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1. Introduction

In [4] Z. Kominek and J. Matkowski investigated the stability behaviour
of the functional equation

f (ax)\af (x).

Contrasting earlier ‘‘superstability’’ results of Jósef Tabor ([6]) and of
Jacek and Jósef Tabor ([7]) [4] contains stability results. This means that
for approximately homogeneous functions the existence of homoge-
neous functions close to but different from the given ones is proved. The
theorem reads as follows.

Theorem 1. ([4]) Let X be a real vector space and let SUX be a cone (i.e.,
SD£ and aSUS for all a[0). Let Y be a sequentially complete topological
vector space which is Hausdorff. Then: If f :S]Y is such that

a[1 f (ax)[ f (x)MV (xMS, aMA) (1)

where VUY is a bounded subset of Y and A is a subset of ]1,O[ with nonempty
interior, then there is a (unique) F :S]Y such that F is R]-homogeneous and
such that f[F is bounded (by some bound depending on V ).

Tabor’s result ([6]) adapted to the above situation is the following.

If a[1 f (ax)[f (x)MV (xMS, a[0) then f is homogeneous (‘‘Superstability’’).



My aim is to generalize the results of Theorem 1. To motivate this
generalization note that (1) may be rewritten as

f (ax)[af (x)MaV (xMS, aMA), (1@)

where a#a is a (very special) multiplicative function and aV is bounded.
Moreover multiplying elements of S by positive reals is a special case of
a group action. (The latter aspect also is taken into consideration in [7].)

Facts and notations in connection with topological vector spaces (tvs)
are taken from [5]. A subset B of a real or complex tvs Y is called bounded if
for every neighbourhood U of 0MY there is some scalar a[0 such that
BUbU for all DbDqa. Obviously subsets of bounded sets and finite
unions of bounded sets are bounded. Moreover jA]B is bounded if
A and B are bounded and if jMK is arbitrary. (KMMR, CN denotes the
ground field of the tvs Y.) If Y is locally convex then the absolute convex
hull (and the convex hull) of a bounded subset is also bounded.
(Following the notation in [5] the convex hull and the absolute convex
hull of a subset A of Y are denoted by cx(A) and acx (A) respectively.

The general setting used in the sequel is the following.

● XD£, a set,
● G a semigroup (with or without unit),
● · : G]X]X a semigroup action of G on X, i.e.,

(gh)·x\g ·(h ·x) for all g, hMG and all xMX, 1 ·x\x for all xMX, if
G is a semigroup with unit 1,

● Y a K-tvs which is Hausdorff,
● V :G]B(Y ) a mapping from G into the set of B(Y ) of bounded

subsets of Y,
● f :X]Y,
● M :G]K.

2. Global Stability Results

We have the following

Theorem 2. If

f (ax)[M(a) f (x)MV(a) (xMX, aMG ) (2)

and if f is unbounded (i.e., the set f (X) is not bounded) then we have

M(ab)\M(a)M(b) (a,bMG ), (3)

i.e., M :G]K is a ‘‘multiplicative’’ function.
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Proof : For a,bMG and xMX we have—using (2) —

(M (ab)[M(a)M(b)) f (x)\M(ab) f (x)[ f (abx)] f (a(bx))

[M(a) f (bx)]M(a)( f (bx))

[M(b) f (x))M[V(ab)

]V(a)]M(a)V(b).

Thus

(M(ab)[M(a)M(b)) f (X )UVa,b :\[V(ab)

]V (a)]M(a)V (b)MB(Y )

implying by the unboundedness of f that (M(ab)[M(ab))\0. (

Corollary 1. (Baker, Ger [1], [2].) Let M :G]K be such, that

DM(xy)[M(x)M( y)Dpv(x) (x,yMG )

for some v : G]R. Then M is either bounded or multiplicative.

Proof : Take X\G, Y\K, f\M, and V (x):\M y MK D D yDpv (x)N and
apply Theorem 2. (

According to Theorem 2 there is no loss of generality in assuming M to
be multiplicative provided that f is unbounded. (The latter case seems to
be the only interesting one, since for bounded f the left-hand side of (2) is
bounded with respect to xMX anyway.) Thus, from now on, we assume
the multiplicativity of M ; and we call F :X]Y ‘‘M-homogeneous’’ if

F(ax)\M(a)F(x) (xMX, aMG ).

