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1. Introduction

In [4] Z. Kominek and J. Matkowski investigated the stability behaviour
of the functional equation

o) = of (9.

Contrasting eatlier “superstability” results of Josef Tabor ([6]) and of
Jacek and Jésef Tabor ([7]) [4] contains stability results. This means that
for approximately homogeneous functions the existence of homoge-
neous functions close to but different from the given ones is proved. The
theorem reads as follows.

Theorem 1. ([4]) Let X be a real vector space and let S S X be a cone (i.c.,
S# & and oS < S for all o > 0). Let Y be a sequentially complete topological
vector space which is Hansdorff. Then: If f:8— Y is such that

0 o) —f)EV (xES, aeA) (1)

where V'S Y is a bounded subset of Y and A is a subset of |1,00| with nonempty
interior, then there is a (unigue) I':§— Y such that 7 is R_ -homogeneons and
such that f— F is bounded (by some bound depending on ).

Tabor’s result ([6]) adapted to the above situation is the following.

If o7 o) — (e (x€ES, 00> 0) then f is homageneons (“Superstability”).
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My aim is to generalize the results of Theorem 1. To motivate this
y g
generalization note that (1) may be rewritten as

Flox) —of()eal’  (xeS,neA), )

where o= 0 is a (very special) multiplicative function and o 1”is bounded.
Moreover multiplying elements of § by positive reals is a special case of
a group action. (The latter aspect also is taken into consideration in [7].)
Facts and notations in connection with topological vector spaces (75)
are taken from [5]. A subset B of a real or complex tvs Y is called bounded if
for every neighbourhood U of 0€Y there is some scalar oo > 0 such that
B< BU for all |f| > a. Obviously subsets of bounded sets and finite
unions of bounded sets are bounded. Motreover 44 + B is bounded if
A and B are bounded and if A€ K is arbitrary. (IKe{R, C} denotes the
ground field of the tvs Y.) If Y is locally convex then the absolute convex
hull (and the convex hull) of a bounded subset is also bounded.
(Following the notation in [5] the convex hull and the absolute convex
hull of a subset .4 of Y are denoted by cx(4) and acx (A) respectively.
The general setting used in the sequel is the following.

. X# (5, aset,

. G a semigroup (with or without unit),

. 1 G x X— X a semigroup action of G'on X i.e.,
(gh)-x=g*(h*x) for all g, he G'and all x€ X, 1-x = x for all xe.X] if
G'is a semigroup with unit 1,

. Y a [K-tvs which is Hausdorff,

. 1:G—B(Y) a mapping from Ginto the set of B (Y") of bounded
subsets of Y,

.M G- K

2. Global Stability Results
We have the following
Theorem 2. If

fo3) — M@ fREV)  (xeX,2eG) @
and if f is unbounded (i.e., the set f(X) is not bounded) zhen we have
M@f) =M)MPB) (xpes), G

i, M:G— W is a “multiplicative” function.
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Proof: For o, feGand xeX we have—using (2) —
M @P) — M@M(B)) () = MOB) f(x) — o) + f (o (B)
— M) f(B) + M) ((B)
— M(B)fe)e— Vap)
+ 110 + M@ TAB).
Thus
M(@p) — M@ MPB)FX) S Vyy:= — Vaf)

+ V(o) + M) T (BeB(Y)
implying by the unboundedness of f that (M(af) — M(@f))=0. [
Corollary 1. (Baker, Ger [1], [2].) Let M:G— I be such, that
(M(xy) = MM < v(x)  (x€GC)
Sor some v: G—R. Then M is either bounded or multiplicative.

Proof: Take X=G, Y=, f=M, and 1V (x):= { yeK||y| < »(x)} and
apply Theorem 2. ]
According to Theorem 2 there is no loss of generality in assuming M to
be multiplicative provided that / is unbounded. (The latter case seems to
be the only interesting one, since for bounded f the left-hand side of (2) is
bounded with respect to x€.X anyway.) Thus, from now on, we assume
the multiplicativity of /; and we call /: X — Y “M-homogeneous” if

Flox) = MO)F(x) (x€X,0€G).

