold to the generalization: if the estimated 

height per pixel was greater than 0, it was classified as ‘building’. A minimum number of 

pixels per building is not necessary, due to the morphological opening, as described in 

section 2.4. 

3 Evaluation metrics 

In order to evaluate the results of the proposed framework with the present dataset, the 

mean absolute error (MAE) and the root mean squared error (RMSE) were calculated 3 

times per set: once for the pure raster, which is the direct result of the Pix2Pix GAN 

(referred to below as error type 1); once for the whole raster after generalizing the buildings 

(referred to as error type 2), and once for the estimated building heights only (referred to as 

error type 3). 

In order to evaluate the segmentation results, the Jaccard-Index (JI; also called Intersection 

over Union) was calculated for each of the 3 sets, for error types 1 and 2. 

3.1 Estimating the overall height error 

The MAE and RMSE were calculated once for the unprocessed outcome of the Pix2Pix 

GAN and once for the generalized building heights. To compute the overall error, every 

single pixel was used: 

∀ℎ𝑟𝑒𝑎𝑙 , ℎ𝑓𝑎𝑘𝑒 ,               𝑀𝐴𝐸 =  
1

𝑛
∑ |ℎ𝑟𝑒𝑎𝑙 −  ℎ𝑓𝑎𝑘𝑒|             (9) 

∀ℎ𝑟𝑒𝑎𝑙 , ℎ𝑓𝑎𝑘𝑒 ,       𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(ℎ𝑟𝑒𝑎𝑙  −  ℎ𝑓𝑎𝑘𝑒)2           (10) 

3.2 Estimating the building height error 

The same evaluation metrics were used again, but only for those pixels for which the MAE 

and RMSE had been calculated, where a building was estimated by our framework or really 

existed. Thus, areas without buildings are ignored: 
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∀ℎ𝑟𝑒𝑎𝑙 , ℎ𝑓𝑎𝑘𝑒  |  ℎ𝑟𝑒𝑎𝑙 + ℎ𝑓𝑎𝑘𝑒    > 0            𝑀𝐴𝐸 =  
1

𝑛
∑ |ℎ𝑟𝑒𝑎𝑙 −  ℎ𝑓𝑎𝑘𝑒|           (11) 

∀ℎ𝑟𝑒𝑎𝑙 , ℎ𝑓𝑎𝑘𝑒  |  ℎ𝑟𝑒𝑎𝑙 + ℎ𝑓𝑎𝑘𝑒    > 0            𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(ℎ𝑟𝑒𝑎𝑙  −  ℎ𝑓𝑎𝑘𝑒)2              (12) 

3.3 Estimating the segmentation accuracy 

The JI values are between 0 and 1, where 1 represents identical images and therefore perfect 

segmentation. The JI is given by: 

𝐽𝐼 =  
𝑦𝑟𝑒𝑎𝑙∩𝑦𝑓𝑎𝑘𝑒

𝑦𝑟𝑒𝑎𝑙∪𝑦𝑓𝑎𝑘𝑒
              (13) 

4 Results 

In Table 1, the accuracies for the different sets and types of error can be seen. Independent 

of the type, it shows that set 3 has the lowest accuracy levels, followed by set 2. The training 

using set 1 reached the highest accuracy levels. The results show that the image size of the 

training data seems important: even though sets 1 and 2 represent height in the same way, set 

1 has 20–35% more errors than set 2. This high error difference might be due to it possibly 

being harder to reach conclusions because of the smaller surface area. This could be 

reinforced by the architecture of the discriminator: the patches, which 𝐷 tries to distinguish, 

have little information about the structural components of buildings. The results show that 

converting the height into the HSV colour space (set 3) might lead to greater accuracy as 

well: even though the error differences between sets 2 and 3 are small, set 3 has smaller 

errors in each of the three types.  