Theorem 3. Let G be a semigroup with unit, let X and Y be as above and assume
that Y is locally convex and sequentially complete. Suppose furthermore that for some
a0MG we have

f (aa0x)\ f (a0ax) (xMX, aMG ) and DM (a0)D[1. (4)

Then condition (2) implies that there is a unique M-homogeneous function F :X]Y
such that the difference f [F is bounded. A bound is given by the set

( DM(a0)D[1)[1 seqcl(acx(V(a0))), i.e.,

( f [F )(X )U
1

DM(a0)D[1
seqcl (acx(V (a0))). (5)
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Moreover, if K\R and if M(a0)[1

( f[F )(X )U
1

M(a0)[1
seqcl(cx(V (a0)XM0N)). (6)

(The sequential closure of VUY is denoted by seqcl(V ).)

Proof : Suppose that F is M-homogeneous and assume that the image of
X under f[F is contained in WMB(Y ):

( f[F )(X )UW .
Then

f (an
0x)[F(an

0x)\f (an
0x)[M(a0)

nF(x)MW (xMX, nMN)

or

M(a0)
[n f (an

0x)[F(x)MM(a0)
[nW

implying – since W is bounded – that

F(x)\ lim
n]O

f (an
0)

M(a0)
n . (7)

This shows uniqueness.
To show existence (6) gives a hint what to do. Let us define

rn(x) :\
f (an

0x)
M(a0)

n.

Then

rn]1(x)[rn(x)\
1

M(a0)
n]1 ( f (an]1

0 x)[M(a0) f (an
0x))M 1

M(a0)
n]1V (a0).

Putting k :\M(a0) and taking l[0 we get for all nMN0

rn]l(x)[rn (x)\
n]l[1

;
j\n

(rj]1(x)[rj(x))M
n]l[1

;
j\n

k[( j]1)V (a0)

U
n]l[1

;
j\n

DkD[( j]1) acx(V (a0))

U
1

DkDn ( DkD[1)
acx(V (a0)). (8)

The latter inclusion is valid since for absolute convex set W the relations

rW]sWU(DrD] Ds D)W and pWUqW ( p,q,r, sMK, D pDp Dq D)

hold true.
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Since acx(V (a0)) is also bounded (8) shows that the sequence
(rn(x))nMN is a Cauchy sequence and that

rn (x)[r0(x)M 1
DkD[1

acxV (a0). (9)

Since Y is sequentially complete the pointwise limit F :\ limn]Orn exists.
Letting n tend to O in (9) and noting that r0\ f then leads to

F(x)[ f (x)M 1
DkD[1

seqcl (acx(V (a0))) (xMX ). (10)

Now we show that F is M-homogeneous. We consider the difference

rn (ax)[M(a)rn (x)

and get by using the first part of (4)

rn(ax)[M(a)rn (x)\M(a0)
[n( f (an

0ax)[M (a) f (an
0x))

\M(a0)
[n( f (aan

0x)[M (a) f (an
0x))

MM(a0)
[nV (a)

This shows that rn(ax)[M(a)rn (x) tends to 0 when n goes to O. But
this means that F(ax)[M(ax)F(x)\0 (for all aMG and all xMX ) as
desired.

Similar arguments may be used when K\R and k :\M(a0)[1.
Denoting by V @ the convex closure of V (a0)XM0N and observing that
for convex sets W and real numbers r1, . . . ,rm[0

r1W]r2W] · · ·]rmW UA
m

;
j\1

rjBW

and that moreover

rWUsW if 0MW and 0prps

we get

rn]l(x)[rn(x)M 1
kn (k[1)

V @. (8@)

From this point on one may argue as before. (
Remark 1. The condition f (aa0x)\ f (a0ax) for all aMG and all xMX
holds for example when a0MC(G ), the center of G; in particular it holds
for abelian semigroups G.
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Remark 2. The theorem becomes false if M\1. A counterexample is
provided by

G\X\Y\R, a ·x :\a]x, f (x):\
x

:
0

1

J1] Dt D
dt, V (a)

:\MyMR D y Dp DaDN,

because f is unbounded ( f (x)\2 sign(x)(J1] DxD[1) and because the
only 1-homogeneous functions are the constant ones.

