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durch das W. M. Ludwig Reich)

Abstract

Two norms on a real vectorspace define the same orthogonality relation
iff they are proportional. The aim of this note is to give a proof of this
statement with a2 minimum of results on convex sets, convex functions
and real analysis. Needed is only the right derivative of a convex function
and the théoréme des accroissements finis as it is called by H. Cartan.

G. D. Birkhoff, R. C. James and others (see [1]) used in several important
papers the following concept of orthogonality in real normed linear
spaces (X, || [)-

Definition 1. Let x, yeX. We say xLy (x is orthogonal to y) if
x4+ Ayl = || x| for all 2eR.

Let us now think of two norms | ||, || ||, on X then we can ask, when
they determine the same orthogonality relation on JX. If one analyzes the
geometrical meaning of this orthogonality relation, then it seems that the
following has to be true.

Theotem. Two norms | ||, | |, on X determine the same orthogonality
relation (i.e. L, = L)) iff they are proportional (i.e. T here exists a number c€R_
with |, = ||, for all x€ X)

This theorem for example is useful in the proof of Theorem 4.17 in
[2] as Prof. R. Ger pointed out. Every proof of this theorem will use
several basic facts on convex sets and convex functions. Our aim is to give
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a proof relying on a minimum of these facts and therefore we will use
only, that a convex function has a right derivative at every inner point of
its domain of definition. For this purpose let us fix some notations.

Definition 2. Let (X, || ||) be a real normed linear space and x, ye X linearly
independent. With x, y we always can define the following functions

206,30 RoR, gl ysp:= [ x+pwy|  forall ueR,

1
c(2,30):R=>X, ¢(, ysp):=———=(x+wy) forall ueR.
065 1)

2, 930, ¢ (5, y30) are the right derivatives of these functions.

Lemma 1. Let (X, || ||) be any real normed linear space, x, y€X linearly
independent, then the following statements are true.

Lo (530 = —g* (6,030) s + -2
(] |
2. ¢*(x, 9;0) and ¢ (x, y;0) are linearly independent.
3. Ifxc Ly, then —g* (x, ;0) <O0.
4. If y:=n(y + kx) with kK, neR, n > 0, then
e (. 350) = 1¢” (%, 330)
5. ¢(x,y — o34+ W) =c(x+ A(y— %),y — x; 1) and
Floy—ah) =T x+ A — ), —x;0)

Proof
Ad 1. g% (x, y;10) exists for every u€R because g(x, y;+): R—>R is
a convex function. Differentiation therefore yields

+ .
c+(x,y;,u) :w(x+ 1)) _{_#
2705 1) 205310
and with u = 0 we get
— g (x,7;0) b x
€+(X,j/;0)= 2 boys X+ = — +(x,y;0) + -
o0 gyt [P Tl

Ad 2. 1. shows that ¢ ¥ (x, 5 ;0), x are linearly independent, because x;, y
are linearly independent. But x=||x|¢(x, 3;0), hence ¢* (x, y;0),
¢(x, y;0) ate lineatly independent.

Ad 3. xLyis defined by || x 4+ wy|| > || x|| for all u€R, but this implies
that u = 0 is an argument where the absolute minimum || x || of g(x, y;e)is
attained and therefore we must have — g ¥ (x, 1;0) < 0.
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Ad 4. One easily can check that

W) =c¢ x~'7'u
e (’]’n(l—xu)>

for all peR with xu < 1. Differentiation yields

. 7 1
f+(x,y;u)=f+<w; )
n(l—rp )01 —rpw?

and for it = 0 we get the desired equation. n

Ad 5. A trivial computation.

Lemma 2. x1c¥ (x,9;0) for every pair of linearly independent vectors
x, yeX.