Theorem 3. Let G be a semigroup with unit, let X and Y be as above and assume

that Y is locally convex and sequentially complete. Suppose furthermore that for some
o, € G we have

Fo0gx) = f0,0%)  (x€X,0€G) and  [M(s)| > 1. )

Then condition (2) implies that there is a unique M-homogeneouns function IF* X —Y
such that the difference f — I is bounded. A bound is given by the set

(|M (o)) — 1)~ " seqel (acx (May))), ie.,

(f=HX) < W seqel (acx (17(2y)))- ®)
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Moreover, if I€ =R and if M(a,) > 1

(=P S eV @u o). ©

(T'he sequential closnre of 1< Y is denoted by seqcl(17).)

Proof: Suppose that /7 is M-homogeneous and assume that the image of
Xunder f— Fis contained in WeB(Y):

(f~ F)YX) S V.
Then
Flagx) — Fogx) = fogx) — M) e W (xeX, neN)
or
Mo "flogx) — FleMo,) "W
implying — since W is bounded — that

Fey = lim 120, 0

This shows uniqueness.
To show existence (6) gives a hint what to do. Let us define

ACTED
q)ﬂ(x) T M(OCO)”.

Then

_ 1 n+1 _ 7 1
(10;1+1 (X) (pn (X> - M(aﬂ)ﬂ+l (f(ao ‘X) M(ao)f(aox)) GM(OCO)fH»l V(ao)'
Putting £: = M(x,) and taking £ > 0 we get for all zeN

n+l—1 n+l—1

Poir(X) — @, () = ; (@11(x) —@,(x)€ ; £V (o)
c ' Z_ |£] 70D acx (17 (o))

J=n

< m acx (17 (). 8

The latter inclusion is valid since for absolute convex set W the relations
rWH+sWe (d+|sDW and pW<gW (p,q,ns€lK,|pl <|ql)

hold true.
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Since acx(1/(2,)) is also bounded (8) shows that the sequence
(,(2)) eny 1 @ Cauchy sequence and that

1
?, (%) — @y(x) EM——l acx I7(0t). ©)

Since Y is sequentially complete the pointwise limit /: = lim,_, , ¢, exists.
Letting 7 tend to 00 in (9) and noting that ¢, = / then leads to

Fx) —f(x)€e |,é|1—1 seqcl (acx (17(0)))  (xeX). (10

Now we show that F'is //-homogeneous. We consider the difference

@, () = M(©) 9, ()
and get by using the first part of (4)
@, (o) = M(@) @, (x) = M(0g) " (f (o 0x) — M (%) /(%))
= M(or) " (f (o) — M (@) f(01))
eEM(y) "7 (@)
This shows that ¢, (0x) — M(0)@,(x) tends to 0 when 7 goes to c0. But
this means that F(ax) — M(ox) F(x) = 0 (for all e G and all x€X) as
desired.
Similar arguments may be used when K =R and &:=M(o) > 1.

Denoting by I’ the convex closure of 17(2,) U {0} and observing that
for convex sets W and real numbers 7,,...,7, >0

J
J=1

n W+r2W+~--+r,,,Wg<Zr.>W

and that moreover

rWwesl if 0elW and 0<r<s

we get
(e g
(pﬂ+/(x) QD”(X) /é”(/é— l) . ( )
From this point on one may argue as before. O

Remark 1. The condition f(xo,x) = f(o,0x) for all ae G and all xeX
holds for example when o, C(G), the center of G; in particular it holds
for abelian semigroups G.