3. Local Results

Theorem 3 does not cover the situation given in Theorem 1 since (1@) is
supposed to hold for aMA only. (Kominek-Matkowski consider the
situation when X\S is a cone in some real vector space, G\R[0, the set
of all positive reals, and M(a)\a.) But note that the condition A°D£
used in [4] implies that A generates the multiplicative group
R[0 : R[0\SAT.

The following theorem covers Theorem. 1.

Theorem 4. Let G be a semigroup with unit acting on the non-empty set X. Let
AUG generate G as a semigroup, i.e.

G\SATs :\set of all finite products of elements in A.

Suppose that f :X]Y, Y a locally convex sequentially complete tvs over K, and
M :G]K,M multiplicative, satisfy

f (ax)[M(a) f (x)MV (a) (aMA, xMX ), (2@)

where V :A]B(Y ).
Then there exists a (unique) M-homogeneous function F :X]Y such that f[F

is bounded provided that for some a0MA we have

f (aa0x)\ f (a0ax) (aMA, xMX ) and DM(a0)D[1.

If G is a group and if A generates G as a group, G\SAT, the assertion of the
theorem remains true provided that we assume the same hypotheses as before.

Proof : Obviously it is enough to show the existence of some
V @ :G]B(Y ) such that

f (ax)[M(a) f (x)MV @(a) (aMG, xMX )

holds, since then we may apply Theorem 3.
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For nMN0 let An be the set of products %l
j\1aj with 0plpn and

arbitrary a1, . . . ,alMA. Define

V0 :A0]B(Y )
by V0(1):\M0N; then

f (ax)[M(a) f (x)MVl(a) (aMAl, xMX ) (11)

for l\0 since M(1)\1. Now, suppose that (11) holds for some lq0
where

Vl :Al]B(Y )

is such that the restriction VlDAl[1 of Vl to Al[1 satisfies Vl DAl[1\
Vl[1. Consider cMAl]1CAl and write c\ab with aMAl, bMA. Then

f (cx)[M(c) f (x)\ f (abx)[M(a) f (bx)]M(a)( f (bx)[M (b) f (x))

MVl(a)]M(a)V (b)\:Vl]1(c)

showing how to define Vl]1.
The function V @, defined by V @DAl :\Vl for all l, then has the

required properties, at least in the semigroup case.
In the group case we observe that G is generated by AXA[1 as

a semigroup. Thus it is enough to find a suitable extension of V to
AXA[1 (and to use the foregoing procedure). Note that M(a)D0 for all
aMG since G is a group. So let us define

V (a[1) :\[M(a)[1V(a) (aMACA[1).

Then f (ax)[M(a) f (x)MV (a) for a[1x instead of x implies

f (x)[M(a) f (a[1x)MV (a) or f (a[1x)[M(a[1) f (x)MV (a[1).(
Remark 3. Even in the Kominek-Matkowski case the condition that
A generates G as a group is weaker than the weakest condition given in
[4]. This condition reads as

AU]1,O[ and (A·.. .·A

n times

)°D£ for some nMN.

In fact, there are subsets A of ]1,O[ such that

SAT\R[0 and (A · . . . ·A
n times

)°\£ for all nMN.

An example is given by the following. Let HU[0,O[ be a Hamel basis of
R and put A@ :\ZnMN

1
n !H. Then it is easy to see that A@ generates the

additive group R and that (A@] · · ·]A@)
n times

°\£ for all nMN. Thus

A:\exp(A@) has the desired property.
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R. Ger (personal communication) points out that also exp(AA) with

AA\ ;
hMH

Qq0h

has the desired property. (AA is the set of finite linear combinations of
elements of H with non negative rational coefficients.)

4. A Noncommutative Example

Of course there are many special cases of the above theorems, among
others those given in [4]. Here I want to present an example where the
(semi-)group involved is not abelian.

