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Orthogonality and Proportional Norms
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Abstract

Two norms on a real vectorspace define the same orthogonality relation
iff they are proportional. The aim of this note is to give a proof of this
statement with a minimum of results on convex sets, convex functions
and real analysis. Needed is only the right derivative of a convex function
and the théorème des accroissements finis as it is called by H. Cartan.

G. D. Birkhoff, R. C. James and others (see [1]) used in several important
papers the following concept of orthogonality in real normed linear
spaces (X, E E).

Definition 1. Let x, yMX. We say xo y (x is orthogonal to y) iff
Ex] jyEqExE for all jMR.

Let us now think of two norms E E1, E E2 on X, then we can ask, when
they determine the same orthogonality relation on X. If one analyzes the
geometrical meaning of this orthogonality relation, then it seems that the
following has to be true.

Theorem. Two norms E E1, E E2 on X determine the same orthogonality
relation (i.e. o1\o2) iff they are proportional (i.e. T here exists a number pMR[0

with ExE1\pExE2 for all xMX.)

This theorem for example is useful in the proof of Theorem 4.17 in
[2] as Prof. R. Ger pointed out. Every proof of this theorem will use
several basic facts on convex sets and convex functions. Our aim is to give



a proof relying on a minimum of these facts and therefore we will use
only, that a convex function has a right derivative at every inner point of
its domain of definition. For this purpose let us fix some notations.

Definition 2. Let (X, E E) be a real normed linear space and x, yMX linearly
independent. With x, y we always can define the following functions

g (x, y ;● ) :R]R, g (x, y ;k) :\Ex]k yE for all kMR,

c (x, y ;● ) :R]X, c(x, y ;k):\
1

g(x, y ; k)
(x]k y) for all kMR.

g`(x, y ;● ), c`(x, y ;● ) are the right derivatives of these functions.

Lemma 1. Let (X, E E) be any real normed linear space, x, y MX linearly
independent, then the following statements are true.

1. c`(x, y ;0)\[g` (x, y ;0)
x

ExE2]
y

ExE
2. c`(x, y ;0) and c (x, y ;0) are linearly independent.
3. If xo y, then [g`(x, y ;0)p0.
4. If y8 :\g ( y]ix) with i, gMR, g[0, then

c`(x, y8 ;0)\gc`(x, y ;0)
5. c (x, y[x ;j]k)\c (x]j( y[x), y[x ; k) and

c`(x, y[x ;j)\ c`(x]j( y[x), y[x ; 0)

Proof :
Ad 1. g`(x, y ;k) exists for every kMR because g (x, y ; ● ) : R]R is

a convex function. Differentiation therefore yields

c`(x, y ;k)\
[g`(x, y ;k)

g 2 (x, y ; k)
(x]k y)]

y

g (x, y ;k)

and with k\0 we get

c`(x, y ;0)\
[g`(x, y ;0)

g 2(x, y ;0)
x]

y

g (x, y ;0)
\[g` (x, y ;0)

x

Ex E2]
y

ExE
.

Ad 2. 1. shows that c`(x, y ;0), x are linearly independent, because x, y
are linearly independent. But x\ExEc (x, y ;0), hence c`(x, y ;0),
c(x, y ;0) are linearly independent.

Ad 3. xoy is defined by Ex]kyEqExE for all kMR, but this implies
that k\0 is an argument where the absolute minimum ExE of g(x, y ;● ) is
attained and therefore we must have [g`(x, y ;0)p0.
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Ad 4. One easily can check that

c (x, y ;k)\c Ax, y8 ;
k

g(1[ik)B
for all kMR with ik\1. Differentiation yields

c`(x, y ;k)\c`Ax, y8 ;
k

g(1[ik)B
1

g (1[ik)2

and for k\0 we get the desired equation. ■

Ad 5. A trivial computation.

Lemma 2. xoc`(x, y ;0) for every pair of linearly independent vectors
x, yMX.

Proof :
We only have to show that Ex]jc`(x, y ;0)EqExE for every jMR.

For shorter notation we will write c (d):\ c(x, y ;d). Let d[0 and
kN [0, 1], we then get

E(1[k)c (d)]kc (0)Eq(1[k)Ec (d)E]kEc (0)E\1\E c (0)E

or equivalently

KKc (d)]([k)d A
c (d)[ c (0)

d B KKqE c (0)E.

The last inequality says that for all jN [[d, 0]

KK c (d)]j A
c (d)[c (0)

d B KKqE c (0)E.