8 J. Schwaiger

Remark 2. The theorem becomes false if M/ = 1. A counterexample is
provided by

C=X=Y=Rax:=0+x, f(x):= j\/;dt 7 ()

= {yeR|y] <al},
because fis unbounded ( f(x) = 2 sign(x) (\/1 + |x| — 1) and because the

only 1-homogeneous functions are the constant ones.

3. Local Results

Theorem 3 does not cover the situation given in Theorem 1 since (1') is
supposed to hold for aeA only. (Kominek-Matkowski consider the
situation when X = Sis a cone in some real vector space, G = R, the set
of all positive reals, and A (o) = ) But note that the condition 4° # &
used in [4] implies that 4 generates the multiplicative group
R.o:Rog = <{AD.

The following theorem covers Theorem. 1.

Theorem 4. Let G be a semigroup with unit acting on the non-empty set X. Let
A< G generate G as a semigroup, i.e.

G = {(A);:=set of all finite products of elements in A.

Suppose that [ X—Y, Y a locally convex sequentially complete tvs over K, and
M:G— WK, M multiplicative, satisfy

Fo) = M@)FREV (0) (€A, x€X), @)

where T2 A —B(Y).
Then there exists a (unique) M-homogeneons function " X — Y such that f — F
is bounded provided that for some o€ A we have

Slaoyx) =floe,ox) (€A, xeX) and  [M(x)| > 1.

If G is a group and if A generates G as a group, G = {A), the assertion of the
theorem remains true provided that we assume the same hypotheses as before.

Progf: Obviously it is enough to show the existence of some
7":G—B(Y) such that

Jo) = M@)f(EV' () (2€G,xEX)

holds, since then we may apply Theorem 3.
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For neN, let A, be the set of products H/(:mc/ with 0 </ <7 and
arbitrary ay,...,o,€A4. Define

Vyid,— B ()
by 1/,(1):= {0}; then
Jx) = M@)f(x)eV, (@) (xeA,xeX) 11
for £ = 0 since M(1) = 1. Now, suppose that (11) holds for some £ >0
where
Vid,~B()

is such that the restriction 17,|A4,_, of 1/, to A,_, satisfies 1/,|A4,_, =
1/,_,. Consider yeA, , ,\ A, and write y = aff with a.eA4,, feA. Then

Jx) = M@)f () = fapx) — M) f() + M (@) (f () — M(B) /()
eV (@) +Me) V() =:Vu()

showing how to define 7, ;.

The function 17, defined by 17'[A4,:= 1/, for all Z, then has the
required properties, at least in the semigroup case.

In the group case we observe that G is generated by AUA"" as
a semigroup. Thus it is enough to find a suitable extension of 7 to
AuU.A~" (and to use the foregoing procedure). Note that M () # 0 for all
oeG'since G'is a group. So let us define

Ve Yi=—Mo "o (@eA\A".
Then f(ox) — M(a) f()€ 1 (o) for o0~ 'x instead of x implies
f) —M@f@DeV @ or fa'y)— M@l @ ).0
Remark 3. Even in the Kominek-Matkowski case the condition that

A generates G as a group is weaker than the weakest condition given in
[4]. This condition reads as

Acl,0] and (A-...-A)°# I forsome neN.

In fact, there are subsets A4 of |1, 00[ such that

(A>=R., and A-...A)°=F forall »eN.

N—— .
ntimes

An example is given by the following. Let /7 < [0, c0[ be a Hamel basis of
R and put A":= U,,GN L H. Then it is easy to see that .4’ generates the
additive group R and that (A" + - +.4)° = for all »eN. Thus

ntimes

A:=exp(A') has the desired propetty.
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R. Ger (personal communication) points out that also exp (A4") with

A= Qb
heH
has the desired property. (4" is the set of finite linear combinations of
elements of /7 with non negative rational coefficients.)

4. A Noncommutative Example

Of course there are many special cases of the above theorems, among
others those given in [4]. Here I want to present an example where the
(semi-)group involved is not abelian.