Theorem 5. Let X be a finite dimensional K-vector space of dimension n greater
than 1 and let the group G :\Aut(X ) of linear automorphisms of X act on X in the
canonical way (Ax\A(x)). Let furthermore M :G]K be multiplicative such that
DM DD1. Then, given any mapping V :G]B(Y ) where Y is a locally convex and
Hausdorff tvs over K (not necessarily sequentially complete), we have that any
f :X]Y such that

f (Ax)[M(A) f (x)MV (A) (AMG, xMX )

is bounded; especially this means that the zero function is the only M-homogeneous
function mapping X into K.

Proof : Due to [3] the multiplicative function M may be represented in the
form

M(A)\m (det(A)) with m :K*]K multiplicative.

If M\0 the assertion is obviously true ( f (idXx)MV (idX )). Otherwise
M(G)UK*:\KCM0N. By assumption we have DM DD1. Thus there is
some A1MG such that DM (A1)D[1. Our next aim is to show that F\0 is
the only M-homogeneous function.

Let F :X]Y be M-homogeneous. Then F(0)\F(A10)\
M (A1)F(0); thus F(0)\0. If 0DxMX, then there is a basis Mx1\
x, x2, . . . ,xnN of X containing x. For j2, j3, . . . ,jnMK* the set
My1\x, y2\j2x2, . . . ,yn \jnxnN is another basis of X. Then there is some
A in G such that A(xj)\y j for all 1p jpn. In particular we have
A(x)\x. Choosing jj :\1,2p jpn[1 and jn :\det(A1) implies
M(A)\m (det(A ))\m (det(A1))\M(A1) since det(A )\j2 ·j3 · . . . ·jn.
Thus F(x)\F(Ax)\M(A)F(x)\M(A1)F(x) and F(x)\0, as desired.

To finish the proof we may assume that Y is also sequentially complete,
because we may embed Y into a (sequentially) complete locally convex
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and Hausdorff tvs ([ J ]) and because subsets of Y are bounded in the
completion iff they are bounded in Y . Furthermore we may assume that
j :\det(A1) has an nth root in K. This is trivial for K\C. If K\R this
can be achieved by using A 2

1 instead of A1 which makes j positive. In any
case A0 :\ nJj idX lies in the center of G. Moreover

DM(A0)D\ Dm ( nJjn)D\ DM(A1)D[1.
(

5. Tabor’s Superstability Result

The following theorem generalizes some results of [7].

Theorem 6. Let X and G be as in the introduction, G with unit, let Y be
a Hausdorff tvs and Y1 a subset of Y such that G operates on Y1 with y #ay
continuous for all aMG, and let V :G]X]B(Y ) be such, that there exists
a sequence (an)nMN of invertible elements in G with the property that for arbitrary aMG
and xMX

lim
n]O

yn\0

for all sequences ( yn) where ynMV(aan, a
[1
n x). T hen any function f : X]Y1

satisfying

f (ax)[a f (x)MV (a,x) (aMG, xMX ) (12)

is homogeneous, i.e.

f (ax)\af (x) (aMG, xMX ).

(The operation of G on Y1 is again denoted by (a, y)#ay.)

Proof : Using (12) for aan and a[1
n x gives

f (ax)[aan f (a[1
n x)MV(aan, a

[1
n x) (aMG, xMX, nMN)

showing that

f (ax)\ lim
n]O

aan f (a[1
n x) (aMG, xMX ).

Putting a\1 and using the continuity of y]ay thus yields

f (x)\ lim
n]O

an f (a[1
n x) (xMX )

and
f (ax)\ lim

n]O
aan f (a[1

n x)\a lim
n]O

an f (a[1
n x)\af (x) (aMG, xMX ).

(
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Remark 4. The original result was the special case that R operates on
invariant subsets X of a real vectorspace and Y1 of a Hausdorff tvs by
multiplication by scalars. V(a,x) was of the form g(a,x)V with VMB and
g :G]X]R satisfying limn]O(aan, a

[1
n x)\0. It is easy to see that the

bounded sets g (a,x)V are a (very) special case of sets V(a,x) as above.
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