Table 1: Errors and JI for different sets and different error types 

 Type 1 Type 2 Type 3 

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 

MAE [m] 1.98 1.42 1.35 1.97 1.46 1.32 6.66 5.83 5.53 

RMSE [m] 3.66 3.04 2.94 3.65 3.08 2.96 6.72 6.20 6.02 

JI 0.54 0.55 0.55 0.54 0.55 0.55 / / / 

Thus, the Douglas-Peucker algorithm in combination with a height generalization was not 

responsible for the decrease in accuracy, no matter which dataset was used. With regards to 

the problems which might be causing the error, a closer look at the images shows that high 

errors occurred mainly at the borders of a building. Figure 5d shows the absolute difference 
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between the image actually produced (Figure 5b) and the target image (Figure 5c) of set 3, 

and explains this behaviour: blurred and unclear edges and boundaries in the generated 

image result in high errors at the boundaries (shown in yellow in Figure 5d). In addition, false 

negatives as well as false positives influence the error. Figure 5a shows the orthographic 

input image. 

If we look at the results of the segmentation, we find the best results in sets 2 and 3, with 

almost no differences between the sets. Within the error types, there were no differences for 

the JI. 

 

Figure 5: Left to right: (a) orthographic image, (b) produced image, (c) target image, (d) absolute 

difference between produced and target image 

The results in height and segmentation are congruent with recent studies. Ghamisi and 

Yokoya (2018) postulate an RMSE of 2.56 – 3.89m over the whole DSM for various cities, 

also using Pix2Pix GANs. Due to the lack of studies in this field comparable to our own, 

further comparison with other metrics is not discussed here. Nevertheless, the segmentation 

with the training data is comparable to, and even exceeds, recent results for building 

segmentation using cGANs: Shi et al. (2019) postulate a JI of 0.52. However, compared to 

other architectures, there is still room for considerable improvement: Bischke, Helber, Folz, 

Borth and Dengel (2017) report a JI of 0.70 when using a SegNet, while the multi-constraint 

fully-convolutional network of Wu et al. (2018) resulted in a mean JI of 0.83. In their work, 

U-Nets reached a score of 0.81 and fully-convolutional networks achieved a JI of 0.52. Using 

HOG-ADA resulted in a JI of 0.31 (Wu et al., 2018).  

5 Empirical evaluation of larger areas of cities 

For an empirical evaluation, one entire district of Berlin (Friedrichshain) was removed before 

training and processed completely afterwards. In order to process the whole district, it was 

divided into 104.2m × 104.2m tiles. The result of the LoD1 generation can be seen in Figure 

6b, while the segmentation result can be found in Figure 7. To allow the quality of the 

present framework to be judged better, Figure 6a shows a conventional 3D city model. 
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 (a) conventional 3D city model (virtualcitySYSTEMS, 2017)    (b) present framework  

Figure 6: 3D city models using underlying orthographic images 

The outcome of the LoD1 generation (Figure 6b) looks realistic at first sight, with few 

artefacts. As well as looking at errors due to false positives and false negatives, the network 

analysed each 104.2m × 104.2m tile individually. These tiles were concatenated later. 

Therefore, the heights at the tile borders do have small differences. Compared to the 

conventional LoD1 in Figure 6a, the artificially generated city model in Figure 6b seems to 

be less accurate: borders and connections between buildings are drawn more roughly. The JI 

is an indicator for that, too. Furthermore, the heights of atypical buildings like towers were 

not estimated correctly. Nevertheless, distinguishing between the conventional and the 

generated city models is difficult at first glance. As shown in Figure 7, most of the buildings 

are located correctly. It can thus be concluded that the segmentation was quite often 

successful, even though some buildings were misinterpreted: atypical buildings with a unique 

architecture, such as museums, might cause problems. 

 

Figure 7: Segmented buildings using underlying orthographic image 
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6 Conclusion 

A new technique for automatic city model generation has been presented. It shows one of 

the possibilities that the improvements of machine-learning-based architectures can 

contribute to the field of geoinformation science. With this new framework, it is possible 

using aerial orthographic images to create acceptably accurate city models from single 

images, and to realize building segmentation. It should, however, be emphasized that 

modifying the height representation alters the accuracy of the height estimation. Other 

methods that use different colourmaps and add multiple channels for the height 

representation might reduce the errors even more and should be investigated in the future. 

Testing and evaluating our method on orthographic images of other cities should be 

considered, as should using datasets with different LoDs. Even though there is considerable 

room for improving the accuracy of the height estimation and the segmentation, this work 

represents the first step in a new direction for meeting the need for city models. 
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