Proof:

We only have to show that ||x + A¢ ¥ (x,7;0) | > || x| for every A€R.
For shorter notation we will write ¢(0):= ¢(x,y;0). Let 6 >0 and
U0, 1], we then get

A =we@) +ue@ =0 =wlec@l+ule@=1=]cO]

or equivalently

@+ w305 ) > 1o
The last inequality says that for all A¢[ —
() + z( 00 )>

If we choose an & > 0, then for every 0 < < ¢ and every A¢[— ¢, 0] we

get
¢(0) —¢(0)
c(0) + i( 5 >

Taking the limit 6 — 0 yields
le@ + 2¢O = [cO |

= [le@)]-

2 [l

for every A¢[— ¢,0]. But € was arbitrary and therefore
x4 2cT O | = || ]|
for all LeR. ]
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Lemma 3. Zet |||, | |, be two norms on X which determine the same
orthagonality relation 1 on X (fe. L, = 1, =1 1). Letg, (5, y;0),¢;(3,y;0) be
the functions with respect to || ||, i = 1,2, then

[ 2]l
C;(X,J/,O)— ” H] 1+( X5 )
2

Proof

By Lemma 1 we have

+ X J
o (x030) = — g, (XJ;O)WJFW and
1 1

+ + X J
6 (%30) = =g (%y;0) W+W
2 2
Substituting
1 —o ;0
j — [1+ (X,J/ ,O) — )}_1_ gl (X’J/s )X
(EFR (B3N

in these two equations yields (according to Lemma 1.4)

J
¢l
From this we get (by Lemma 1.1)

1
qu (%,0;0) = and 5; (>,7;0) :Wf; (>,9;0)
Xl

1 . J
—— (30 =6 (%J;0) = —g J;0)—
[ 51l [ x ”2 [ 1],
€1+ (2,7;0).

= —& IO

AN
By Lemma 2 we have x L j and Lemma 1.3 yields therefore
—2 (5;0) <0.

. ~ + . . .
If we substitute y:=r¢, (x,7;0) in our starting equations, we get the
analogous equation

+ 1 +
[1 (X’J} ’O) gl (X,J/ 0) H H H ~ H €2 (‘Xr)/ 50)9
1

1
(ESP

with the analogous statement that

—g1+ (x,7;0) < 0.

1
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Adding these last two equations yields
1

which implies that both coefficients are zero, because they are both < 0.
Now we are teady, because of this we have

1, 1,
sz (p30) = WQ (2730),
1 2

what we wanted. ]

Proof of the theorem:
Let || ||, I I, be two norms on X, which define the same orthogonality
relation L on Xand x, ye.X lineatly independent, then we will show that

bl _ lcll
bl Tl

Our two curves are related in the following form

— '}\,
sy =3y = A 23

ST (ay — A
2>y — x5 ) 16 )

and therefore we get by differentiation

+
€2+ (2,7 — x5 ) =<&> () — x3A) ¢, (6,9 — ;3 4)
&

2

+ <&>(x,y —x;30) ¢, (e — x32).
&2
Lemma 1.5, Lemma 3 and again Lemma 1.5 yield
6 (ey—x30) =¢; (x4 Ay — %),y — x;0)

st AG =9l
||X+/LU )”2 “

[x+ A0 =2, +(X — )
e I

ie. ¢, (x, 7 — x34), e (%, y — x; /) ate linearly dependent. On the other
side we have according to Lemma 1.2, that ¢, (x, y —x34), ¢, (x,) — x32)

(+ A0 =20 = x;0)
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are linearly independent and hence we conclude, that
+
(‘&) (e,y —2;4) =0
2
for all AeR. From this we get (by the théoréme des accroissements finis
[41)
8oy =51 sy = x50 _
gZ(X)]_X’l) gZ(Xaj_X:O) -

or, what is the same

Il _ Il
Il [l

This implies the existence of a number g€ R, such that for all xe.X

lxlly = o [l x]l-

The implication from proportionality of the two norms on equality of
there associated orthogonality relations is trivial. ]
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