Theorem 5. Let X be a finite dimensional W -vector space of dimension n greater
than 1 and let the group G:= Aut(X) of linear antomorphisms of X act on X in the
canonical way (Axc = A(x)). Let furthermore M : G— W be multiplicative such that
|M| # 1. Then, given any mapping V-G —B(Y') where Y is a locally convex and
Hausdorff tvs over WK (not necessarily sequentially complete), we have that any
[ X =Y such that

JAN) = MA) fEV () (4G, xEX)

is bounded; especially this means that the zero function is the only M-homogeneous
Sfunction mapping X into K.

Progf: Due to [3] the multiplicative function M may be represented in the
form

MA) =m(det(A)) with m:K*¥—>K multiplicative.

If M =0 the assertion is obviously true (f(idx)e 7 (id,)). Otherwise
M(G) = K*:= K\ {0}. By assumption we have |M| # 1. Thus there is
some A, € G such that |M(A,)| > 1. Our next aim is to show that F'=0is
the only A/-homogeneous function.

Let F:X—Y be M-homogeneous. Then F(0)=F(A4,0)=
M(A) F(0); thus F(0)=0. If 0% x€X, then there is a basis {x; =
X,%5...,x,}  of X containing x. For A, 4,...,4,EK* the set
Dy =20, =4,%,...,9, = 4,x,} is another basis of X. Then there is some
A in G such that A(x) =y, for all 1 <;j<z In particular we have
A(x) = x. Choosing ﬂ; =1,2<;<n—1 and A;=det(4,) implies
M(A) = m(det(A)) = m(det(A,))) = M(A,) since det(A) = 2,74y ...°A,
Thus F(x) = F(Ax) = M(A) F(x) = M(A,) F(x) and F(x) =0, as desired.

To finish the proof we may assume that Y is also sequentially complete,
because we may embed Y into a (sequentially) complete locally convex
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and Hausdorft tvs ([J]) and because subsets of Y are bounded in the
completion iff they are bounded in Y. Furthermore we may assume that
A:=det(A,) has an #th root in K. This is trivial for K = C. If K = R this
can be achieved by using A7 instead of A4, which makes 4 positive. In any

case A,:={/Aid lies in the center of G. Moreover

IMA = I (2| = 1M(A)| > 1.

5. Tabor’s Superstability Result
The following theorem generalizes some results of [7].

Theorem 6. Let X and G be as in the introduction, G with unit, let Y be
a Hansdorff tvs and Y, a subset of 'Y such that G operates on Y, with yr>ay
continnous for all o€ G, and let V-G X X—>B(Y') be such, that there exists

a sequence (01,) . of invertible elements in G with the property that for arbitrary e G
and xeX

lim y,=0

n—0

Jor all sequences (y,) where y,€ V(oo o, ' x). Then any function f: X—Y,
satisfying
flox) —af(x)el’ (a,x) (xeG,xeX) (12
is homogeneous, i.e.
fo) =afx) (2€G,xeX).
(The operation of G on Y, is again denoted by (0, y)— ouy.)
Proof: Using (12) for oo, and a, ' x gives
o) — oo, flo e Ve, 07'%) - (xe G xe X, neN)
showing that

Flox) = lim oo, f(o0, %) (€ G, x€X).

Putting o = 1 and using the continuity of y— ay thus yields
S = lim o, f(,'x)  (xeX)

n—>0

and
Flox) = lim ocor, f(or, ') = o lim o, f(ot, ' o) = 0f (%) (2€ G, xEX).

n—> 0 n— 0
U
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Remark 4. The original result was the special case that R operates on
invariant subsets X of a real vectorspace and Y| of a Hausdorff tvs by
multiplication by scalars. 1{,x) was of the form g(a,x) 1" with I'€B and
4G x X— R satisfying lim, . (o, 0, 'x) = 0. It is easy to see that the
bounded sets g(o,x) |are a (very) special case of sets [{o,x) as above.
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