If we choose an e[0, then for every 0\d\e and every jN [[e, 0] we
get

KK c (d)]j A
c (d)[c (0)

d B KKqE c (0)E.

Taking the limit d]0 yields

Ec(0)]jc`(0)EqEc (0)E

for every jN[[e, 0]. But e was arbitrary and therefore

Ex]jc`(0)EqExE

for all jMR. ■
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Lemma 3. Let E E1, E E2 be two norms on X which determine the same
orthogonality relation o on X (i.e. o1\o2\:o). Let gi (x, y ;● ), c i(x, y ; ● ) be
the functions with respect to E Ei, i\1, 2, then

c 2̀ (x, y ; 0)\
ExE1

ExE2

c 1̀ (x, y ;0).

Proof :
By Lemma 1 we have

c 1̀ (x, y ;0)\[g 1̀ (x, y ;0)
x

ExE2
1

]
y

ExE1

and

c 2̀ (x, y ;0)\[g 2̀ (x, y ; 0)
x

ExE2
2

]
y

ExE2

Substituting

y8 :\c 1̀ (x, y ;0)\
1

ExE1Ay]
[g 1̀ (x, y, ;0)

ExE1

xB
in these two equations yields (according to Lemma 1.4)

c1̀ (x, y8 ;0)\
y8

ExE1

and c2̀ (x, y8 ; 0)\
1

ExE1

c2̀ (x, y ;0)

From this we get (by Lemma 1.1)

1
ExE1

c2̀ (x, y ;0)\c2̀ (x, y8 ;0)\[g2̀ (x, y8 ;0)
x

ExE2
2

]
y8

ExE2

\[g2̀ (x, y8 ;0)
x

ExE2
2

]
1

ExE2

c1̀ (x, y ;0).

By Lemma 2 we have xoy8 and Lemma 1.3 yields therefore

[g 2̀ (x, y8 ;0)p0.

If we substitute y8 :\ c 2̀ (x, y ;0) in our starting equations, we get the
analogous equation

1
ExE2

c 1̀ (x, y ;0)\[g 1̀ (x, y8 ;0)
x

ExE2
1

]
1

ExE1

c 2̀ (x, y ;0),

with the analogous statement that

[g 1̀ (x, y8 ;0)p0.
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Adding these last two equations yields

[g 2̀ (x, y8 ;0)
x

ExE2
2

][g 1̀ (x, y8 ;0)
x

ExE2
1

\0,

which implies that both coefficients are zero, because they are both p0.
Now we are ready, because of this we have

1
ExE1

c2̀ (x, y ;0)\
1

ExE2

c1̀ (x, y ;0),

what we wanted. ■

Proof of the theorem:
Let E E1, E E2 be two norms on X, which define the same orthogonality
relation o on X and x, yMX linearly independent, then we will show that

Ey E1

Ey E2

\
Ex E1

Ex E2

.

Our two curves are related in the following form

c2 (x, y[x ; j)\
g1(x, y [x ;j)
g 2(x, y [x ; j)

c1(x, y [x ; j)

and therefore we get by differentiation

c 2̀ (x, y[x ; j)\A
g1

g2B
`

(x, y[x ;j)c1 (x, y[x ;j)

]A
g1

g2B(x, y [x ;j) c 1̀ (x, y [x ;j).

Lemma 1.5, Lemma 3 and again Lemma 1.5 yield

c 2̀ (x, y[x ; j)\c 2̀ (x]j ( y [x), y [x ; 0)

\
Ex]j ( y [x)E1

Ex]j ( y [x)E2

c 1̀ (x]j( y[x), y[x ;0)

\
Ex]j ( y [x)E1

Ex]j ( y [x)E2

c 1̀ (x, y[x ;j)

i.e. c 2̀ (x, y[x ;j), c 1̀ (x, y[x ;j) are linearly dependent. On the other
side we have according to Lemma 1.2, that c1 (x, y [x ;j), c 1̀ (x, y[x ;j)
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are linearly independent and hence we conclude, that

A
g1

g2B
`

(x, y [x ;j)\0

for all jMR. From this we get (by the théorème des accroissements finis
[4])

K
g1(x, y [x ;1)
g 2(x, y [x ;1)

[
g1(x, y [x ;0)
g2(x, y [x ;0) Kp0

or, what is the same

E yE1

E yE2

\
E xE1

E xE2

.

This implies the existence of a number pMR, such that for all xMX

ExE1\pExE2.

The implication from proportionality of the two norms on equality of
there associated orthogonality relations is trivial. ■
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16 P. Schöpf: Orthogonality and Proportional Norms


